首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 384 毫秒
1.
Royo J  Gómez E  Balandín M  Muñiz LM  Hueros G 《Planta》2006,224(6):1303-1314
Single cell sap sampling and analysis were used to measure the longitudinal and radial distribution of sucrose, glucose and fructose in the apical cell division zone and in the basal, elongated zone of the Ricinus hypocotyl. Sucrose and hexose increased in concentration from the apex to the base of the seedling axis. In the cell division zone low hexose and sucrose concentrations prevailed in cortex and pith, with a slightly higher hexose concentration in pith cells. The sucrose concentrations in sieve tubes and in phloem were much higher than in the cortex and pith cells. In the basal zone of the hypocotyl high levels of sucrose in phloem, cortex and pith were found, therefore radial, diffusional sucrose flow away from the phloem was considered unlikely. It is proposed that radial flow of growth-water to the hypocotyl periphery together with the down-regulation of a sucrose transporter at the phloem leads to a preferential sucrose flow to the expanding cortex. The pith cells, which do not experience flow of growth-water, are probably insufficiently supplied with sucrose from the phloem resulting eventually in cell death as the plant grows. Shortage of sucrose supply, experimentally achieved by removal of the endosperm, led to sucrose hydrolysis in the pith. The sucrose levels in the other tissues decreased less. It appears that the hydrolysis to hexose was initiated to maintain the osmotic value in the pith cell sap. It is speculated that high hexose levels in the cells are indicative of insufficient sucrose supply via the phloem and that the pith cells are confronted with that situation during early seedling development.  相似文献   

2.
Numbers of tracheary elements differentiating in lettuce pithexplants rose with increase in concentration of sucrose in themedium up to an optimal concentration of 0·2%, and fellwith further increase in concentration to about one-tenth maximalat 3% sucrose. Although a few tracheary elements formed withoutexogenous sucrose, a very low concentration of sucrose (0·001%)was sufficient to stimulate additional xylogenesis. Pretreatmentof explants with 3% sucrose caused a persisting inhibition ofxylogenesis, especially in tissue that had been near the siteof sucrose application (sandwich technique). The requirementfor adequate, but not inhibitory, concentrations of sucrosefor xylogenesis may underlie the development of xylem alongsidethe sucrose-rich phloem in normal apical morphogenesis. For callus growth the response to sucrose was different: theoptimal concentration was 3%, with a broad plateau from 1 to4% sucrose. Sucrose concentrations of 2 to 3%, used in manytissue culture media, are thus roughly optimal for callus growth,but ten times the optimum for xylogenesis in lettuce pith explants. It is surprising that 0·001% (0·03 mM) sucrose,applied exogenously, can stimulate xylogenesis: endogenous sugarconcentrations are normally higher. Perhaps the stimulationis mediated by ethylene biosynthesis, which is known to be xylogenic.Rates of ethylene production per explant rose with increasingsucrose concentration from about 0·1 nl h-1 at 0% sucroseto a slightly (significantly) higher level at 0·004%sucrose and to about 0·5 nl h-1 at 3% sucrose. D -glucoseresembled sucrose in its effects on xylogenesis and ethyleneproduction, but L-glucose yielded no xylogenesis and littlestimulation of ethylene biosynthesis.Copyright 1994, 1999 AcademicPress Lactuca sativa, Coleus blumei, Nicotiana tabacum, lettuce pith explants, tracheary element differentiation, sucrose, glucose, ethylene  相似文献   

3.
The redifferentiation of tobacco pith cells was examined in two experimental systems: wounds recovering from an incision that severed vascular tissue of the stem, and induced differentiation of excised pith responding to indoleacetic acid supplied locally via pipets inserted into the tissue. In both systems there was an initial period during which cell division was resumed and the pith cells were cleaved into numerous small cells. This was followed by redifferentiation of some of the divided cells as tracheary elements and, especially in the stem, by the formation of a cambial meristem that produced further xylem and phloem. In the stem the size of the wound meristem decreased as the wound was made further from the shoot apex, and in the cultured pith tissue it was demonstrated that the size of the dividing zone increased with the concentration of auxin supplied. Auxin was, therefore, demonstrated to be limiting in the division phase of redifferentiation. The sequence of redifferentiation in the two experimental systems resembled the normal ontogeny of vascular tissues in the intact plant sufficiently that these systems could be used to investigate the relationship between cell differentiation and auxin transport.  相似文献   

4.
Roni Aloni 《Planta》1980,150(3):255-263
The differentiation of sieve and tracheary elements was studied in callus culture of Daucus carota L., Syringa vulgaris L., Glycine max (L.) Merr., Helianthus annuus L., Hibiscus cannabinus L. and Pisum sativum L. By the lacmoid clearing technique it was found that development of the phloem commenced before that of the xylem. In not one of the calluses was differentiation of tracheary elements observed in the absence of sieve elements. The influence of indole-3-acetic acid (IAA) and sucrose was evaluated quantitatively in callus of Syringa, Daucus and Glycine. Low IAA levels resulted in the differentiation of sieve elements with no tracheary cells. High levels resulted in that of both phloem and xylem. IAA thus controlled the number of sieve and tracheary elements, increase in auxin concentration boosting the number of both cell types. Changes in sucrose concentration, while the IAA concentration was kept constant, did not have a specific effect on either sieve element differentiation, or on the ratio between phloem and xylem. Sucrose did, however, affect the quantity of callose deposited on the sieve plates, because increase in the sucrose concentration resulted in an increase in the amount of callose. It is proposed that phloem is formed in response to auxin, while xylem is formed in response to auxin together with some added factor which reaches it from the phloem.  相似文献   

5.
Interruption of the vascular bundles of Zinnia internodes induced transdifferentiation of cells into tracheary elements (TEs) or sieve elements (SEs) within 4 d of wounding. The early stage of the regeneration processes was analyzed using two molecular marker genes, TED3 and ZeHB3, which are expressed specifically in TE precursor cells and immature phloem cells, respectively. An increase in the numbers of TED3 and ZeHB3 mRNA-expressing cells always preceded an increase in the numbers of TEs and SEs formed. The earliest sign of vascular differentiation was the appearance 24 h after wounding of a layer(s) of TED3 mRNA-expressing cells in the inter- and intrafascicular cambial-like regions along the severed vascular bundles. In contrast, the number of ZeHB3 mRNA-expressing cells decreased dramatically along the severed bundles 24 h after wounding, and increased again 36 h after wounding. These results clearly indicate that xylem and phloem differentiation are not synchronized during vascular regeneration. Treatment with 10(-3) M colchicine abolished the expression of ZeHB3 mRNA in pith parenchyma, but not TED3 mRNA; this suggests that cell division is a prerequisite for the transdifferentiation of pith parenchymal cells into immature phloem cells expressing ZeHB3. In contrast, transdifferentiation of pith parenchymal cells to TE precursor cells does not require preceding cell division. However, the inhibition of cell division prevented the formation of both radial files of TEs and the cambial-like layer(s) of TED3 mRNA-expressing cells, and, ultimately, vascular regeneration altogether. These results imply that wound-induced cambial-like activity in and between severed vascular bundles is essential for vascular regeneration.  相似文献   

6.
空心莲子草茎的解剖结构对不同水湿生境的适应研究   总被引:35,自引:1,他引:34  
研究了空心莲子草茎的解剖结构对水分变化的适应,这些空心莲子草生活在因水分差异而形成的3种生境类型中。对茎表蜡质层厚度、髓腔面积/髓部面积、厚角细胞层数、厚角细胞壁厚、韧皮纤维束数、韧皮纤维壁厚、导管束数、导管腔大小8个结构参数的分析结果表明:茎的全部结构参数随水分条件的变化都有显著或极显著的差异,其趋异程度的大小顺序是,导管腔大小>厚角细胞壁厚>蜡质层厚度>髓腔面积/髓面积>韧皮纤维细胞壁厚>韧皮纤维束数>厚角细胞层数>导管束数;水分变化对机械组织细胞壁结构影响较大,而对细胞数量的影响较小;茎的结构在旱生生境中变异较大,保证了它对不均一环境的适应;空心莲子草茎的结构既具有旱生性特点又具有水生性特点,其结构究竟朝哪个方向发展,取决于环境水分条件。从茎的结构上看,治理该种应以限制其导管腔和髓腔分化为主要手段。  相似文献   

7.
The mechanism of phloem loading in rice (Oryza sativa)   总被引:1,自引:0,他引:1  
Carbohydrates, mainly sucrose, that are synthesized in source organs are transported to sink organs to support growth and development. Phloem loading of sucrose is a crucial step that drives long-distance transport by elevating hydrostatic pressure in the phloem. Three phloem loading strategies have been identified, two active mechanisms, apoplastic loading via sucrose transporters and symplastic polymer trapping, and one passive mechanism. The first two active loading mechanisms require metabolic energy, carbohydrate is loaded into the phloem against a concentration gradient. The passive process, diffusion, involves equilibration of sucrose and other metabolites between cells through plasmodesmata. Many higher plant species including Arabidopsis utilize the active loading mechanisms to increase carbohydrate in the phloem to higher concentrations than that in mesophyll cells. In contrast, recent data revealed that a large number of plants, especially woody species, load sucrose passively by maintaining a high concentration in mesophyll cells. However, it still remains to be determined how the worldwide important cereal crop, rice, loads sucrose into the phloem in source organs. Based on the literature and our results, we propose a potential strategy of phloem loading in rice. Elucidation of the phloem loading mechanism should improve our understanding of rice development and facilitate its manipulation towards the increase of crop productivity.  相似文献   

8.
9.
Axial and radial transport and the accumulation of photoassimilates in carrot taproot were studied using 14C labelling and autoradiography. Axial transport of the 14C labelled assimilates inside the taproot was rapid and occurred mainly in the young phloem found in rows radiating from the cambium. The radial transport of the assimilate inward (to cambium, xylem zone and pith) and outward (to phloem zone and periderm) from the conducting phloem was an order of magnitude slower than the longitudinal transport and was probably mainly diffusive. The cambial zone of the taproot presented a partial barrier in the inward path of the assimilate to the xylem zone. We suggest that this is due to the cambium comprising a strong sink for the assimilate on the basis that our previous work has shown that it contains very low concentrations of free sucrose. By contrast, a high accumulation of nonsoluble 14C was found in the cambium region in good agreement with the active growth of this zone. Autoradiography following the feeding of 14C labelled sugars to excised sections of taproot indicated that only a ring of cells at and/or just within the cambium take up sugars from the apoplast. This indicates that radial movement in the phloem and pith must be symplastic. An apoplastic step between phloem and xylem is possible. The rapid uptake of sugars from the apoplast at this point might represent a mechanism for keeping photoassimilates away from the transpiration stream and re-location back to the leaves.  相似文献   

10.
Nadwodnik J  Lohaus G 《Planta》2008,227(5):1079-1089
Sugar and sugar alcohol concentrations were analyzed in subcellular compartments of mesophyll cells, in the apoplast, and in the phloem sap of leaves of Plantago major (common plantain), Plantago maritima (sea plantain), Prunus persica (peach) and Apium graveolens (celery). In addition to sucrose, common plantain, sea plantain, and peach also translocated substantial amounts of sorbitol, whereas celery translocated mannitol as well. Sucrose was always present in vacuole and cytosol of mesophyll cells, whereas sorbitol and mannitol were found in vacuole, stroma, and cytosol in all cases except for sea plantain. The concentration of sorbitol, mannitol and sucrose in phloem sap was 2- to 40-fold higher than that in the cytosol of mesophyll cells. Apoplastic carbohydrate concentrations in all species tested were in the low millimolar range versus high millimolar concentrations in symplastic compartments. Therefore, the concentration ratios between the apoplast and the phloem were very strong, ranging between 20- to 100-fold for sorbitol and mannitol, and between 200- and 2000-fold for sucrose. The woody species, peach, showed the smallest concentration ratios between the cytosol of mesophyll cells and the phloem as well as between the apoplast and the phloem, suggesting a mixture of apoplastic and symplastic phloem loading, in contrast to the herbal plant species (common plantain, sea plantain, celery) which likely exhibit an active loading mode for sorbitol and mannitol as well as sucrose from the apoplast into the phloem.  相似文献   

11.
Sodium fluxes in sweet pepper exposed to varying sodium concentrations   总被引:7,自引:1,他引:6  
The sodium transport and distribution of sweet pepper (Capsicum annuum L.) under saline conditions were studied after transferring the plants to a sodium-free nutrient solution. Sodium stress up to 60 mM did not affect the growth of sweet pepper, as it appears able to counteract the unfavourable physiological effects of sodium efficiently. Sodium was particularly accumulated in the basal pith cells of the stem and in the root cells, while almost no sodium was directed to the leaves or the fruits. The sodium concentration in the pith cells and xylem sap gradually decreased towards the shoot tip. Removal of sodium from the medium resulted in a 50% release of sodium from the plant after 1 week without affecting the gradient in the pith cells. In contrast, the concentration profile in the xylem sap was completely changed: the sodium concentration in the xylem sap at the stem base was similar to that at the top.Phloem transport was studied in a split root experiment, in which both portions of the roots were exposed to 15 mM NaCl and one part was fed with additional 22NaCl. During continuous exposure to 15 mM NaCl no label was detected in unlabelled root parts. However, after transferring the plants to a sodium-free solution, 22Na was rapidly released from the unlabelled roots, indicating a downward phloem transport.It was concluded that pith cells, the intermediates between the xylem and phloem, play a decisive role in the recirculation of sodium throughout the plant. Release of sodium from the plants following transfer to a sodium-free solution may be explained by changes in the diffusion resistance for passive sodium efflux from the cells.Key words: Xylem, phloem, sodium, fluxes, sweet pepper   相似文献   

12.
The concentrations of sucrose, amino acids, nitrate and malate in the apoplastic compartment of illuminated leaves of barley and spinach were determined and compared with the corresponding concentrations in the cytosolic compartment of mesophyll cells and in the phloem sap, as measured previously with plants grown under identical conditions. The concentrations of sucrose and amino acids in the apoplast are found to be much lower than in the cytosol and in the phloem sap, indicating that not only the uptake into the phloem of sucrose, but also of amino acids, requires transport against a concentration gradient. The gradient of sucrose and amino acids between the cytosol and the apoplast was maintained when phloem transport had been blocked by cold girdling. Apparently, the efflux of sucrose and amino acids from the source cells to the apoplast is regulated in such a way that it meets the requirements of phloem transport. The percentages of the single amino acids as part of the total amino acids are quite similar in the cytosol, apoplast and phloem sap. The ratio of sucrose to the total amino acids in the cytosol is similar to that in the apoplast but about five times higher in the phloem sap. It appears from these results that the preferential extraction of sucrose over amino acids from the source cells to the phloem is due to the uptake from the apoplast into the phloem.  相似文献   

13.
DUNCAN  E. J. 《Annals of botany》1973,37(5):981-985
The stem of Ipomoea batatas (L.) Lam. is characterized by thepossession of a ring of bicollateral, leaftrace bundles. Lacticifersoccur in the pith, in the parenchyma between neighbouring islandsof medullary phloem, and in the cortex. The xylem groups become united by the activity of the inter-fascicularcambium. The production of a certain amount of secondary xylemtakes place before the production of secondary phloem begins.The former is produced more extensively in some areas than inothers, so that the original symmetry of the vascular cylinderis lost. The phellogen originates in the cells of the epidermis. When the stem is attacked by the larvae of Megastes grandalisGuen., which remove most of the internal tissues, anomalousgrowth takes place as a result of the activity of accessorycambia, which develop in the primary cortex, the secondary phloem,and the phelloderm. Residual parenchyma of the pith and/or xylemundergoes hyperplasia to produce a callus tissue which linesthe cavity made by the larvae.  相似文献   

14.
To determine the driving forces for symplastic sugar flux between mesophyll and phloem, gradients of sugar concentrations and osmotic pressure were studied in leaf tissues of two Scrophulariaceae species, Alonsoa meridionalis and Asarina barclaiana. A. meridionalis has a typical symplastic configuration of minor-vein phloem, i.e. intermediary companion cells with highly developed plasmodesmal connections to bundle-sheath cells. In A. barclaiana, two types of companion cells, modified intermediary cells and transfer cells, were found in minor-vein phloem, giving this species the potential to have a complex phloem-loading mode. We identified all phloem-transported carbohydrates in both species and analyzed the levels of carbohydrates in chloroplasts, vacuoles, and cytoplasm of mesophyll cells by nonaqueous fractionation. Osmotic pressure was measured in single epidermal and mesophyll cells and in whole leaves and compared with calculated values for phloem sap. In A. meridionalis, a 2-fold concentration gradient for sucrose between mesophyll and phloem was found. In A. barclaiana, the major transported carbohydrates, sucrose and antirrhinoside, were present in the phloem in 22- and 6-fold higher concentrations, respectively, than in the cytoplasm of mesophyll cells. The data show that diffusion of sugars along their concentration gradients is unlikely to be the major mechanism for symplastic phloem loading if this were to occur in these species. We conclude that in both A. meridionalis and A. barclaiana, apoplastic phloem loading is an indispensable mechanism and that symplastic entrance of solutes into the phloem may occur by mass flow. The conditions favoring symplastic mass flow into the phloem are discussed.  相似文献   

15.
Anthraquinones were histochemically locayed and content were determined in rhizome of Polygonum cuspidatum. Anthraquinones were located in the parenchyma cells of rhizome, including vascular ray, part of parenchyma cell in phloem, cortex and pith. Phelloderm and ray initial also accumulated a small amount anthraquinones. The content of total anthraquinones was highest in pith that consisted of parenchyma cells, and higher in bark (including phloem, cortex and periderm) than in xylem. The content of total anthraquinones was highest in three-year-old rhizome, and higher in biennial rhizome than in annual rhizome. It suggests that correlation exist between accumulation of anthraquinones and the growth age of rhizome.  相似文献   

16.
Apoplastic phloem loaders have an apoplastic step in the movement of the translocated sugar, prototypically sucrose, from the mesophyll to the companion cell-sieve tube element complex. In these plants, leaf apoplastic sucrose becomes concentrated in the guard cell wall to nominally 150 mM by transpiration during the photoperiod. This concentration of external sucrose is sufficient to diminish stomatal aperture size in an isolated system and to regulate expression of certain genes. In contrast to apoplastic phloem loaders and at the other extreme, strict symplastic phloem loaders lack an apoplastic step in phloem loading and mostly transport raffinose family oligosaccharides (RFOs), which are at low concentrations in the leaf apoplast. Here, the effects of the phloem-loading mechanism and associated phenomena on the immediate environment of guard cells are reported. As a first step, carbohydrate analyses of phloem exudates confirmed basil (Ocimum basilicum L. cv. Minimum) as a symplastic phloem-loading species. Then, aspects of stomatal physiology of basil were characterized to establish this plant as a symplastic phloem-loading model species for guard cell research. [(14)C]Mannitol fed via the cut petiole accumulated around guard cells, indicating a continuous leaf apoplast. The (RFO+sucrose+hexoses) concentrations in the leaf apoplast were low, <0.3 mM. Neither RFOs (<10 mM), sucrose, nor hexoses (all, P >0.2) were detectable in the guard cell wall. Thus, differences in phloem-loading mechanisms predict differences in the in planta regulatory environment of guard cells.  相似文献   

17.
Metabolites and enzyme activities were measured in the phloem sap exuding from a cut hypocotyl of germinating castor-bean (Ricinus communis L.) seedlings. The sap contained considerable quantities of adenine nucleotides, uridine nucleotides, uridine diphosphoglucose (UDPGlc), all the major phosphorylated metabolites required for glycolysis, fructose-2,6-bisphosphate and pyrophosphate. Supplying 200 mM glucose instead of sucrose to the cotyledons resulted in high concentrations of glucose in the sap, but did not modify the metabolite levels. In contrast, when 200 mM fructose was supplied we found only a low level of fructose but a raised sucrose concentration in the sap, which was accompanied by a three-to fourfold decrease of UDPGlc, and an increase of pyrophosphate, UDP and UTP. The measured levels of metabolites are used to estimate the molar mass action ratios and in-vivo free-energy change associated with the various reactions of sucrose breakdown and glycolysis in the phloem. It is concluded that the reactions catalysed by ATP-dependent phosphofructokinase and pyruvate kinase are removed from equilibrium in the phloem, whereas the reactions catalysed by sucrose synthase, UDPGlc-pyrophosphorylase, phosphoglucose mutase, phosphoglucose isomerase, aldolase, triose-phosphate isomerase, phosphoglycerate mutase and enolase are close to equilibrium within the conducting elements of the phloem. Since the exuded sap contained negligible or undetectable activities of the enzymes, it is concluded, that the responsible proteins are bound, or sequesterd behind plasmodesmata, possibly in the companion cells. It is argued that sucrose mobilisation via a reversible reaction catalysed by sucrose synthase is particularily well suited to allow the rate of sucrose breakdown in the phloem to respond to changes in the metabolic requirement for ATP, and for UDPGlc during callose production. It is also calculated that the transport of nucleotides in the phloem sap implies that there must be a very considerable uptake or de-novo biosynthesis of these cofactors in the phloem.  相似文献   

18.
Summary Autoradiographic and microautoradiographic studies of 2-year-old Picea abies plants show that in summer leaf assimilates from the second-year shoot are translocated basipetally. Leaf assimilates are first transported to the stem via leaf trace phloem, then to the base of the stem in the sieve cells of the latest increment of secondary phloem. On the way down leaf assimilates move radially from sieve cells into cells of the phloem parenchyma, the vascular cambium, the rays, the inner periderm and certain cells of pith and cortex, including the epithelial cells surrounding the resin ducts. Other cells of pith and cortex remain nearly free of label, despite the long translocation time (20 h). With the exception of the vascular cambial cells, the stem cells that gain leaf assimilates by radial distribution coincide with those that contain chlorophyll and starch.  相似文献   

19.
翅果油树茎段愈伤组织和芽发生的组织学研究   总被引:4,自引:0,他引:4  
陈惠  白新生   《广西植物》1998,(2):157-159
本文对翅果油树大宫灯型茎段培养在MS附加6-BA较高、NAA较低浓度的培养基上培养0~30d的组织学变化进行了研究。创伤对其愈伤组织的形成有明显的刺激作用,培养3~4d切口处的皮层细胞、形成层细胞、韧皮部薄壁细胞以及髓组织细胞,甚至表皮细胞均脱分化开始分裂;培养8~11d,切口明显膨大,起源于髓及维管组织周围薄壁细胞的愈伤组织突起大;培养12~20d愈伤组织块中出现了分生组织和维管组织结节;培养21~30d,愈伤组织表层和近表层细胞分化出芽原基,但与维管组织结节无直接联系。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号