首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free iron is capable of stimulating the production of free radicals which cause oxidative damage such as lipid peroxidation. One of the most important mechanisms of antioxidant defense is thus the sequestration of iron in a redox-inactive form by transferrin. In diabetes mellitus, increased oxidative stress and lipid peroxidation contribute to chronic complications but it is not known if this is related to abnormalities in transferrin function. In this study we investigated the role of transferrin concentration and glycation. The antioxidant capacity of apotransferrin to inhibit lipid peroxidation by iron-binding decreased in a concentration-dependent manner from 89% at > or = 2 mg/ml to 42% at 0.5 mg/ml. Pre-incubation of apotransferrin with glucose for 14 days resulted in a concentration-dependent increase of glycation: 1, 5 and 13 micromol fructosamine/g transferrin at 0, 5.6 and 33.3 mmol/l glucose respectively, p < 0.001. This was accompanied by a decrease in the iron-binding antioxidant capacity of apotransferrin. In contrast, transferrin glycation by up to 33.3 mmol/l glucose did not affect chemiluminescence-quenching antioxidant capacity, which is iron-independent. Colorimetric evaluation of total iron binding capacity in the presence of an excess of iron (iron/transferrin molar ratio = 2.4) also decreased from 0.726 to 0.696 and 0.585mg/g transferrin after 0, 5.6 and 33.3 mmol/l glucose, respectively, p < 0.01. In conclusion, these results suggest that lower transferrin concentration and its glycation can, by enhancing the pro-oxidant effects of iron, contribute to the increased lipid peroxidation observed in diabetes.  相似文献   

2.
Background: Administration of intravenous iron preparations in haemodialysis patients may lead to the appearance of non-transferrin bound iron which can catalyse oxidative damage. We investigated this hypothesis by monitoring the oxidative stress of haemodialysis patients and the impact of iron and diabetes mellitus herein. Materials and methods: Baseline values of serum iron and related proteins, transferrin glycation, non-transferrin bound iron, antioxidant capacity and lipid peroxidation (malondialdehyde) of 11 haemodialysis patients (six non-diabetic and five type 2 diabetes) were compared to those of non-haemodialysis control subjects (non-diabetic and type 2 diabetes). Changes in these parameters were monitored during haemodialysis before and after iron administration. Results: Baseline values of malondialdehyde correlated with ferritin concentration (r = 0.664, P = 0.036) and were elevated to the same extent in non-diabetic and diabetic haemodialysis patients (median of 1.09 compared to 0.60 μmol/l in control persons, P < 0.02). After iron infusion, transferrin saturation increased more markedly in non-diabetic subjects from 28% to 185% vs. from 33% to 101% in diabetic patients (P = 0.008). This increase was accompanied by the appearance of non-transferrin bound iron (5.91 ± 1.33 μmol/l), a loss in plasma iron-binding antioxidant capacity and a further increase in malondialdehyde which was more pronounced in diabetic patients (from 0.93 ± 0.30 μmol/l to 2.21 ± 0.69 μmol/l vs. from 1.21 ± 0.42 μmol/l to 1.86 ± 0.56 μmol/l in the non-diabetic subjects, P = 0.046). Conclusions: In haemodialysis patients, higher lipid peroxidation is determined by higher body iron stores. The increase induced by iron infusion is accompanied by a loss in iron-binding antioxidant capacity and is more pronounced in diabetes mellitus.  相似文献   

3.
Increased lipid peroxidation contributes to diabetic complications and redox-active iron is known to play an important role in catalyzing peroxidation reactions. We aimed to investigate if diabetes affects the capacity of plasma to protect against iron-driven lipid peroxidation and to identify underlying factors. Glycemic control, serum iron, proteins involved in iron homeostasis, plasma iron-binding antioxidant capacity in a liposomal model, and non-transferrin-bound iron were measured in 40 type 1 and 67 type 2 diabetic patients compared to 100 nondiabetic healthy control subjects. Iron-binding antioxidant capacity was significantly lower in the plasma of diabetic subjects (83 +/- 6 and 84 +/- 5% in type 1 and type 2 diabetes versus 88 +/- 6% in control subjects, p < 0.0005). The contribution of transferrin, ceruloplasmin, and albumin concentrations to the iron-binding antioxidant capacity was lost in diabetes (explaining only 4.2 and 6.3% of the variance in type 1 and type 2 diabetes versus 13.9% in control subjects). This observation could not be explained by differences in Tf glycation, lipid, or inflammatory status and was not associated with higher non-transferrin-bound iron levels. Iron-binding antioxidant capacity is decreased in diabetes mellitus.  相似文献   

4.
The role of the two iron-binding sites of rat transferrin in the exchange of iron with cells has been assessed using urea polyacrylamide gel electrophoresis to separate and quantitate the four possible molecular species of transferrin generated during the incubation of 125I-labelled transferrin with rat reticulocytes and hepatocytes. Addition of diferric transferrin to reticulocytes led directly to the appearance of apotransferrin together with small and comparable amounts of the two monoferric transferrins. After 2 h 44.8% of the iron had been removed by the cells, and of the iron-depleted transferrin 71.8% was apotransferrin, the remainder being monoferric transferrin, 16.1% with N-terminal iron and 12.1% with C-terminal iron. A similar pattern emerged with hepatocytes, but the rate of iron removal was slower and the proportion of apotransferrin generated was lower. After 4 h 10.9% of the iron had been removed from the transferrin and the distribution of the iron-depleted protein was: apotransferrin 26.9% and monoferric (N-terminal) 39.2%, (C-terminal) 33.9%. The appearance of apotransferrin during each incubation and the generation of both monoferric transferrins suggest that both cell types are able to remove iron from differic transferrin in pairwise fashion and that they do not appreciably distinguish between the two iron-binding sites of the protein. Release of iron from hepatocytes to apotransferrin lead to the appearance of both monferric species and then to increasing amounts of diferric transferrin. The process of iron release did not seem to distinguish between the vacant iron-binding sites of transferrin.  相似文献   

5.
Isolated rat liver mitochondria accumulate iron from fully saturated transferrin at neutral pH. With 5 microM iron as diferric transferrin, accumulation at 30 degrees C amounts to approx. 40 pmol/mg protein per h. With access to a suitable porphyrin substrate, 70-80% of the amount of iron accumulated is recovered in heme. Mobilization of iron and synthesis of heme both depend on a functioning respiratory chain. Vacant iron-binding sites on mono- and apotransferrin compete with the mitochondria for iron mobilized from transferrin. Pyrophosphate at concentrations in the range 10-50 microM enhances mobilization of iron, counterbalances the inhibitory effect of mono- and apotransferrin and enhances metallochelatase activity. The results emphasize the putative suitability of pyrophosphate as an intracellular iron-transport ligand in situ.  相似文献   

6.
The soluble protein composition of Macaque monkey vitreous humour was studied in order to understand its iron-binding properties. The protein content of vitreous humour was 217 μg/ml ± 4.6%, 40% of which was serum albumin and 30% an iron-binding protein of hydrodynamic properties identical to that of trasferrin or lactoferrin. Relative to serum, the vitreous humour contained a 13-fold excess of this protein(s). Isoelectric focusing, iron-binding and immunoelectrophoretic studies indicated that both vitreous humour and aqueous humour contained lactoferrin as well as serum transferrin. The iron-binding capacity of these proteins in vitreous humour was equivalent to the mass of haemoglobin iron contained in at least 570 000 monkey erythrocytes. It was concluded that the intraocular lactoferrin originated from within the eye. These iron-binding proteins may play a protective role in ocular disturbances such as viterous haemorrahge, iron foreign body toxicity and infection.  相似文献   

7.
The effects of Cu(II) supplementation on glycemic parameters, advanced glycation end products (AGEs), antioxidant status (glutathione; GSH and total antioxidant capacity; TAOC) and lipid peroxidative damage (thiobarbituric acid-reactive substances, TBARS) were investigated in streptozotocin (STZ) induced diabetic rats. The study was carried out on Wistar albino rats grouped as control (n = 10), CuCl2 treated (n = 9), STZ (n = 10) and STZ,CuCl2 treated (n = 9). STZ was administered intraperitoneally at a single dose of 65 mg/kg and CuCl2, 4 mg copper/kg, subcutaneously, every 2 days for 60 days. At the end of this period, glucose(mg/dl), Cu(μg/dl), TBARS(μmol/l), TAOC(mmol/l) were measured in plasma, GSH(mg/gHb) in erythrocytes and glycated hemoglobin (GHb)(%) in blood. Plasma AGE-peptides(%) were measured by HPLC flow system with spectrofluorimetric and spectrophotometric detectors connected on-line. Data were analyzed by the non-parametric Kruskal–Wallis and Mann–Whitney U test. In the STZ group glucose, GHb and AGE-peptide levels were all significantly higher than the control group (P < 0.01, P < 0.05, and P < 0.01, respectively). CuCl2 treated group had significantly lower glucose but significantly higher GHb, TAOC and TBARS levels than the control group (P < 0.05, P < 0.001, P < 0.05 and P < 0.001, respectively). STZ,CuCl2 treated group had significantly higher GHb, TAOC and TBARS levels compared with the control group (P < 0.001, P < 0.05 and P < 0.05, respectively); but only TAOC level was significantly higher than the STZ group (P < 0.01). This experimental study provides evidence that copper intake increases total antioxidant capacity in both nondiabetic and diabetic states. However despite the potentiated antioxidant defence, lipid peroxidation and glycation enhancing effects of CuCl2 are evident under nondiabetic conditions.  相似文献   

8.
A Bomford  S P Young  R Williams 《Biochemistry》1985,24(14):3472-3478
We have investigated the effect of increasing concentrations of methylamine (5, 10, and 25 mM) on the removal of iron from the two iron-binding sites of transferrin during endocytosis by human erythroleukemia (K562) cells. The molecular forms of transferrin released from the cells were analyzed by polyacrylamide gel electrophoresis in 6 M urea. Endocytosis of diferric transferrin was efficient since greater than 10% of surface-bound protein escaped endocytosis and was released in the diferric form. Although transferrin exocytosed from control cells had been depleted of 80% of its iron and contained 65-70% apotransferrin, iron-bearing species were also released (15% C-terminal monoferric; 10% N-terminal; 10% diferric). The ratio of the two monoferric species (C/N) was 1.32 +/- 0.12 (mean +/- SD; n = 4), suggesting that iron in the N-terminal site was more accessible to cells. In the presence of methylamine there was a concentration-dependent increase in the proportion of diferric transferrin release (less than 80% at 25 mM) and a concomitant decrease in apotransferrin. Small amounts of the iron-depleted species, especially apotransferrin, appeared before diferric transferrin, suggesting that these were preferentially released from the cells. The discrepancy between the proportions of the monoferric transferrin species noted with control cells was enhanced at all concentrations of methylamine, most markedly at 10 mM when the C/N ratio was 2.4. The N-terminal site of transferrin loses its iron at a higher pH than the C-terminal site, and so by progressively perturbing the pH of the endocytic vesicle we have increased the difference between the two sites observed with control cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Recovery of functional iron-binding protein hydrolysate from Acetes japonicus employing enzymatic hydrolysis and iron-chelating peptide identification were conducted in this study. The result showed that under the optimal hydrolysis condition including Flavourzyme, pH 5, 50 °C, E:S ratio of 27.4 U/g protein and hydrolysis time of 4.8 h, the obtained proteolysate displayed the maximal iron-binding capacity (IBC) of 177.7 μgFe2+/g protein and comprehended 38,77 % of essential amino acids. Functional features of the Acetes proteolysate encompassing solubility, heat stability, foaming and emulsifying property, oil and water holding capacity were also noteworthy. Peptide fractionation was performed using ultrafiltration and the 1−3 kDa fraction expressed the highest IBC of 120.43 ± 0.15 μgFe2+/g protein, 13.7 times lower than that of disodium ethylenediaminetetraacetate (Na2EDTA). From this fraction, two iron-binding peptides of DSVNFPVHGL (1083.53 Da) and FKVGQENTPILK (1372.77 Da) were identified utilizing nano-UHPLC-MS/MS as well as their de novo spatial structures and interaction with ferrous ion were simulated by PEP-FOLD 3. As a whole, the proteolysate/peptides could be filled as an iron chelator which could shield human body from iron deficient-related disorders or as a functional proteolysate preparation to upgrade food properties.  相似文献   

10.
Iron overload could promote the generation of free radicals and result in deleterious cellular damages. A physiological increase of oxidative stress has been observed in pregnancy. A routine iron supplement, especially a combined iron and vitamin C supplementation, without biological justifications (low hemoglobin [Hb] and iron stores) could therefore aggravate this oxidative risk. We investigated the effect of a daily combined iron supplementation (100 mg/d as fumarate) and vitamin C (500 mg/d as ascorbate) for the third trimester of pregnancy on lipid peroxidation (plasma TBARS), antioxidant micronutriments (Zn, Se, retinol, vitaminE, (β-carotene) and antioxidant metalloenzymes (RBC Cu-Zn SOD and Se-GPX). The iron-supplemented group (n=27) was compared to a control group (n=27), age and number of pregnancies matched. At delivery, all the women exhibited normal Hb and ferritin values. In the supplemented group, plasma iron level was higher than in the control group (26.90±5.52 mmol/L) and TBARs plasma levels were significantly enhanced (p<0.05) (3.62±0.36 vs 3.01±0.37 mmol/L). No significant changes were observed in plasma trace elements and red blood cell antioxidant metalloenzymes. Furthermore, the α-tocopherol plasma level was lowered in the iron-supplemented groups, suggesting an increased utilization of vitamin E. These data show that pharmalogical doses of iron, associated with high vitamin C intakes, can result in uncontrolled lipid peroxidation. This is predictive of adverse effects for the mother and the fetus. This study illustrates the potential harmful effects of iron supplementation when prescribed only on the assumption of anemia and not on the bases of biological criteria.  相似文献   

11.
Apolactoferrin and apotransferrin lost their ability to subsequently bind iron when exposed to an excess of either HOCl or myeloperoxidase plus H2O2 and Cl-. Apolactoferrin, however, was more resistant than apotransferrin. By oxidizing a mixture of the two proteins, then separating them by immunoprecipitation, the difference in susceptibility was shown to be due to the greater reactivity of transferrin iron-binding groups, rather than protective groups on the lactoferrin molecule. The iron-saturated proteins were much more resistant to oxidative modification than the apoproteins. The greater resistance of apolactoferrin should be advantageous for maintaining its iron binding capacity when co-released with myeloperoxidase and reactive oxygen species from stimulated neutrophils.  相似文献   

12.
Oxidative stress may initiate lipid peroxidation that generates ethane. Ethane, at low concentrations, is eliminated by pulmonary exhalation. Previous methods have not allowed frequent sampling, thus ethane kinetics has not been studied in man. A validated method over the range 3.8-100,000 ppb with a limit of quantitation of 3.8 ppb (CV 9.3%) based on cryofocusing technique of a 60 ml breath sample allowed frequent sampling. Due to a rapid analytical procedure batches of more than 100 samples may be analyzed. In human volunteers (24-55 years) uptake was studied for up to 23 min &lt;formula&gt;(&lt;italic&gt;n&lt;/italic&gt;=9)&lt;/formula&gt;, elimination was studied for 210 min &lt;formula&gt;(&lt;italic&gt;n&lt;/italic&gt;=9).&lt;/formula&gt; Ethane was inhaled (concentrations varied from 16 to 29 ppm (parts per million)) through a non-rebreathing system; sampling was performed with short intervals from the expiratory limb. Samples were also drawn from the inhalatory limb. Ninety-five percent of steady state (inspired) concentration was reached within 1.75 min. Five percent of the initially inhaled concentrations was found in exhaled air 1.5 min after termination of inhalation. A terminal mean half life of 31 min for ethane was also observed. The data indicate that frequent sampling will be necessary to capture relevant changes in breath ethane.  相似文献   

13.
Summary Iron-free RITC 80-7 defined medium was used to examine effects of ferrous iron and transferrin on cell proliferation of human diploid fibroblasts. Both ferrous iron and holotransferrin stimulated cell proliferation in the medium, but apotransferrin did not. When 5 g/l human serum albumin (HSA) was added to the defined medium, excellent growth was obtained under hypoxic conditions, whereas a reduction of cellular growth during the culture periods was observed under aerobic conditions. When ferrous iron was added to the HSA medium alone, the reduction in growth increased in proportion to the concentrations, whereas the addition of transferrin prevented this reduction in a concentration-dependent manner. This suggests that the ferrous iron concentration in media causes a reduction in growth under aerobic conditions and transferrin prevents this reduction because it decreases the ferrous iron concentration. Further, serum albumin seems to be a source of iron in media.  相似文献   

14.
Human serum apotransferrin was exposed to the isolated myeloperoxidase-H2O2-halide system or to phorbol ester-activated human neutrophils. Such treatment resulted in a marked loss in transferrin iron binding capacity as well as concomitant iodination of transferrin. Each component of the cell-free system (myeloperoxidase, H2O2, iodide) or neutrophil system (neutrophils, phorbol ester, iodide) was required in order to observe these changes. In the cell-free system, the H2O2 requirement was fulfilled by either reagent H2O2 or the peroxide-generating system glucose oxidase plus glucose. Both loss of iron binding capacity and transferrin iodination by either the myeloperoxidase system or activated neutrophils were blocked by azide or catalase. The isolated peroxidase system had an acidic pH optimum, whereas the intact cell system was more efficient at neutral pH. The kinetics of changes in iron binding capacity and iodination closely paralleled one another, exhibiting t1/2 values of less than 1 min for the myeloperoxidase-H2O2 system, 3-4 min for the myeloperoxidase-glucose oxidase system, and 8 min for the neutrophil system. That the occupied binding site is protected from the myeloperoxidase system was suggested by 1) a failure to mobilize iron from iron-loaded transferrin, 2) an inverse correlation between initial iron saturation and myeloperoxidase-mediated loss of iron binding capacity, and 3) decreased myeloperoxidase-mediated iodination of iron-loaded versus apotransferrin. Since as little as 1 atom of iodide bound per molecule of transferrin was associated with substantial losses in iron binding capacity, there appears to be a high specificity of myeloperoxidase-catalyzed iodination for residues at or near the iron binding sites. Amino acid analysis of iodinated transferrin (approximately 2 atoms/molecule) demonstrated that iodotyrosine was the predominant iodinated species. These observations document the ability of neutrophils to inactivate transferrin iron binding capacity via the secretion of myeloperoxidase, formation of H2O2, and subsequent myeloperoxidase-catalyzed iodination. This sequence of events may help to explain the changes in iron metabolism associated with the in vivo inflammatory response.  相似文献   

15.
The effects of a vitamin C supplemented diet on blood pressure, body and liver weights, liver antioxidant status, iron and copper levels were investigated in DOCA-salt treated and untreated Sprague-Dawley (SD) male rats after 8 weeks of treatment. Vitamin C supplementation had no effect on blood pressure in SD rats but induced a significant decrease in blood pressure in DOCA-salt treated rats, the decrease being more efficient at 50 mg/kg of vitamin C than at 500 mg/kg. Hepatic lipid peroxidation and iron levels were significantly increased in DOCA-salt hypertensive rats whereas total hepatic antioxidant capacity (HAC), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were decreased. Vitamin C supplementation did not affect the overall antioxidant defences of control SD rat livers. In contrast, vitamin C supplementation accentuated the DOCA-salt induced accumulation of liver iron and lipid peroxidation. This occurred without any notable aggravation in the antioxidant deficiency of vitamin C supplemented DOCA-salt treated rat livers. Our data suggest that DOCA-salt treatment induces an accumulation of iron in rat livers which is responsible for the prooxidant effect of vitamin C. The normalization of blood pressure in DOCA-salt treated rats by vitamin C supplementation appears thus independent from liver antioxidant status.  相似文献   

16.
1.The content of non-heme iron and the degree of lipid peroxidation were measured in liver mitochondria isolated from rats injected with either Jectofer (an iron-sorbitol-citric acid complex) or iron-nitrilotriacetate. 2. The sedimentation profiles of the mitochondria from controls and iron-treated rats as revealed by analytical differential centrifugation, indicated single population of mitochondria with s4,B values of 13200± 560 S and 14200±590 S for controls and iron-loaded animals, respectively. In contrast, the sedimentation profiles of the acid phosphatase activity and the non-heme iron revealed marked polydispersities with at least three populations of particles for both controls and iron-loaded animals. 3. The mitochondria and iron-rich lysosomes were separated by density-gradient centrifugation in an isotonic medium of Percoll and sucrose. With this technique, the amount of non-heme iron in a mitochondrial fraction by differential centrifugation decreased from 69±28 nmol/mg protein to 5.6±1.1 nmol/mg protein and from 19.3±5.6 nmol/mg protein to 3.3±0.6 nmol/mg protein for Jectofer and iron-nitrilotriacetate injected rats, respectively. For control rats the amount of mitochondrial non-heme iron was about 2.7 nmol/mg protein both before and following density gradient centrifugation. The extra amount of non-heme iron still present in the purified mitochondrial fraction from iron-loaded rats, as compared to controls, was further characterized by the reactivity towards bathophenanthroline sulfonate. The results suggest that the extra iron was due to a small amount of either ferritin or hemosiderin still contaminaning the mitochondrial fraction. The amount of mitochondrial heme iron was the same in iron-loaded rats and controls. 4. The degree of lipid peroxidation in the mitochondria was estimated from the amount of malondialdehyde. The thiobarbituric acid method used for the quantitation of malondialdehyde was modified so that it was insensitive to variable amounts of iron present in the samples. No difference in the degree of lipid peroxidation was observed between the mitochondria from iron-loaded rats and controls. 5. In contrast to recent proposals (Hanstein, E.G. et al. (1981) Biochim. Biophys. Acta 678, 293–299), the present study showed that the amounts of non-heme iron and the degrees of lipid peroxidation are the same in mitochondria isolated from iron-loaded and control animals.  相似文献   

17.
Increased lipid peroxidation, enhanced nuclear factor kappa-B (NF- &#115 B) activation and augmented tumor necrosis factor- &#102 (TNF- &#102 ) production have been implicated in cerulein-induced pancreatitis. We investigated whether lipid peroxidation inhibition might reduce NF- &#115 B activation and the inflammatory response in cerulein-induced pancreatitis. Male Sprague-Dawley rats of 230-250 g body weight received administration of cerulein (80 &#119 g/kg s.c. for each of four injections at hourly intervals). A control group received four s.c. injections of 0.9% saline at hourly intervals. Animals were randomized to receive either raxofelast, an inhibitor of lipid peroxidation (20 mg/kg i.p. administered with the first cerulein injection) or its vehicle (1 ml/kg of a 10% DMSO/NaCl solution). All these rats were sacrificed 2 h after the last injection of either cerulein or its vehicle. Raxofelast administration (20 mg/kg i.p. with the first cerulein) significantly reduced malondialdehyde (MDA) levels, an index of lipid peroxidation (CER+DMSO=3.075 &#45 0.54 &#119 mol/g; CER+raxofelast= 0.693 &#45 0.18 &#119 mol/g; p <0.001 ), decreased myeloperoxidase (MPO) activity ( CER+DMSO=22.2 &#45 3.54 mU/g; CER+raxofelast=9.07 &#45 2.05 mU/g; p <0.01 ), increased glutathione levels (GSH) (CER+DMSO= 5.21 &#45 1.79 &#119 mol/g; CER+raxofelast=15.71 &#45 2.14 &#119 mol/g; p <0.001 ), and reduced acinar cell damage evaluated by means of histology and serum levels of both amylase ( CER+DMSO=4063 &#45 707.9 U/l; CER+raxofelast=1198 &#45 214.4 U/l; p <0.001 ), and lipase (CER+DMSO=1654 &#45 330 U/l; CER+raxofelast= 386 &#45 118.2 U/l; p <0.001 ), Furthermore, raxofelast reduced pancreatic NF- &#115 B activation and the TNF- &#102 mRNA levels and tissue content of mature protein in the pancreas. Indeed, lipid peroxidation inhibition might be considered a potential therapeutic approach to prevent the severe damage in acute pancreatitis.  相似文献   

18.
α-Tocopherol (a form of vitamin E) is a fat-soluble vitamin that can prevent lipid peroxidation of cell membranes. This antioxidant activity of α-tocopherol can help to prevent cardiovascular disease, atherosclerosis and cancer. We investigated the α-tocopherol level and the expression of α-tocopherol transfer protein (α-TTP) in the leukocytes of children with leukemia. The plasma and erythrocyte α-tocopherol levels did not differ between children with leukemia and the control group. However, lymphocytes from children with leukemia had significantly lower α-tocopherol levels than lymphocytes from the controls (58.4±39.0 ng/mg protein versus 188.9±133.6, respectively; p&lt;0.05), despite the higher plasma α-tocopherol/cholesterol ratio in the leukemia group (5.83±1.64 μmol/mmol versus 4.34±0.96, respectively; p&lt;0.05). No significant differences in the plasma and leukocyte levels of isoprostanes (the oxidative metabolites of arachidonic acid) were seen between the leukemia patients and controls. The plasma level of acrolein, a marker of oxidative stress, was also similar in the two groups. Investigation of α-TTP expression by leukocytes using real-time PCR showed no difference between the two groups. These findings suggest that there may be comparable levels of lipid peroxidation in children with untreated leukemia and controls, despite the reduced α-tocopherol level in leukemic leukocytes.  相似文献   

19.
Chauhan A  Chauhan V  Brown WT  Cohen I 《Life sciences》2004,75(21):2539-2549
Autism is a neurological disorder of childhood with poorly understood etiology and pathology. We compared lipid peroxidation status in the plasma of children with autism, and their developmentally normal non-autistic siblings by quantifying the levels of malonyldialdehyde, an end product of fatty acid oxidation. Lipid peroxidation was found to be elevated in autism indicating that oxidative stress is increased in this disease. Levels of major antioxidant proteins namely, transferrin (iron-binding protein) and ceruloplasmin (copper-binding protein) in the serum, were significantly reduced in autistic children as compared to their developmentally normal non-autistic siblings. A striking correlation was observed between reduced levels of these proteins and loss of previously acquired language skills in children with autism. These results indicate altered regulation of transferrin and ceruloplasmin in autistic children who lose acquired language skills. It is suggested that such changes may lead to abnormal iron and copper metabolism in autism, and that increased oxidative stress may have pathological role in autism.  相似文献   

20.
The present study investigates the effect of ascorbate on red cell lipid peroxidation. At a concentration between 0.2 mmol-20 mmol/l ascorbic acid reduces hydrogen peroxide-induced red blood cell lipid peroxidation resulting in a marked decrease in ethane and pentane production as well as in haemolysis. Ascorbic acid also shows an antioxidant effect on chelated iron-catalyzed hydrogen peroxide-induced peroxidation of erythrocyte membranes. At a concentration of 10 mmol/l ascorbic acid totally inhibits oxidative break-down of polyunsaturated fatty acids by radicals originating from hydrogen peroxide.

Our results indicate that ascorbate at the chosen concentration has an antioxidant effect on red blood cell lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号