首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have found that plastoquinone-A (PQ-A) and α-tocopherol (α-Toc) increased the reduction level of the high-potential form of cytochrome b-559 (cyt. b-559 HP) and α-tocopherol quinone (α-TQ) decreased the level of this cytochrome form in Scenedesmus obliquus wild-type, while the investigated prenyllipids were not active in the restoration of the cyt. b-559 HP form in Scenedesmus PS28 mutant and Synechococcus 6301 (Anacystis nidulans) where the cyt. b-559 HP form is naturally not present. Among the tested prenyllipids, α-TQ quenched fluorescence in thylakoids of S. obliquus wild-type, the PS28 mutant and tobacco to the highest extent, while PQ-A was less effective in this respect. α-Tocopherol showed the opposite effect to α-TQ and it was rather small. The fluorescence quenching measurements of thylakoids in the presence of DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) showed that the α-Toc and FCCP (carbonylcyanide-p-trifluoromethoxy-phenyl-hydrazone) did not quench non-photochemically chlorophyll fluorescence while PQ-9 and α-TQ were effective fluorescence quenchers at higher concentrations (> 15 μM). However, at the lower α-TQ concentrations where its effective fluorescence quenching was found in DCMU-free samples, there was nearly no quenching effect by α-TQ observed in DCMU-treated thylakoids. This suggested a specific, not non-photochemical, DCMU sensitive, fluorescence quenching of photosystem II (PSII) at low α-TQ concentrations which is probably connected with the cyclic electron transport around PSII and might have a function of excess light energy dissipation. The effects of α-TQ on PSII resembled those of FCCP under many respects which might suggest similar mechanism of action of these compounds on PSII, i.e. the catalytic deprotonation and/or redox changes of some components of PSII such as the water splitting system, tyrosine D, Chlz or cytochrome b-559.  相似文献   

2.
The respiratory chain of Escherichia?coli contains three quinones. Menaquinone and demethylmenaquinone have low midpoint potentials and are involved in anaerobic respiration, while ubiquinone, which has a high midpoint potential, is involved in aerobic and nitrate respiration. Here, we report that demethylmenaquinone plays a role not only in trimethylaminooxide-, dimethylsulfoxide- and fumarate-dependent respiration, but also in aerobic respiration. Furthermore, we demonstrate that demethylmenaquinone serves as an electron acceptor for oxidation of succinate to fumarate, and that all three quinol oxidases of E.?coli accept electrons from this naphtoquinone derivative.  相似文献   

3.
When the photosystem II quinone acceptor complex has been singly reduced to the state QAQ?B, there is a 22 s half-time back-reaction of Q?B with an oxidized photosystem II donor (S2), directly measured here for the first time. From the back-reaction kinetics with and without inhibitors, kinetic and equilibrium parameters have been estimated. We suggest that the state QAQ?B of the complex is formed by a second-order reaction of vacant reaction centers in the state Q?A with plastoquinone from the pool, and discuss the physico-chemical parameters involved.  相似文献   

4.
We report that α-tocotrienol quinone (ATQ3) is a metabolite of α-tocotrienol, and that ATQ3 is a potent cellular protectant against oxidative stress and aging. ATQ3 is orally bioavailable, crosses the blood-brain barrier, and has demonstrated clinical response in inherited mitochondrial disease in open label studies. ATQ3 activity is dependent upon reversible 2e-redox-cycling. ATQ3 may represent a broader class of unappreciated dietary-derived phytomolecular redox motifs that digitally encode biochemical data using redox state as a means to sense and transfer information essential for cellular function.  相似文献   

5.
《BBA》2002,1553(1-2):84-101
The ϵ-proteobacteria form a subdivision of the Proteobacteria including the genera Wolinella, Campylobacter, Helicobacter, Sulfurospirillum, Arcobacter and Dehalospirillum. The majority of these bacteria are oxidase-positive microaerophiles indicating an electron transport chain with molecular oxygen as terminal electron acceptor. However, numerous members of the ϵ-proteobacteria also grow in the absence of oxygen. The common presence of menaquinone and fumarate reduction activity suggests anaerobic fumarate respiration which was demonstrated for the rumen bacterium Wolinella succinogenes as well as for Sulfurospirillum deleyianum, Campylobacter fetus, Campylobacter rectus and Dehalospirillum multivorans. To date, complete genome sequences of Helicobacter pylori and Campylobacter jejuni are available. These bacteria and W. succinogenes contain the genes frdC, A and B encoding highly similar heterotrimeric enzyme complexes belonging to the family of succinate:quinone oxidoreductases. The crystal structure of the W. succinogenes quinol:fumarate reductase complex (FrdCAB) was solved recently, thus providing a model of succinate:quinone oxidoreductases from ϵ-proteobacteria. Succinate:quinone oxidoreductases are being discussed as possible therapeutic targets in the treatment of several pathogenic ϵ-proteobacteria.  相似文献   

6.
Pyrroloquinoline quinone (PQQ) functions as a cofactor for prokaryotic oxidoreductases, such as methanol dehydrogenase and glucose dehydrogenase. When chemically-defined diets without PQQ are fed to animals, lathyritic changes are observed. In previous studies, it was assumed that PQQ was produced by the intestinal microflora; consequently, antibiotics were routinely added to diets. In the present study this assumption is tested further in mice by: (i) examining the effects of dietary antibiotics on fecal PQQ excretion, (ii) isolating the intestinal flora to identify bacteria known to synthesize PQQ and (iii) determining in vitro if the intestinal microflora synthesizes PQQ from radio-chemically labeled precursors. The results of these experiments indicate that little if any PQQ is synthesized by the intestinal microflora. Rather, when PQQ is present in the intestine, the diet is a more obvious source.  相似文献   

7.
8.
Alzheimer's disease (AD) is a complex, multifactorial neurodegenerative disease. The aggregation of beta-amyloid (Aβ) into extracellular fibrillar deposition is a pathological hallmark of AD. The Aβ aggregate-induced neurotoxicity, inflammatory reactions and oxidative stress are linked strongly to the etiology of AD. The currently available hitting-one-target drugs are insufficient for the treatment of AD. Therefore, finding multipotent agents able to modulate multiple targets simultaneously is attracting more attention. Previous studies indicated that vitamin E or its constituent such as α-tocopherol (α-T) was able to attenuate the effects of several pathogenetic factors in AD. However, ineffective or detrimental results were obtained from a number of clinical trials of vitamin E. Here, we showed that naturally synthesized RRR-α-tocopherol quinone (α-TQ), a main derivative of α-T, could inhibit Aβ42 fibril formation dose-dependently. Further investigations indicated that α-TQ could attenuate Aβ42-induced neurotoxicity toward SH-SY5Y neuroblastoma cells, disaggregate preformed fibrils and interfere with natural intracellular Aβ oligomer formation. Moreover, α-TQ could decrease the formation of reactive oxygen species (ROS) and NO, and modulate the production of cytokines by decreasing TNF-α and IL-1β and increasing IL-4 formation in microglia. Taken together, α-TQ targeting multiple pathogenetic factors deserves further investigation for prevention and treatment of AD.  相似文献   

9.
Since available structures of native bc(1) complexes show a vacant Q(o)-site, occupancy by substrate and product must be investigated by kinetic and spectroscopic approaches. In this brief review, we discuss recent advances using these approaches that throw new light on the mechanism. The rate-limiting reaction is the first electron transfer after formation of the enzyme-substrate complex at the Q(o)-site. This is formed by binding of both ubiquinol (QH(2)) and the dissociated oxidized iron-sulfur protein (ISP(ox)). A binding constant of approximately 14 can be estimated from the displacement of E(m) or pK for quinone or ISP(ox), respectively. The binding likely involves a hydrogen bond, through which a proton-coupled electron transfer occurs. An enzyme-product complex is also formed at the Q(o)-site, in which ubiquinone (Q) hydrogen bonds with the reduced ISP (ISPH). The complex has been characterized in ESEEM experiments, which detect a histidine ligand, likely His-161 of ISP (in mitochondrial numbering), with a configuration similar to that in the complex of ISPH with stigmatellin. This special configuration is lost on binding of myxothiazol. Formation of the H-bond has been explored through the redox dependence of cytochrome c oxidation. We confirm previous reports of a decrease in E(m) of ISP on addition of myxothiazol, and show that this change can be detected kinetically. We suggest that the myxothiazol-induced change reflects loss of the interaction of ISPH with Q, and that the change in E(m) reflects a binding constant of approximately 4. We discuss previous data in the light of this new hypothesis, and suggest that the native structure might involve a less than optimal configuration that lowers the binding energy of complexes formed at the Q(o)-site so as to favor dissociation. We also discuss recent results from studies of the bypass reactions at the site, which lead to superoxide (SO) production under aerobic conditions, and provide additional information about intermediate states.  相似文献   

10.
To probe the structural elements that contribute to the functional asymmetries of the two ubiquinone10 binding pockets in the reaction center of Rhodobacter capsulatus, we targeted the L212Glu–L213Asp (near QB) and the M246Ala-M247Ala (near QA) pairs of symmetry-related residues for site-specific mutagenesis. We have constructed site-specific mutants that eliminate the sequence differences at these positions (L212Glu–L213AspAla-Ala or M246Ala–M247AlaGlu-Asp), and have reversed that asymmetry by constructing a quadruple-mutant strain, RQ (L212Glu–L213Asp-M246Ala–M247AlaAla-Ala-Gl u-Asp). The mutations were designed to change the charge distribution in the quinone-binding region of the reaction center; none of the strains is capable of photosynthetic growth. In photocompetent phenotypic revertants of the RQ strain, second-site mutations which affect QB function are coupled to mutations in the QA site which restore an Ala or substitute a Tyr at the M247 site; one strain carries an additional MetLeu substitution at M260 near QA. All of the RQ revertants retain the engineered M246AlaGlu mutation in the QA site as well as the L212Ala–L213Ala mutations in the QB site. Kinetic characterization of the RQ revertants will give us an idea of what structural and functional elements are important for restoring efficiency to electron and proton transfer pathways in the RQ RC, which is far from native. To date, these preliminary results underscore the importance of an asymmetric distribution of polar amino acids in the quinone binding pockets and its influence on the functional properties of the reaction center.  相似文献   

11.
An electrometrical technique was used to investigate proton-coupled electron transfer between the primary plastoquinone acceptor QA and the oxidized non-heme iron Fe3+ on the acceptor side of photosystem II core particles incorporated into phospholipid vesicles. The sign of the transmembrane electric potential difference Δψ (negative charging of the proteoliposome interior) indicates that the iron–quinone complex faces the interior surface of the proteoliposome membrane. Preoxidation of the non-heme iron was achieved by addition of potassium ferricyanide entrapped into proteoliposomes. Besides the fast unresolvable kinetic phase (τ ∼ 0.1 μs) of Δψ generation related to electron transfer between the redox-active tyrosine YZ and QA, an additional phase in the submillisecond time domain (τ ∼ 0.1 ms at 23°C, pH 7.0) and relative amplitude ∼ 20% of the amplitude of the fast phase was observed under exposure to the first flash. This phase was absent under the second laser flash, as well as upon the first flash in the presence of DCMU, an inhibitor of electron transfer between QA and the secondary quinone QB. The rate of the additional electrogenic phase is decreased by about one-half in the presence of D2O and is reduced with the temperature decrease. On the basis of the above observations we suggest that the submillisecond electrogenic reaction induced by the first flash is due to the vectorial transfer of a proton from external aqueous phase to an amino acid residue(s) in the vicinity of the non-heme iron. The possible role of the non-heme iron in cyclic electron transfer in photosystem II complex is discussed.  相似文献   

12.
A site directed mutant of the Photosystem I reaction center of Chlamydomonas reinhardtii has been described previously. [Hallahan et al. (1995) Photosynth Res 46: 257–264]. The mutation, PsaA: D576L, changes the conserved aspartate residue adjacent to one of the cysteine ligands binding the Fe-SX center to PsaA. The mutation, which prevents photosynthetic growth, was observed to change the EPR spectrum of the Fe-SA/B centers bound to the PsaC subunit. We suggested that changes in binding of PsaC to the PsaA/PsaB reaction center prevented efficient electron transfer. Second site suppressors of the mutation have now been isolated which have recovered the ability to grow photosynthetically. DNA analysis of four suppressor strains showed the original D576L mutation is intact, and that no mutations are present elsewhere within the Fe-SX binding region of either PsaA or PsaB, nor within PsaC or PsaJ. Subsequent genetic analysis has indicated that the suppressor mutation(s) is nuclear encoded. The suppressors retain the altered binding of PsaC, indicating that this change is not the cause of failure to grow photosynthetically. Further analysis showed that the rate of electron transfer from the quinone electron carrier A1 to Fe-SX is slowed in the mutant (by a factor of approximately two) and restored to wild type rates in the suppressors. ENDOR spectra of A1 ·– in wild-type and mutant preparations are identical, indicating that the electronic structure of the phyllosemiquinone is not changed. The results suggest that the quinone to Fe-SX center electron transfer is sensitive to the structure of the iron-sulfur center, and may be a critical step in the energy conversion process. They also indicate that the structure of the reaction center may be modified as a result of changes in proteins outside the core of the reaction center.  相似文献   

13.
A spontaneous mutant (R/89) of photosynthetic purple bacterium Rhodobacter sphaeroides R-26 was selected for resistance to 200 M atrazin. It showed increased resistance to interquinone electron transfer inhibitors of o-phenanthroline (resistance factor, RF=20) in UQo reconstituted isolated reaction centers and terbutryne in reaction centers (RF=55) and in chromatophores (RF=85). The amino acid sequence of the QB binding protein of the photosynthetic reaction center (the L subunit) was determined by sequencing the corresponding pufL gene and a single mutation was found (IleL229 Met). The changed amino acid of the mutant strain is in van der Waals contact with the secondary quinone QB. The binding and redox properties of QB in the mutant were characterized by kinetic (charge recombination) and multiple turnover (cytochrome oxidation and semiquinone oscillation) assays of the reaction center. The free energy for stabilization of QAQB with respect to QA QB was GAB=–60 meV and 0 meV in reaction centers and GAB=–85 meV and –46 meV in chromatophores of R-26 and R/89 strains at pH 8, respectively. The dissociation constants of the quinone UQo and semiquinone UQo in reaction centers from R-26 and R/89 showed significant and different pH dependence. The observed changes in binding and redox properties of quinones are interpreted in terms of differential effects (electrostatics and mesomerism) of mutation on the oxidized and reduced states of QB.Abbreviations BChl bacteriochlorophyll - Ile isoleucine - Met methionin - P primary donor - QA primary quinone acceptor - QB secondary quinone acceptor - RC reaction center protein - UQo 2,3-dimethoxy-5-methyl benzoquinone - UQ10 ubiquinone 50 This work is dedicated to the memory of Randall Ross Stein (1954–1994) and is, in a small way, a testament to the impact which Randy's ideas have had on the development of the field of competitive herbicide binding.  相似文献   

14.
A b-type heme is conserved in membrane-bound complex II enzymes (SQR, succinate–ubiquinone reductase). The axial ligands for the low spin heme b in Escherichia coli complex II are SdhC His84 and SdhD His71. E. coli SdhD His71 is separated by 10 residues from SdhD Asp82 and Tyr83 which are essential for ubiquinone catalysis. The same His-10x-AspTyr motif dominates in homologous SdhD proteins, except for Saccharomyces cerevisiae where a tyrosine is at the axial position (Tyr-Cys-9x-AspTyr). Nevertheless, the yeast enzyme was suggested to contain a stoichiometric amount of heme, however, with the Cys ligand in the aforementioned motif acting as heme ligand. In this report, the role of Cys residues for heme coordination in the complex II family of enzymes is addressed. Cys was substituted to the SdhD-71 position and the yeast Tyr71Cys72 motif was also recreated. The Cys71 variant retained heme, although it was high spin, while the Tyr71Cys72 mutant lacked heme. Previously the presence of heme in S. cerevisiae was detected by a spectral peak in fumarate-oxidized, dithionite-reduced mitochondria. Here it is shown that this method must be used with caution. Comparison of bovine and yeast mitochondrial membranes shows that fumarate induced reoxidation of cytochromes in both SQR and the bc1 complex (ubiquinol–cytochrome c reductase). Thus, this report raises a concern about the presence of low spin heme b in S. cerevisiae complex II.  相似文献   

15.
ζ-Crystallins are a Zn(2+)-lacking enzyme group with quinone reductase activity, which belongs to the medium-chain dehydrogenase/reductase superfamily. It has been recently observed that human ζ-crystallin is capable of reducing the α,β-double bond of alkenals and alkenones. Here we report that this activity is also shared by the homologous Zta1p enzyme from Saccharomyces cerevisiae. While the two enzymes show similar substrate specificity, human ζ-crystallin exhibits higher activity with lipid peroxidation products and Zta1p is more active with cinnamaldehyde. The presence of Zta1p has an in vivo protective effect on yeast strains exposed to the toxic substrate 3-penten-2-one. Analysis of ZTA1 gene expression indicates an induction under different types of cellular stress, including ethanol and dimethylsulfoxide exposure and by reaching the stationary growth phase. The role of Zta1p in the yeast adaptation to some stress types and the general functional significance of ζ-crystallins are discussed.  相似文献   

16.
NAD(P)H quinone reductase [NAD(P)H-QR] present in the latex of Hevea brasiliensis Müll.-Arg. (Euphorbiaceae) was purified to homogeniety from the B-serum fraction obtained by freeze-thawing of the bottom fraction of ultracentrifuged fresh latex. The purification protocol involved acetone fractionation, heat treatment, ion exchange chromatography and affinity chromatography. The M(r) determined by SDS-PAGE for the protein subunit was 21 kDa, and the molecular mass of the native enzyme estimated by gel filtration was 83 kDa, indicating that the native enzyme is a homotetramer. The enzyme showed pH stability over a range of 6 to at least 10 (with an optimum at pH 8) and thermal stability up to 80 degrees C. High NAD(P)H-QR activity (70%) was still retained after 10 h of preincubation at 80 degrees C. A comparable substrate specificity for this enzyme was observed among menadione, p-benzoquinone, juglone, and plumbagin, with only duroquinone generating a lower activity. Positive correlations between latex NAD(P)H-QR activity and rubber yield per tapping [fresh latex (r=0.89, P<0.01), dry rubber (r=0.81, P<0.01)] together with flow time (r=0.85, P<0.01) indicated that enzyme activity could possibly be used as a marker to predict the yield potential of selected clones.  相似文献   

17.
α-Tocopheryl succinate is one of the most effective analogues of vitamin E for inhibiting cell proliferation and inducing cell death in a variety of cancerous cell lines while sparing normal cells or tissues. αTocopheryl succinate inhibits oxidative phosphorylation at the level of mitochondrial complexes I and II, thus enhancing reactive oxygen species generation which, in turn, induces the expression of Nrf2-driven antioxidant/detoxifying genes. The cytoprotective role of Nrf2 downstream genes/proteins prompted us to investigate whether and how α-tocopheryl succinate increases resistance of PC3 prostate cancer cells to pro-oxidant damage. A 4 h α-tocopheryl succinate pre-treatment increases glutathione intracellular content, indicating that the vitamin E derivative is capable of training the cells to react to an oxidative insult. We found that α-tocopheryl succinate pre-treatment does not enhance paraquat-/hydroquinone-induced cytotoxicity whereas it exhibits an additional/synergistic effect on H2O2-/docetaxel-induced cytotoxicity.  相似文献   

18.
α-Tocopherol (α-TOH) is the primary lipophilic radical trapping antioxidant in human tissues. Oxidative catabolism of α-tocopherol (αTOH) is initiated by ω-hydroxylation of the terminal carbon (C-13) of the isoprenoid sidechain followed by oxidative transformations that sequentially truncate the chain to yield the 2,5,7,8-tetramethyl(3′carboxyethyl)-6-hydroxychroman (α-CEHC). After conjugation to glucuronic acid, 3′-carboxyethyl-6-hydroxychroman glucuronide is excreted in urine. We report here that the same enzyme that accomplishes this task, the cytochrome P450 monooxygenase CYP-4F2, can also ω-hydroxylate the terminal carbon of α-tocopheryl quinone. A standard sample of ω-OH-α-tocopheryl quinone (ω-OH-α-TQ) was synthesized as a mixture of stereoisomers by allylic oxidation of α-tocotrienol using SeO2 followed by double-bond reduction and oxidation to the quinone. After incubating human liver microsomes or insect cell microsomes expressing only recombinant human CYP-4F2, cytochrome b5, and NADPH P450 reductase with d6-α-tocopheryl quinone (d6-αTQ), we showed that the ω-hydroxylated (13-OH) d6-α-TQ was produced. We further identified the production of the terminal carboxylic acid d6-13-COOH-αTQ. The ramifications of this discovery to the understanding of tocopherol utilization and metabolism, including the quantitative importance of the αTQ-ω-hydroxylase pathway in humans, are discussed.  相似文献   

19.
Jere Kahanp?? 《ZooKeys》2014,(441):285-290
A species checklist is presented for Finland covering seven smaller families of Opomyzoidea: Anthomyzidae, Asteiidae, Aulacigastridae, Clusiidae, Odiniidae, Opomyzidae and Periscelididae (Diptera).  相似文献   

20.
Substances studied at this department in 1954–1983 are reviewed; a total of 226 compounds are characterized in a tabular form. They include natural compounds as well as those prepared by biotransformation, by semisynthetic and synthetic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号