首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Size distributions of total airborne particles and bioaerosols were measured in a full-scale composting facility, using an optical particle counter and an agar-inserted six-stage impactor, respectively. Higher concentrations of total airborne particles and bioaerosols were detected at a sampling location near the screening process preceded by the composting process than at sampling locations in the composting process. At the sampling location near the screening process, the concentrations of total airborne particles were approximately 10(8)particles/m3 at the size of 0.3 microm and 10(5)particles/m3 at 6.2 microm. The concentration of bioaerosols was about 10(4)CFU/m3 in each stage of 7.0 microm (1st stage), 7.0-4.7 microm (2nd), 4.7-3.3 microm (3rd), 3.3-2.1 microm (4th), 2.1-1.1 microm (5th) and 1.1-0.65 microm (6th). Most of submicron particles smaller than 1 microm among the total airborne particles were believed to originate from the ambient air.  相似文献   

2.
Exposure to airborne microorganisms in indoor environments may result in infectious disease or elicit an allergic or irritant response. Air handling system components contaminated by fungi have been implicated in the dispersal of spores into the indoor environment, thereby serving as a route of exposure to occupants. This study was conducted to provide quantitative data on the dispersal of spores from fungal colonies growing on three types of duct material. Galvanized metal, rigid fibrous glass ductboard, and fiberglass duct liner were soiled and contaminated with a known concentration of Penicillium chrysogenum spores. The duct materials were incubated in humidity chambers to provide a matrix of growing, sporulating fungal colonies at a contamination level of 109 colony forming units (CFU) per duct section, consistent for all materials. For each experiment a contaminated duct section was inserted into the air handling system of an experimental room, and the air handling system was operated for three 5-minute cycles with an air flow of 4.2 m3 min–1. The duct air velocity was approximately 2.8 m sec–1. The airborne concentration of culturable P. chrysogenum spores (CFU m–3), total P. chrysogenum spores (spores m–3), and total P. chrysogenum-sized particles (particles m–3) were measured in the room using Andersen single-stage impactor samplers, Burkard slide impactor samplers, and an aerodynamic particle sizer, respectively. The highest airborne concentrations (104 CFU m–3; 105 spores m–3; 104 particles m–3) were measured during the first operating cycle of the air handling system for all duct materials with decreasing airborne concentrations measured during the second and third cycles. There was no significant difference in spore dispersal from the three contaminated duct materials. These data demonstrate the potential exposure for building occupants to high concentrations of spores dispersed from fungal colonies on air handling system duct materials during normal operation of the system.  相似文献   

3.
Several studies have showed an association between the work in waste treatment plants and occupational health problems such as irritation of skin, eyes and mucous membranes, pulmonary diseases, gastrointestinal problems and symptoms of organic dust toxic syndrome (ODTS). These symptoms have been related to bioaerosol exposure. The aim of this study was to investigate the occupational exposure to biological agents in a plant sorting source-separated packages (plastics materials, ferric and non-ferric metals) household waste. Airborne samples were collected with M Air T Millipore sampler. The concentration of total fungi and bacteria and gram-negative bacteria were determined and the most abundant genera were identified. The results shown that the predominant airborne microorganisms were fungi, with counts greater than 12,000 cfu/m(3) and gram-negative bacteria, with a environmental concentration between 1,395 and 5,280 cfu/m(3). In both cases, these concentrations were higher than levels obtained outside of the sorting plant. Among the fungi, the predominant genera were Penicillium and Cladosporium, whereas the predominant genera of gram-negative bacteria were Escherichia, Enterobacter, Klebsiella and Serratia. The present study shows that the workers at sorting source-separated packages (plastics materials, ferric and non-ferric metals) domestic waste plant may be exposed to airborne biological agents, especially fungi and gram-negative bacteria.  相似文献   

4.
The discovery of a letter intentionally filled with dried Bacillus anthracis spores in the office of a United States senator prompted the collection and quarantine of all mail in congressional buildings. This mail was subsequently searched for additional intentionally contaminated letters. A microbiological sampling strategy was used to locate heavy contamination within the 642 separate plastic bags containing the mail. Swab sampling identified 20 bags for manual and visual examination. Air sampling within the 20 bags indicated that one bag was orders of magnitude more contaminated than all the others. This bag contained a letter addressed to Senator Patrick Leahy that had been loaded with dried B. anthracis spores. Microbiological sampling of compartmentalized batches of mail proved to be efficient and relatively safe. Efficiency was increased by inoculating culture media in the hot zone rather than transferring swab samples to a laboratory for inoculation. All mail sampling was complete within 4 days with minimal contamination of the sampling environment or personnel. However, physically handling the intentionally contaminated letter proved to be exceptionally hazardous, as did sorting of cross-contaminated mail, which resulted in generation of hazardous aerosol and extensive contamination of protective clothing. Nearly 8 x 10(6) CFU was removed from the most highly cross-contaminated piece of mail found. Tracking data indicated that this and other heavily contaminated envelopes had been processed through the same mail sorting equipment as, and within 1 s of, two intentionally contaminated letters.  相似文献   

5.
Naturally occurring bioaerosol environments may present a challenge to biological detection-identification-monitoring (BIODIM) systems aiming at rapid and reliable warning of bioterrorism incidents. One way to improve the operational performance of BIODIM systems is to increase our understanding of relevant bioaerosol backgrounds. Subway stations are enclosed public environments which may be regarded as potential bioterrorism targets. This study provides novel information concerning the temporal variability of the concentration level, size distribution, and diversity of airborne bacteria in a Norwegian subway station. Three different air samplers were used during a 72-h sampling campaign in February 2011. The results suggested that the airborne bacterial environment was stable between days and seasons, while the intraday variability was found to be substantial, although often following a consistent diurnal pattern. The bacterial levels ranged from not detected to 103 CFU m−3 and generally showed increased levels during the daytime compared to the nighttime levels, as well as during rush hours compared to non-rush hours. The airborne bacterial levels showed rapid temporal variation (up to 270-fold) on some occasions, both consistent and inconsistent with the diurnal profile. Airborne bacterium-containing particles were distributed between different sizes for particles of >1.1 μm, although ∼50% were between 1.1 and 3.3 μm. Anthropogenic activities (mainly passengers) were demonstrated as major sources of airborne bacteria and predominantly contributed 1.1- to 3.3-μm bacterium-containing particles. Our findings contribute to the development of realistic testing and evaluation schemes for BIODIM equipment by providing information that may be used to simulate operational bioaerosol backgrounds during controlled aerosol chamber-based challenge tests with biological threat agents.  相似文献   

6.
The discovery of a letter intentionally filled with dried Bacillus anthracis spores in the office of a United States senator prompted the collection and quarantine of all mail in congressional buildings. This mail was subsequently searched for additional intentionally contaminated letters. A microbiological sampling strategy was used to locate heavy contamination within the 642 separate plastic bags containing the mail. Swab sampling identified 20 bags for manual and visual examination. Air sampling within the 20 bags indicated that one bag was orders of magnitude more contaminated than all the others. This bag contained a letter addressed to Senator Patrick Leahy that had been loaded with dried B. anthracis spores. Microbiological sampling of compartmentalized batches of mail proved to be efficient and relatively safe. Efficiency was increased by inoculating culture media in the hot zone rather than transferring swab samples to a laboratory for inoculation. All mail sampling was complete within 4 days with minimal contamination of the sampling environment or personnel. However, physically handling the intentionally contaminated letter proved to be exceptionally hazardous, as did sorting of cross-contaminated mail, which resulted in generation of hazardous aerosol and extensive contamination of protective clothing. Nearly 8 × 106 CFU was removed from the most highly cross-contaminated piece of mail found. Tracking data indicated that this and other heavily contaminated envelopes had been processed through the same mail sorting equipment as, and within 1 s of, two intentionally contaminated letters.  相似文献   

7.
Single-particle laser desorption/ionization time-of-flight mass spectrometry, in the form of bioaerosol mass spectrometry (BAMS), was evaluated as a rapid detector for individual airborne, micron-sized, Mycobacterium tuberculosis H37Ra particles, comprised of a single cell or a small number of clumped cells. The BAMS mass spectral signatures for aerosolized M. tuberculosis H37Ra particles were found to be distinct from M. smegmatis, Bacillus atrophaeus, and B. cereus particles, using a distinct biomarker. This is the first time a potentially unique biomarker was measured in M. tuberculosis H37Ra on a single-cell level. In addition, M. tuberculosis H37Ra and M. smegmatis were aerosolized into a bioaerosol chamber and were sampled and analyzed using BAMS, an aerodynamic particle sizer, a viable Anderson six-stage sampler, and filter cassette samplers that permitted direct counts of cells. In a background-free environment, BAMS was able to sample and detect M. tuberculosis H37Ra at airborne concentrations of >1 M. tuberculosis H37Ra-containing particles/liter of air in 20 min as determined by direct counts of filter cassette-sampled particles, and concentrations of >40 M. tuberculosis H37Ra CFU/liter of air in 1 min as determined by using viable Andersen six-stage samplers. This is a first step toward the development of a rapid, stand-alone airborne M. tuberculosis particle detector for the direct detection of M. tuberculosis bioaerosols generated by an infectious patient. Additional instrumental development is currently under way to make BAMS useful in realistic environmental and respiratory particle backgrounds expected in tuberculosis diagnostic scenarios.  相似文献   

8.
Ambient bioaerosols are ubiquitous in the daily environment and can affect health in various ways. However, few studies have been conducted to comprehensively evaluate personal bioaerosol exposure in occupational and indoor environments because of the complex composition of bioaerosols and the lack of standardized sampling/analysis methods. We conducted a study to determine the most efficient collection/analysis method for the personal exposure assessment of multiple bioaerosols. The sampling efficiencies of three filters and four samplers were compared. According to our results, polycarbonate (PC) filters had the highest relative efficiency, particularly for bacteria. Side-by-side sampling was conducted to evaluate the three filter samplers (with PC filters) and the NIOSH Personal Bioaerosol Cyclone Sampler. According to the results, the Button Aerosol Sampler and the IOM Inhalable Dust Sampler had the highest relative efficiencies for fungi and bacteria, followed by the NIOSH sampler. Personal sampling was performed in a pig farm to assess occupational bioaerosol exposure and to evaluate the sampling/analysis methods. The Button and IOM samplers yielded a similar performance for personal bioaerosol sampling at the pig farm. However, the Button sampler is more likely to be clogged at high airborne dust concentrations because of its higher flow rate (4 L/min). Therefore, the IOM sampler is a more appropriate choice for performing personal sampling in environments with high dust levels. In summary, the Button and IOM samplers with PC filters are efficient sampling/analysis methods for the personal exposure assessment of multiple bioaerosols.  相似文献   

9.
There is a growing interest in indoor air quality for a better quality environment both at home and at work because many people spend at least 80% of their time indoors. The aim of our study was to evaluate the indoor concentration of airborne bacteria and fungi in a University auditorium, in an office of public buildings and in an apartment in the presence and in absence of building's occupants, building materials and furnishings. The concentrations of airborne bacteria and fungi were determined using a Surface Air System (SAS). In presence of people and furnishings the average air concentrations of bacteria (University auditorium: 925-1225 CFU m(-3); office: 493 CFU m(-3); apartment: 92-182 CFU m(-3)) were higher than in absence (respectively: 190-315 CFU m(-3); 126 CFU m(-3); 66-80 CFU m(-3)). The average air concentrations fungal were higher in presence of people and furnishings (University auditorium: 1256-1769 CFU m(-3); office: 858 CFU m(-3); apartment: 147-297 CFU m(-3)) than in absence (respectively: 301-431 CFU m(-3); 224 CFU m(-3); 102-132 CFU m(-3)). The obtained data can be considered as a step to identify acceptable levels for bioaerosols in common indoor environments.  相似文献   

10.
The short-term dynamics and distribution of airborne biological and total particles have been assessed in a large university hallway by particle counting using laser particle counters and impaction air samplers. Particle numbers of four different size ranges were determined every 2 min over several hours. Bioaerosols (culturable bacteria and fungi determined as colony-forming units) were directly collected every 5 min on Petri dishes containing the appropriate growth medium. Results clearly show distinct short-term dynamics of particulate aerosols, of both biological and non-biological origin. These reproducible periodic patterns are closely related to periods when lectures are held in lecture rooms and the intermissions in between when students are present in the hallway. Peaks of airborne culturable bacteria were observed with a periodicity of 1 h. Bioaerosol concentrations follow synchronously the variation in the total number of particles. These highly reproducible temporal dynamics should be considered when monitoring indoor environments to determine air quality.  相似文献   

11.
The capture, transport, and sorting of particles by the gills and labial palps of the freshwater mussel Dreissena polymorpha were examined by endoscopy and video image analysis. More specifically, the morphology of the feeding organs in living zebra mussels was described; the mode and speeds of particle transport on the feeding organs was measured; and the sites of particle selection in the pallial cavity were identified. Particle velocities (outer demibranch lamellae, 90 microm s(-1); inner demibranch lamellae, 129 microm s(-1); marginal food groove of inner demibranchs, 156 microm s(-1); dorsal ciliated tracts, 152 microm s(-1)), as well as the movement of particles on the ctenidia and labial palps of D. polymorpha, are consistent with mucociliary, rather than hydrodynamic, transport. Particles can be sorted on the ctenidia of zebra mussels, resulting in a two-layer transport at the marginal food groove of the inner demibranch. That is: preferred particles are transported inside the marginal groove proper, whereas particles destined for rejection are carried superficially in a string of mucus. Sorting also occurs at the ventral margin of the outer demibranch; desirable particles are retained on the outer demibranch, whereas unacceptable particles are transferred to the inner demibranch and ultimately excluded from ingestion. We suggest that the structure of homorhabdic ctenidia does not preclude particle sorting, and that some ecosystem modifications attributed to zebra mussels may ultimately be due to ctenidial sorting mechanisms.  相似文献   

12.
Single-particle laser desorption/ionization time-of-flight mass spectrometry, in the form of bioaerosol mass spectrometry (BAMS), was evaluated as a rapid detector for individual airborne, micron-sized, Mycobacterium tuberculosis H37Ra particles, comprised of a single cell or a small number of clumped cells. The BAMS mass spectral signatures for aerosolized M. tuberculosis H37Ra particles were found to be distinct from M. smegmatis, Bacillus atrophaeus, and B. cereus particles, using a distinct biomarker. This is the first time a potentially unique biomarker was measured in M. tuberculosis H37Ra on a single-cell level. In addition, M. tuberculosis H37Ra and M. smegmatis were aerosolized into a bioaerosol chamber and were sampled and analyzed using BAMS, an aerodynamic particle sizer, a viable Anderson six-stage sampler, and filter cassette samplers that permitted direct counts of cells. In a background-free environment, BAMS was able to sample and detect M. tuberculosis H37Ra at airborne concentrations of >1 M. tuberculosis H37Ra-containing particles/liter of air in 20 min as determined by direct counts of filter cassette-sampled particles, and concentrations of >40 M. tuberculosis H37Ra CFU/liter of air in 1 min as determined by using viable Andersen six-stage samplers. This is a first step toward the development of a rapid, stand-alone airborne M. tuberculosis particle detector for the direct detection of M. tuberculosis bioaerosols generated by an infectious patient. Additional instrumental development is currently under way to make BAMS useful in realistic environmental and respiratory particle backgrounds expected in tuberculosis diagnostic scenarios.  相似文献   

13.
The emission of the airborne bacteria and fungi from an indoor wastewater treatment station adopting an integrated oxidation ditch with a vertical circle was investigated. Microbial samples were collected by the six-stage viable Andersen cascade impactor, and the samples were collected in triplicate in each sampling site per season. Culture-based method was applied to determine the concentrations of the airborne bacteria and fungi, while the cloning/sequencing method was used to characterize the genetic structure and community diversity of airborne bacteria. The highest concentrations of airborne bacteria (4155 ± 550 CFU/m3) and fungi (883 ± 150 CFU/m3) were obtained in June (summer). The lowest concentration of bacteria (1458 ± 434 CFU/m3) was determined in January (winter), and the lowest concentration of fungi (169 ± 40 CFU/m3) was found in March (spring), respectively. The particle size distribution analysis showed that most culturable bacteria obtained in all the sampling sites were in the particle size range of 1.1–4.7 µm. Most culturable fungi had particle sizes in the range 1.1–3.3 µm. Microbial population analysis showed that Bacillus sp., Acinetobacter sp., and Lysinibacillus were the main groups obtained in S1. Enterobacter was the dominant group in sampling site S2. Both the concentrations and particle size distribution of the bioaerosols in the enclosed space presented a seasonal and site-related variation. Concentration and richness of microorganisms in bioaerosols in June were higher than in September and January. The particle size distribution varied between the sampling sites, and proportion of large particles was higher in S2 than in S1 because of the settlement of large particles. Pathogenic species, such as Acinetobacter lwoffii, Staphylococcus saprophyticus, and Enterobacter sp., were isolated from the bioaerosols, which could pose serious latent danger to sewage workers’ health.  相似文献   

14.
AIMS: The aerosolization and collection of submicrometre and ultrafine virus particles were studied with the objective of developing robust and accurate methodologies to study airborne viruses. METHODS AND RESULTS: The collection efficiencies of three sampling devices used to sample airborne biological particles - the All Glass Impinger 30, the SKC BioSampler and a frit bubbler - were evaluated for submicrometre and ultrafine virus particles. Test virus aerosol particles were produced by atomizing suspensions of single-stranded RNA and double-stranded DNA bacteriophages. Size distribution results show that the fraction of viruses present in typical aqueous virus suspensions is extremely low such that the presence of viruses has little effect on the particle size distribution of atomized suspensions. It has been found that none of the tested samplers are adequate in collecting submicrometre and ultrafine virus particles, with collection efficiencies for all samplers below 10% in the 30-100 nm size range. Plaque assays and particle counting measurements showed that all tested samplers have time-varying virus particle collection efficiencies. A method to determine the size distribution function of viable virus containing particles utilizing differential mobility selection was also developed. CONCLUSIONS: A combination of differential mobility analysis and traditional plaque assay techniques can be used to fully characterize airborne viruses. SIGNIFICANCE AND IMPACT OF THE STUDY: The data and methods presented here provide a fundamental basis for future studies of submicrometre and ultrafine airborne virus particles.  相似文献   

15.
Working in sawmills is associated with bioaerosol exposure and respiratory health problems. This study is the first to analyze the mycoflora of eastern Canadian sawmills and the nature of airborne contamination at different work sites. Fifty work sites (debarking, sawing, planing, and sorting) within 17 sawmills were sampled for airborne microfungi. One thousand seven hundred strains were isolated, quantified to determine the frequency of occurrence, and then identified. Unlike the European studies, we did not frequently identify the presence of fungi that were described in European sawmills as being related to respiratory health problems. In eastern Canadian sawmills, Penicillium species are the most frequently isolated microfungi.  相似文献   

16.
Summary A preliminary study was performed using two sampling instruments for airborne bacteria and fungi collection. A Reuter Centrifugal Sampler (RCS) and the open-faced type membrane filter sampler (Sartorius MD8) were compared for evaluating their capability of viable particles recovery. 61 series of parallel samples were collected in the air of a microbiological laboratory. Bacteria and fungi per cubic metre of air were enumerated using appropriate culture media and reported in terms of colony forming units (CFU). Performances of the two instruments for fungi were comparable and significantly correlated, particularly when the Rose Bengal Agar (RBA) medium was used (geometric mean: 237 CFU/m3 for RCS and 247 CFU/m3 for MD8; correlation coefficient: 0.78). Bacterial counts from MD8 resulted consistently lower than those obtained from RCS. The observed high variability suggests the existence of selective collection efficiencies which tend to underestimate the actual occurrence of airborne microrganisms.  相似文献   

17.
To understand the etiology of exposure-related diseases and to establish standards for reducing the risks associated with working in contaminated environments, the exact nature of the bioaerosol components must be defined. Molecular biology tools were used to evaluate airborne bacterial and, for the first time, archaeal content of dairy barns. Three air samplers were tested in each of the 13 barns sampled. Up to 10(6) archaeal and 10(8) bacterial 16S rRNA genes per m(3) of air were detected. Archaeal methanogens, mainly Methanobrevibacter species, were represented. Saccharopolyspora rectivirgula, the causative agent of farmer's lung, was quantified to up to 10(7) 16S rRNA genes per m(3) of air. In addition, a wide variety of bacterial agents were present in our air samples within the high airborne bioaerosol concentration range. Despite recommendations regarding hay preservation and baling conditions, farmers still develop an S. rectivirgula-specific humoral immune response, suggesting intense and continuous exposure. Our results demonstrate the complexity of bioaerosol components in dairy barns which could play a role in occupational respiratory diseases.  相似文献   

18.
Mycobacterium tuberculosis is the main cause of tuberculosis and is still a public health concern worldwide. This mycobacterium is transmitted through aerosols from human beings suffering from pulmonary tuberculosis to susceptible persons. To study this natural route of infection, we designed a new nose-only aerosol apparatus--system of aerosolisation of microorganisms (SAM)--in a carefully designed biohazard facility. For safety reasons, Mycobacterium smegmatis was first used to calibrate several parameters, such as inoculum density, atmospheric conditions (i.e. hygrometry) and particle size distribution. We present evidence that our apparatus is totally adapted to airborne delivery; the particle size of generated aerosol ranges from 1 to 7 microm, which is ideal for an infection by inhalation. We found that 99% of generated particles (<7 microm) could be retained by the respiratory tract, and among these particles, 62-79% (<3.3 microm) were able to reach pulmonary compartments. The next step was to simultaneously challenge 48 mice with M. tuberculosis in a highly reproducible way. We showed that a moderate dose (4 log10 colony-forming units (CFU) per mice) of M. tuberculosis was capable of causing progressive lung pathology and death in mice 30 days post-aerosolisation. Therefore, our apparatus, once calibrated, is easy to handle, safe, and can be used with any pathogen, which is spread by aerosol.  相似文献   

19.
A protocol for bioaerosol collection was developed that provides not only accurate predictions of fungal concentration, but also improves species recovery. Random transfer of a subset of 50 of the 400 impaction points from Andersen single-stage bioaerosol sampling plates results in subcultures that are accurate predictors of fungal concentration (CFU/m3), when compared to duplicate untouched Andersen plates. A linear regression model was developed to estimate CFU/m3 from the colonies counted on the Random-50 plates. The random transfer to five plates (“Random-50” plates), allows large numbers of fungi to be recovered and identified, including slow-growing fungi that otherwise would be masked by fast-growing fungi.  相似文献   

20.
Limited data are currently available on the concentrations of airborne bacteria, fungi, and endotoxins in indoor environments. The levels of aerial bacteria and fungi were measured at several microenvironments within a well-ventilated residential apartment in Singapore including the living room, kitchen, bedroom, toilet, and at a workplace environment by sampling indoor air onto culture medium plates using the 6-stage Andersen sampler. Total microbial counts were determined by collecting the air samples in water with the Andersen sampler, staining the resultant extracts with a fluorescent dye, acridine orange, and counting the microbes using a fluorescent microscope. The levels of airborne endotoxins were also determined by sampling the airborne microorganisms onto 0.4?μm polycarbonate membrane filter using the MiniVol sampler at 5?l/min for 20?h with a PM2.5 cut-off device. The aerial bacterial and fungal concentrations were found to be in the ranges of 117–2,873?CFU/m3 and 160–1,897?CFU/m3, respectively. The total microbial levels ranged from 49,000 to 218,000?microbes/m3. The predominant fungi occurring in the apartment were Aspergillus and Penicillium while the predominant bacterial strains appeared to be Staphylococcus and Micrococcus. The average indoor endotoxin level was detectable in the range of 6–39?EU/m3. The amount of ventilation and the types of human activities carried out in the indoor environment appeared to be important factors affecting the level of these airborne biological contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号