首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We are using a proteomic approach that combines two-dimensional electrophoresis and tandem mass spectrometry to detect and identify proteins that are differentially expressed in a cell line that is resistant to oxidative stress. The resistant cell line (OC14 cells) was developed previously through chronic exposure of a parent cell line (HA1 cells) to increasing hydrogen peroxide concentrations. Biochemical analyses of this system by other investigators have identified elevated content and activity of several classical antioxidant proteins that have established roles in oxidative stress resistance, but do not provide a complete explanation of this resistance. The proteomics studies described here have identified the enzyme aldose reductase (AR) as 4-fold more abundant in the resistant OC14 cells than in the HA1 controls. Based on this observation, the role of AR in the resistant phenotype was investigated by using a combination of AR induction with ethoxyquin and AR inhibition with Alrestatin to test the cytotoxicity of two oxidation-derived aldehydes: acrolein and glycolaldehyde. The results show that AR induction in HA1 cells provides protection against both acrolein- and glycolaldehyde-induced cytotoxicity. Furthermore, glutathione depletion sensitizes the cells to the acrolein-induced toxicity, but not the glycolaldehyde-induced toxicity, while AR inhibition sensitizes the cells to both acrolein- and glycolaldehyde-induced. These observations are consistent with a significant role for AR in the oxidative stress-resistant phenotype. These studies also illustrate the productive use of proteomic methods to investigate the molecular mechanisms of oxidative stress.  相似文献   

2.
Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities, especially neural diseases. One of the effective ways to prevent the reactive oxygen species (ROS) mediated cellular injury is dietary or pharmaceutical augmentation of free radical scavengers. In the present study, we describe the synthesis and characterization of a novel cystine C(60) derivative (CFD). The compound was analyzed by FT-IR, (1)H NMR, (13)C NMR, LC-MS and elemental analysis. It contains five cystine moieties per C(60) molecule. This water-soluble amino-fullerene derivative was able to scavenge both superoxide and hydroxyl radical with biocompatibility. We investigated its potential protective effects on hydrogen peroxide-induced oxidative stress and apoptotic death in cultured rat pheochromocytoma (PC12) cells. Cells treated with hydrogen peroxide underwent cytotoxicity and apoptotic death determined by MTT assay, flow cytometry analysis, PI/Hoechst 33342 staining and glutathione peroxidase assay. The CFD was able to reduce the accumulation of reactive oxygen species and cellular damage caused by hydrogen peroxide in PC12 cells. RF assay demonstrated that CFD could penetrate through the cell membrane and it has played its distinguished role in protecting PC12 cells against hydrogen peroxide-induced cytotoxicity. The results suggest that CFD has the potential to prevent oxidative stress-induced cell death without evident toxicity. Hence, we can hypothesize that the protective effect of CFD on hydrogen peroxide-induced apoptosis is related to its scavenger activity.  相似文献   

3.
Although aldose reductase (AR) has been implicated in the cellular response to oxidative stress, the role of AR in ultraviolet-B (UVB)-induced cellular injury has not been investigated. Here, we show that an increased expression of AR in human keratinocytes modulates UVB-induced apoptotic cell death and senescence. Overexpression of AR in HaCaT cells significantly attenuated UVB-induced cellular damage and apoptosis, with a decreased generation of reactive oxygen species (ROS) and aldehydes. Ablation of AR with small interfering RNA or inhibition of AR activity abolished these effects. We also show that increased AR activity suppressed UVB-induced activation of the p38 and c-Jun N-terminal kinases, but did not affect the extracellular signal-regulated kinase and phosphatidylinositol 3-kinase pathways. Similarly, UVB-induced translocation of Bax and Bcl-2 to mitochondria and cytosol, respectively, was markedly attenuated in cells overexpressing AR. Knockdown or inhibition of AR activity in primary cultured keratinocytes enhanced UVB-induced cellular senescence and increased the level of a cell-cycle regulatory protein, p53. Finally, cellular apoptosis induced by UVB radiation was significantly reduced in the epidermis of transgenic mice overexpressing human AR. These findings suggest that AR plays an important role in the cellular response to oxidative stress by sequestering ROS and reactive aldehydes generated in keratinocytes.  相似文献   

4.
Expression of macrophage paraoxonase 2 (PON2), a cellular lactonase with anti-oxidant and anti-atherogenic properties, was shown to be upregulated under high oxidative stress. The aim of the present study was to analyze the relationship between the extent of cellular oxidative stress in J774A.1 macrophage and PON2 lactonase activity under various levels of oxidation, obtained by cell incubation with either anti-oxidants or oxidants. PON2 activity exhibited a U-shape response curve. In the oxidative stress range below that of control untreated cells, PON2 activity decreased upon increasing macrophage oxidative state, whereas in the range over that of control untreated cells, PON2 activity increased. The biphasic effect of oxidative stress on macrophage PON2 activity could be related to PON2 inactivation (decreased enzymatic activity) under oxidative stress induction at its low range, whereas at high range of oxidative stress, macrophage anti-oxidant compensatory mechanism up-regulates PON2 (increased protein expression), in order to cope with oxidative burden.  相似文献   

5.
Proteins are modified by reactive oxygen species, and oxidation of specific amino acid residues can impair their biological functions, leading to an alteration in cellular homeostasis. Oxidized proteins can be eliminated through either degradation or repair. Repair is limited to the reversion of a few modifications such as the reduction of methionine oxidation by the methionine sulfoxide reductase (Msr) system. However, accumulation of oxidized proteins occurs during aging, replicative senescence, or neurological disorders or after an oxidative stress, while Msr activity is impaired. In order to more precisely analyze the relationship between oxidative stress, protein oxidative damage, and MsrA, we stably overexpressed MsrA full-length cDNA in SV40 T antigen-immortalized WI-38 human fibroblasts. We report here that MsrA-overexpressing cells are more resistant than control cells to hydrogen peroxide-induced oxidative stress, but not to ultraviolet A irradiation. This MsrA-mediated resistance is accompanied by a decrease in intracellular reactive oxygen species and is partially abolished when cells are cultivated at suboptimal concentration of methionine. These results indicate that MsrA may play an important role in cellular defenses against oxidative stress, by catalytic removal of oxidant through the reduction of methionine sulfoxide, and in protection against death by limiting, at least in part, the accumulation of oxidative damage to proteins.  相似文献   

6.
《Free radical research》2013,47(2):218-229
Abstract

The omega-6 fatty acid derivative 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is believed to play a role in cellular protection against oxidative stress in diverse cell systems. However, the cellular mechanisms by which protection is afforded by 15d-PGJ2 are not fully elucidated in vascular smooth muscle cells (VSMCs). In this study, we report the finding that 15d-PGJ2 elicited a time and concentration- dependent increase in aldose reductase (AR) expression. This induction was independent of the activation of peroxisome proliferator- activated receptor γ. Inhibition of phosphatidylinositol 3-kinase (PI3K) significantly suppressed the increase in expression and promoter activity of AR induced by 15d-PGJ2. Luciferase reporter assays demonstrated that 15d-PGJ2 targets the multiple stress response regions comprising the antioxidant response element in the promoter of the AR gene. 15d-PGJ2-mediated induction of AR promoter activity was potentiated in the presence of nuclear factor-erythroid 2-related factor 2 (Nrf2), but not in cells expressing dominant negative Nrf2. Cells treated with 15d-PGJ2 were resistant to oxidant-induced apoptotic cell death by inhibiting production of reactive oxygen species. These effects were significantly attenuated in the presence of an AR inhibitor or small interfering RNA against AR, indicating that AR plays a protective role against oxidative injury. Taken together, these findings demonstrate that activation of PI3K by 15d-PGJ2 increases the expression of AR through Nrf2, and increased AR activity may function as an important cellular response against oxidative injury.  相似文献   

7.
8.
According to the mitochondrial theory of aging, mitochondrial dysfunction increases intracellular reactive oxidative species production, leading to the oxidation of macromolecules and ultimately to cell death. In this study, we investigated the role of the mitochondrial methionine sulfoxide reductase B2 in the protection against oxidative stress. We report, for the first time, that overexpression of methionine sulfoxide reductase B2 in mitochondria of acute T-lymphoblastic leukemia MOLT-4 cell line, in which methionine sulfoxide reductase A is missing, markedly protects against hydrogen peroxide-induced oxidative stress by scavenging reactive oxygen species. The addition of hydrogen peroxide provoked a time-gradual increase of intracellular reactive oxygen species, leading to a loss in mitochondrial membrane potential and to protein carbonyl accumulation, whereas in methionine sulfoxide reductase B2-overexpressing cells, intracellular reactive oxygen species and protein oxidation remained low with the mitochondrial membrane potential highly maintained. Moreover, in these cells, delayed apoptosis was shown by a decrease in the cleavage of the apoptotic marker poly(ADP-ribose) polymerase-1 and by the lower percentage of Annexin-V-positive cells in the late and early apoptotic stages. We also provide evidence for the protective mechanism of methionine sulfoxide reductase B2 against protein oxidative damages. Our results emphasize that upon oxidative stress, the overexpression of methionine sulfoxide reductase B2 leads to the preservation of mitochondrial integrity by decreasing the intracellular reactive oxygen species build-up through its scavenging role, hence contributing to cell survival and protein maintenance.  相似文献   

9.
Reactive oxygen species (ROS) may cause skeletal muscle degeneration in a number of pathological conditions. Small heat shock proteins (HSPs) have been found to confer resistance against ROS in different cell types; however, the importance of their antioxidant function in skeletal muscle cells remains to be determined. In the present study, differentiation of skeletal myoblasts resulted in protection against hydrogen peroxide-induced cell death and protein oxidation. This differentiation-induced resistance to oxidative stress was associated with increased protein expression of HSP25, increased glutathione levels, and glutathione peroxidase activity, but little change in catalase activity. Overexpression of HSP25 in stably transfected myoblasts produced dose-dependent protection against hydrogen peroxide-induced damage that was associated with increased glutathione levels and glutathione peroxidase activity. Inhibition of glutathione synthesis with buthionine sulfoximine abrogated the protection induced by HSP25 overexpression. These findings indicate that HSP25 may play a key role in regulating the glutathione system and resistance to ROS in skeletal muscle cells.  相似文献   

10.
Oxidative stress can damage various cellular components of osteoblasts, and is regarded as a pivotal pathogenic factor for bone loss. Increasing evidence indicates a significant role of cell autophagy in response to oxidative stress. However, the role of autophagy in the osteoblasts under oxidative stress remains to be clarified. In this study, we verified that hydrogen peroxide induced autophagy and apoptosis in a dose- and time-dependent manner in osteoblastic Mc3T3-E1 cells. Both 3-methyladenine (the early steps of autophagy inhibitor) and bafilomycin A1 (the last steps of autophagy inhibitor) enhanced the cell apoptosis and reactive oxygen species level in the osteoblasts insulted by hydrogen peroxide. However, promotion of autophagy with either a pharmacologic inducer (rapamycin) or the Beclin-1 overexpressing technique rescued the cell apoptosis and reduced the reactive oxygen species level in the cells. Treatment with H2O2 significantly increased the levels of carbonylated proteins, malondialdehyde and 8-hydroxy-2′-deoxyguanosine, decreased the mitochondrial membrane potential, and increased the mitochondria-mediated apoptosis markers. The damaged mitochondria were cleared by autophagy. Furthermore, the molecular levels of the endoplasmic reticula stress signaling pathway changed in hydrogen peroxide-treated Mc3T3-E1 cells, and blocking this stress signaling pathway by RNA interference against candidates of glucose-regulated protein 78 and protein kinase-like endoplasmic reticulum kinase decreased autophagy while increasing apoptosis in the cells. In conclusion, oxidative damage to osteoblasts could be alleviated by early autophagy through the endoplasmic reticulum stress pathway. Our findings suggested that modulation of osteoblast autophagy could have a potentially therapeutic value for osteoporosis.  相似文献   

11.
The oxidation resistance gene 1 (OXR1) prevents oxidative stress-induced cell death by an unknown pathway. Here, depletion of human OXR1 (hOXR1) sensitized several human cell lines to hydrogen peroxide-induced oxidative stress, reduced mtDNA integrity, and increased apoptosis. In contrast, depletion of hOXR1 in cells lacking mtDNA showed no significant change in ROS or viability, suggesting that OXR1 prevents intracellular hydrogen peroxide-induced increase in oxidative stress levels to avoid a vicious cycle of increased oxidative mtDNA damage and ROS formation. Furthermore, expression of p21 and the antioxidant genes GPX2 and HO-1 was reduced in hOXR1-depleted cells. In sum, these data reveal that human OXR1 upregulates the expression of antioxidant genes via the p21 signaling pathway to suppress hydrogen peroxide-induced oxidative stress and maintain mtDNA integrity.  相似文献   

12.
13.
14.
Although increased oxidative stress has been associated with the impairment of proliferation and function of adult human muscle stem cells, proteins either involved in the stress response or damaged by oxidation have not been identified. A parallel proteomics approach was performed for analyzing the protein expression profile as well as proteins preferentially oxidized upon hydrogen peroxide-induced oxidative stress. Fifteen proteins involved in the oxidative stress response were identified. Among them, protein spots identified as peroxiredoxins 1 and 6, glyceraldehyde-3-phosphate dehydrogenase, and α-enolase were shifted to a more acidic isoelectric point upon oxidative stress, indicating posttranslational modifications. Oxidized proteins were evidenced by immunodetection of derivatized carbonyl groups followed by identification by mass spectrometry. The carbonylated proteins identified are mainly cytosolic and involved in carbohydrate metabolism, cellular assembly, cellular homeostasis, and protein synthesis and degradation. Pathway analysis revealed skeletal and muscular disorders, cell death, and cancer-related as the main molecular networks altered. Interestingly, these pathways were focused on two distinct proteins: p53 for altered protein expression and huntingtin for increased protein carbonylation. This study emphasizes the importance of performing analysis addressing different aspects of the cellular proteome to have a more accurate view of their changes upon stress.  相似文献   

15.
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme activated by DNA damage. Activated PARP cleaves NAD(+) into nicotinamide and (ADP-ribose) and polymerizes the latter on nuclear acceptor proteins. Over-activation of PARP by reactive oxygen and nitrogen intermediates represents a pathogenetic factor in various forms of inflammation, shock, and reperfusion injury. Using a novel commercially available substrate, 6-biotin-17-nicotinamide-adenine-dinucleotide (bio-NAD(+)), we have developed three applications, enzyme cytochemistry, enzyme histochemistry, and cell ELISA, to detect the activation of PARP in oxidatively stressed cells and tissues. With the novel assay we were able to detect basal and hydrogen peroxide-induced PARP activity in J774 macrophages. We also observed that mitotic cells display remarkably elevated PARP activity. Hydrogen peroxide-induced PARP activation could also be detected in wild-type peritoneal macrophages but not in macrophages from PARP-deficient mice. Application of hydrogen peroxide to the skin of mice also induced bio-NAD(+) incorporation in the keratinocyte nuclei. Hydrogen peroxide-induced PARP activation and its inhibition by pharmacological PARP inhibitors could be detected in J774 cells with the ELISA assay that showed good correlation with the traditional [(3)H]-NAD incorporation method. The bio-NAD(+) assays represent sensitive, specific, and non-radioactive alternatives for detection of PARP activation.  相似文献   

16.
Heme oxygenase (HO) catalyzes the rate-limiting step in heme degradation, producing iron, carbon monoxide, and bilirubin/biliverdin. HO consists of two isozymes: HO-1, which is an oxidative stress-response protein, and HO-2, which is constitutively expressed. HO-2 accounts for most HO activity within the nervous system. Its posttranslational modifications and/or interactions with other proteins make HO-2 a unique regulator of cellular homeostasis. Our previous results revealed that brain infarct volume was enlarged in HO-2 knockout mice. A similar neuroprotective role of HO-2 was shown using primary cortical neurons. To better understand the neuroprotective mechanism of HO-2, we used a catalytically inactive mutant, HO-2H45A, and investigated its cellular effects in response to hemin and hydrogen peroxide-induced cytotoxicity. We observed that HO-2WT overexpression in the HEK293 cell lines became less sensitive to hemin, whereas the inactive mutant HO-2H45A was more sensitive to hemin as compared to control. Interestingly, HO-2WT- and HO-2H45A-overexpressing cells were both protected against H2O2-induced oxidative stress and had less oxidatively modified proteins as compared to control cells. These data indicate that when HO-2 cannot metabolize the prooxidant heme, more cytotoxicity is found, whereas, interestingly, the catalytically inactive HO-2H45A was also able to protect cells against oxidative stress injury. These results suggest the multiplicity of action of the HO-2 protein itself.  相似文献   

17.
Up-regulation of aldose reductase (AR) by reactive oxygen species (ROS) and aldehyde derivatives has been observed in vascular smooth muscle cells. However, the pathophysiological consequences of the induction of AR in vascular tissues are not fully elucidated. Herein we report that an herb-derived polyphenolic compound, curcumin, elicited a dose- and time-dependent increase in AR expression. Inhibition of phosphatidylinositol 3-kinase (PI3K) and p38 mitogen-activated protein kinase (MAPK) significantly suppressed the curcumin-augmented mRNA levels and promoter activity of the AR gene. Luciferase reporter assays indicated that an osmotic response element in the promoter was essential for the responsiveness to curcumin. Curcumin accelerated the nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2), and overexpression of Nrf2, but not the dominant negative Nrf2, enhanced the promoter activity of the AR gene. Cells preincubated with curcumin demonstrated resistance to ROS-induced apoptotic death. These effects were significantly attenuated in the presence of AR inhibitors or small interfering RNAs, indicating a protective role for AR against ROS-induced cell damage. Taken together, the activation of PI3K and p38 MAPK by curcumin augmented the expression of the AR gene via Nrf2, and increased AR activity may be an important cellular response against oxidative stress.  相似文献   

18.
Oxidative stress results from the imbalance between reactive oxygen species (ROS) and ROS-scavenging molecules. Among them, cytosolic glutathione peroxidase (GPX1) plays a major role as it reduces a large part of intracellular ROS. Endothelial cells are a barrier for potentially aggressive molecules circulating in the blood stream and, therefore, are often under great oxidative stress. Thus, we investigated the potentially protective effects of GPX1 overexpression in the endothelial cell line, ECV304. We found that chronic GPX1 overexpression delays cell growth without affecting viability or decreasing resistance to hydrogen peroxide-induced oxidative stress. As GPX1 overexpression could drain the cellular reduced glutathione (GSH) pool, we also tested the effects of extracellular GSH supplementation on cell growth. Despite its largely referenced beneficial effects for cells, GSH was toxic for ECV304 cells in a dose-dependent manner but GSH-induced toxicity was reduced in selenium supplemented cultures and completely abolished in ECV304 overexpressing GPX1, compared to control. In summary, GPX1 overexpression delays cell growth and protects them from GSH and H(2)O(2) toxicity.  相似文献   

19.
Numerous studies have revealed that a part of the cellular response to chronic oxidative stress involves increased antioxidant capacity. However, another defense mechanism that has received less attention is DNA repair. Because of the important homeostatic role of mitochondria and the exquisite sensitivity of mitochondrial DNA (mtDNA) to oxidative damage, we hypothesized that mtDNA repair plays an important role in the protection against oxidative stress. To test this hypothesis mtDNA damage and repair was evaluated in normal HA1 Chinese hamster fibroblasts and oxidative stress-resistant variants isolated following chronic exposure to H2O2 or 95% O2. Reactive oxygen species were generated enzymatically using xanthine oxidase and hypoxanthine. When treated with xanthine oxidase reduced levels of initial mtDNA damage and enhanced mtDNA repair were observed in the cells from the oxidative stress-resistant variants, relative to the parental cell line. This enhanced mtDNA repair correlated with an increase in mitochondrial apurinic/apyrimidinic endonuclease activity in both H2O2- and O2-resistant HA1 variants. This is the first report showing enhanced mtDNA repair in the cellular response to chronic oxidative stress. These results provide further evidence for the crucial role that mtDNA repair pathways play in protecting cells against the deleterious effects of reactive oxygen species.  相似文献   

20.
Jang JH  Surh YJ 《Mutation research》2001,496(1-2):181-190
Oxidative stress has been considered as a major cause of cellular injuries in a variety of clinical abnormalities. One of the plausible ways to prevent the reactive oxygen species (ROS)-mediated cellular injury is dietary or pharmaceutical augmentation of endogenous antioxidant defense capacity. Resveratrol (3,5,4'-trihydroxy-trans-stilbene), one of the major antioxidative constituents found in the skin of grapes, has been considered to be responsible in part for the protective effects of red wine consumption against coronary heart disease ('French Pardox'). In this study, we have investigated the effects of resveratrol on hydrogen peroxide-induced oxidative stress and apoptotic death in cultured rat pheochromocytoma (PC12) cells. PC12 cells treated with hydrogen peroxide underwent apoptotic death as determined by characteristic morphological features, internucleosomal DNA fragmentation and positive in situ end-labeling by terminal transferase (TUNEL staining). Resveratrol pretreatment attenuated hydrogen peroxide-induced cytotoxicity, DNA fragmentation, and intracellular accumulation of ROS. Hydrogen peroxide transiently induced activation of NF-kappaB in PC12 cells, which was mitigated by resveratrol pretreatment. These results suggest that resveratrol has the potential to prevent oxidative stress-induced cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号