首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
苏德毕力格  萨仁  周禾  王培 《生态学报》2001,21(7):1104-1108
从种子库,幼苗和种子雨等方面对亚热带山地草地退化系列上5种植物的种群更新进行了研究,结果表明:(1)引入种多年生黑麦草(Lolium perenne)和白三叶(Trifolium repens)种群在轻度和中度退化条件下能够正常更新,但不能忍受草地进一步的退化;(2)本地种对草地退化的胁迫表现出较强的承受能力。簇生卷耳(Cerastium caespitosum)、箭叶蓼(Polygonum sagittatum)和华蒲公英(Taraxacum sinicum)的种群更新分别在中度、重度和极度退化草地上处于最佳状态;(3)若要防治草地退化,就应当地引入种的种群更新受到抑制时采取有效措施。  相似文献   

2.
Uptake of Si by five plant species,as influenced by variations in Si-supply   总被引:1,自引:0,他引:1  
Summary For 5 plant species it was investigated whether or not the uptake of Si proceeds metabolically. A gradual transition was found from metabolic absorption to metabolic exclusion, depending on the Si concentration in the culture solution. Absorption of Si increased in the order soybean, sunflower, wheat, sugarcane, rice.  相似文献   

3.
Seven plant species including three chenopods:Suaeda fruticosa, Kochia indica, Atriplex crassifolia and four grasses:Sporobolus arabicus, Cynodon dactylon, Polypogon monspeliensis, Desmostachya bipinnata, varied greatly in their seed germination and growth responses to soil moisture or salinity. The germination percentage of each species was significantly lower at soil moisture level of 25 % of water holding capacity than at the levels ranging from 50 to 125 %. Increase in salinity resulted in gradual decrease in seed germination of each species. Growth responses of species to salinity varied widely from significant decrease with slight salinity to stimulation up to salinity levels of 20 dS m-2. Higher K+Na+ratios in plant shoots of all species compared to that in the root medium indicated selective K+uptake. Higher tolerance in chenopod species seems to be attendant on their ability for internal ion regulation. We are thankful to Mr. Noor Ahmad for his assistance in experimental work.  相似文献   

4.
In terrestrial ecosystems, atmospheric nitrogen (N) deposition has greatly increased N availability relative to other elements, particularly phosphorus (P). Alterations in the availability of N relative to P can affect plant growth rate and functional traits, as well as resource allocation to above‐ versus belowground biomass (MA and MB). Biomass allocation among individual plants is broadly size‐dependent, and this can often be described as an allometric relationship between MA and MB, as represented by the equation , or log MA = logα + βlog MB. Here, we investigated whether the scaling exponent or regression slope may be affected by the N:P supply ratio. We hypothesized that the regression slope between MA and MB should be steeper under a high N:P supply ratio due to P limitation, and shallower under a low N:P supply ratio due to N limitation. To test these hypotheses, we experimentally altered the levels of N, P, and the N:P supply ratio (from 1.7:1 to 135:1) provided to five alpine species representing two functional groups (grasses and composite forbs) under greenhouse conditions; we then measured the effects of these treatments on plant morphology and tissue content (SLA, leaf area, and leaf and root N/P concentrations) and on the scaling relationship between MA and MB. Unbalanced N:P supply ratios generally negatively affected plant biomass, leaf area, and tissue nutrient concentration in both grasses and composite forbs. High N:P ratios increased tissue N:P ratios in both functional groups, but more in the two composite forbs than in the grasses. The positive regression slopes between log MA and log MB exhibited by plants raised under a N:P supply ratio of 135:1 were significantly steeper than those observed under the N:P ratio of 1.7:1 and 15:1. Synthesis: Plant biomass allocation is highly plastic in response to variation in the N:P supply ratio. Studies of resource allocation of individual plants should focus on the effects of nutrient ratios as well as the availability of individual elements. The two forb species were more sensitive than grasses to unbalanced N:P supplies. To evaluate the adaptive significance of this plasticity, the effects of unbalanced N:P supply ratio on individual lifetime fitness must be measured.  相似文献   

5.
There are several studies in the literature dealing with the effect of metal-humic complexes on plant metal uptake, but none of them correlate the physicochemical properties of the complexes with agronomic results. Our study covers both aspects under various experimental conditions. A humic extract (SHE) obtained from a sapric peat was selected for preparing the metal–humic complexes used in plant experiments. Fe–, Zn– and Cu–humic complexes with a reaction stoichiometry of 2:0.25 (humic:metal, w/w) were chosen after studying their stability and solubility with respect to pH (6–9) and the humic:metal reaction stoichiometry. Wheat and alfalfa plants were greenhouse cultured in pots containing one of three model soils: an acid, sandy soil and two alkaline, calcareous soils. Treatments were: control (no additions), SHE (53 mg kg–1 of SHE), and metal (Cu, Zn and Fe)–SHE complexes (2.5 and 5 mg kg–1 of metal rate and a SHE concentration to make 53 mg kg –1). Cu- and Zn–humic complexes significantly (p0.05) increased the plant uptake and the DTPA-extractable soil fraction of complexed micronutrients in most plant–soil systems. However, these effects were associated with significant increases (p0.05) of shoot and root dry weight only in alfalfa plants. In wheat, significant increases of root and shoot dry matter were only observed in the Cu–humic treated plants growing in the acid soil, where Cu deficiency was more intense. The Fe–humic complex did not increase Fe plant assimilation in any plant–soil system, but SHE increased Fe-uptake and/or DTPA-extractable soil Fe in the wheat–calcareous soil systems. These results, taken together with those obtained from the study of the pH- and SHE:metal ratio-dependent SHE complex solubility and stability, highlight the importance of the humic:Fe complex stoichiometry on iron bioavailability as a result of its influence on complex solubility.  相似文献   

6.
模拟人工湿地中植物多样性配置对硝态氮去除的影响   总被引:1,自引:0,他引:1  
为检验植物多样性对人工湿地脱氮功能的影响,在模拟人工湿地试验系统中设置了植物单种和混种处理并定期供给氮形态仅为硝态氮的模拟污水。结果表明:混种系统的出水硝态氮浓度显著低于单种(P<0.05);混种与单种系统在基质氮含量和植物氮积累量上无统计差异;质量平衡分析表明混种促进系统反硝化强度;菩提子单种系统中的硝态氮移除能力显著高于香蒲、芦苇和菖蒲单种系统,后3种硝态氮移除能力则无显著差异。本研究可为人工湿地选择高效物种、多样性配置以提高氮去除率提供依据。  相似文献   

7.
Availability of fluoride to plants grown in contaminated soils   总被引:11,自引:0,他引:11  
Two pot experiments were carried out to study uptake of fluoride (F) in clover and grasses from soil. Fluoride concentrations in t Trifolium repens (white clover) and t Lolium multiflorium (ryegrass) were highly correlated with the amounts of H2O– and 0.01 t M CaCl2–extractable F in soil when increasing amounts of NaF were added to two uncontaminated soils (r=0.95–0.98, t p<0.001). The amounts of H2O– or 0.01 t M CaCl2–extractable F did not explain the F concentrations to a similar extent in t Agrostis capillaris (common bent) grown in 12 soils (Cambic Arenosols) collected from areas around the Al smelters at Å: rdal and Sunndal in Western Norway (r=0.68–0.78). This may be due to variation in soil pH and other soil properties in the 12 soils. Soil extraction with 1 t M HCl did not estimate plant–available F in the soil as well as extraction with H2O or 0.01 t M CaCl2. Fluoride and Al concentrations in the plant material were positively correlated in most cases. Fluoride and Ca concentrations in the plant material were negatively correlated in the first experiment. No consistent effects were found on the K or Mg concentrations in the plant material. The F accumulation in clover was higher than in the grasses. The uptake from soil by grasses was relatively low compared to the possible uptake from air around the Al smelters. The uptake of F in common bent did not exceed the recommended limit for F contents in pasture grass (30 mg kg–1) from soil with 0.5–28 mg F(H2O) kg–1 soil. The concentration in ryegrass was about 50 mg F kg–1 when grown in a highly polluted soil (28 mg F(H2O) kg–1 soil). Concentrations in clover exceeded 30 mg F kg–1 even in moderately polluted soil (1.3–7 mg F(H2O) kg–1 soil). Liming resulted in slightly lower F concentrations in the plant material.  相似文献   

8.
Temporal variations in plant production, plant P and some soil P (and N) pools were followed over 21 months in two New Zealand pasture soils of widely different P fertility status. Plant growth rates, and herbage composition at the high-fertility site, were closely linked to soil water use, with growth rates falling when soil water deficits exceeded 60 mm. Herbage P concentrations reflected P fertility, and varied with season, being generally higher in winter and lower in summer. A similar temporal pattern was also observed for labile organic P (NaHCO3-extractable P0) in both soils. In the low-fertility soil in spring, net mineralization was especially strong, but from early winter net immobilization occurred. Surprisingly, Olsen P also changed temporally in the high-fertility soil. The microbial biomass remained fairly constant throughout the year, whereas the P content of the biomass varied seasonally. Although microbial biomass was not a useful index of soil fertility, highest microbial P0 contents coincided with periods of maximum labile P0 mineralization, when herbage production was also at a peak. Net N-mineralization in the low-fertility soil, in contrast to the high-fertility soil, was low but varied seasonally, under standardised incubation conditions. Soil P and N dynamics were apparently synchronised in the low-fertility soil through soil microbial processes, with mineral N being negatively correlated with microbial P0 in samples collected two months later. The results of this investigation suggest that the demands of rapid and sustained pasture growth in spring and early summer can best be met by maximising the build-up of organic matter during the preceding autumn and winter. This practice could help to alleviate the common problem of feed shortage in North Island hill country pastures in late winter-early spring.  相似文献   

9.
10.
The effect of botanical diversity on supply of polyunsaturated fatty acids (PUFA) to ruminants in vitro, and the fatty acid (FA) composition of muscle in lambs was investigated. Six plant species, commonly grown as part of UK herbal ley mixtures (Trifolium pratense, Lotus corniculatus, Achillea millefolium, Centaurea nigra, Plantago lanceolata and Prunella vulgaris), were assessed for FA profile, and in vitro biohydrogenation of constituent PUFA, to estimate intestinal supply of PUFA available for absorption by ruminants. Modelling the in vitro data suggested that L. corniculatus and P. vulgaris had the greatest potential to increase 18:3n-3 supply to ruminants, having the highest amounts escaping in vitro biohydrogenation. Biodiverse pastures were established using the six selected species, under-sown in a perennial ryegrass-based sward. Lambs were grazed (~50 days) on biodiverse or control pastures and the effects on the FA composition of musculus longissimus thoracis (lean and subcutaneous fat) and musculus semimembranosus (lean) were determined. Biodiverse pasture increased 18:2n-6 and 18:3n-3 contents of m. semimembranosus (+14.8 and +7.2 mg/100 g tissue, respectively) and the subcutaneous fat of m. longissimus thoracis (+158 and +166 mg/100 g tissue, respectively) relative to feeding a perennial ryegrass pasture. However, there was no effect on total concentrations of saturated FA in the tissues studied. It was concluded that enhancing biodiversity had a positive impact on muscle FA profile reflected by increased levels of total PUFA.  相似文献   

11.
12.
Phosphorus (P) is an essential macro‐nutrient required for plant metabolism and growth. Low P availability could potentially limit plant responses to elevated carbon dioxide (eCO2), but consensus has yet to be reached on the extent of this limitation. Here, based on data from experiments that manipulated both CO2 and P for young individuals of woody and non‐woody species, we present a meta‐analysis of P limitation impacts on plant growth, physiological, and morphological response to eCO2. We show that low P availability attenuated plant photosynthetic response to eCO2 by approximately one‐quarter, leading to a reduced, but still positive photosynthetic response to eCO2 compared to those under high P availability. Furthermore, low P limited plant aboveground, belowground, and total biomass responses to eCO2, by 14.7%, 14.3%, and 12.4%, respectively, equivalent to an approximate halving of the eCO2 responses observed under high P availability. In comparison, low P availability did not significantly alter the eCO2‐induced changes in plant tissue nutrient concentration, suggesting tissue nutrient flexibility is an important mechanism allowing biomass response to eCO2 under low P availability. Low P significantly reduced the eCO2‐induced increase in leaf area by 14.3%, mirroring the aboveground biomass response, but low P did not affect the eCO2‐induced increase in root length. Woody plants exhibited stronger attenuation effect of low P on aboveground biomass response to eCO2 than non‐woody plants, while plants with different mycorrhizal associations showed similar responses to low P and eCO2 interaction. This meta‐analysis highlights crucial data gaps in capturing plant responses to eCO2 and low P availability. Field‐based experiments with longer‐term exposure of both CO2 and P manipulations are critically needed to provide ecosystem‐scale understanding. Taken together, our results provide a quantitative baseline to constrain model‐based hypotheses of plant responses to eCO2 under P limitation, thereby improving projections of future global change impacts.  相似文献   

13.
Radka Sudová 《Plant Ecology》2009,204(1):135-143
Five species of stoloniferous plants originating from the same field site (Galeobdolon montanum, Glechoma hederacea, Potentilla anserina, Ranunculus repens and Trifolium repens) were studied with respect to their interaction with arbuscular mycorrhizal (AM) fungi. More specifically, the question was addressed whether mycorrhizal growth response of host plant species could be related to their vegetative mobility. The roots of all the species examined were colonised with AM fungi in the field, with the percentage of colonisation varying among species from approximately 40% to 90%. In a subsequent pot experiment, plants of all the species were either left non-inoculated or were inoculated with a mixture of three native AM fungi isolated from the site of plant origin (Glomus mosseae, G. intraradices and G. microaggregatum). AM fungi increased phosphorus uptake in all the plant species; however, plant growth response to inoculation varied widely from negative to positive. In addition to the biomass response, AM inoculation led to a change in clonal growth traits such as stolon number and length or ramet number in some species. Possible causes of the observed differences in mycorrhizal growth response of various stoloniferous plants are discussed.  相似文献   

14.
几种牧草幼苗对冷蒿茎叶水浸提液化感作用的生理响应   总被引:7,自引:0,他引:7  
张汝民  王玉芝  侯平  温国胜  高岩 《生态学报》2010,30(8):2191-2204
采用沙培法对草木樨、披碱草、冰草和羊草进行幼苗生长试验,研究了不同浓度冷蒿茎叶水浸提液处理对4种牧草幼苗生长、根系活力、叶绿素含量以及抗氧化保护酶活性的影响,并采用气相色谱-质谱(GC-MS)联用技术对冷蒿茎叶水浸提液的化学成分进行了分析。结果表明:冷蒿茎叶水浸提液对草木樨、披碱草、冰草和羊草4种牧草幼苗生长有明显的影响,这种影响效应与牧草的种类及冷蒿茎叶水浸提液浓度显著相关。其中,25mgDw·mL-1的冷蒿茎叶水浸提液均表现出对4种牧草幼苗生长指标有极显著的抑制作用(P0.01),4种牧草幼苗根系活力分别降低了46.7%、65.9%、59.3%和66.7%,草木樨、披碱草和羊草幼苗叶绿素含量分别下降了47.3%、56.6%和46.7%。当冷蒿茎叶水浸提液浓度为10mgDw·mL-1时,对4种牧草幼苗体内超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性有显著的促进作用;当浓度为25mgDw·mL-1时,对4种牧草幼苗体内SOD、POD和CAT活性有显著的抑制作用,同时使幼苗体内丙二醛(MDA)的含量显著增加。冷蒿茎叶水浸提液有30种化感类次生代谢化合物,主要成分是樟脑(27.6%)、龙脑(10.1%)、蓍草苦素(9.8%)、桉树脑(8.7%)、喇叭烯醇(4.1%)和对-1-薄荷烯-4-醇(4.1%),占总量的60%以上。  相似文献   

15.
Abstract. The process of colonization of cattle dung patches and its relation to endozoochorous dispersal is analysed in a Mediterranean pasture. Dung pats dropped in spring and winter were marked, and the vegetation developing on them during the first two years of colonization was followed. The influence of endozoochorous seeds on dung colonization is assessed through the study of: (1) the vegetation on spring and winter dung pats and the seed contents of both, which is abundant in the former and negligible in the latter; and (2) the vegetation on spring dung pats compared with that of the surrounding pasture. The origin of plants growing on dung (either seeds in the manure or in the soil seed bank) was traced by studying dung colonization under controlled conditions in pots with manure put on seed-free sand, and on pasture turf. The results indicate that endozoochorous seeds germinate in manure; they are the main source of recovery in gaps generated by dung pats. The micro-succession involved is independent of the type of pasture. A small-scale spatial pattern results in which gaps of old dung are dominated by endozoochorous species. Thus, dung patches enhance the similarity between grazed communities, and the variation within communities.  相似文献   

16.
Arsenic and fluoride are potent toxicants, widely distributed through drinking water and food and often result in adverse health effects. The present study examined the effects of sodium meta-arsenite (100 mg/l in drinking water) and sodium fluoride (5 mg/kg, oral, once daily), administered either alone or in combination for 8 weeks, on various biochemical variables indicative of tissue oxidative stress and cell injury in Swiss albino male mice. A separate group was first exposed to arsenic for 4 weeks followed by 4 weeks of fluoride exposure. Exposure to arsenic or fluoride led to a significant depletion of blood delta-aminolevulinic acid dehydratase (ALAD) activity and glutathione (GSH) level. These changes were accompanied by increased level of blood and tissues reactive oxygen species (ROS) level. An increase in the level of liver and kidney thiobarbituric acid reactive substance (TBARS) along with a concomitant decrease in the activities of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) and reduced GSH content were observed in both arsenic and fluoride administered mice. The changes were significantly more pronounced in arsenic exposed animals than in fluoride. It was interesting to observe that during combined exposure the toxic effects were less pronounced compared to the effects of arsenic or fluoride alone. In some cases antagonistic effects were noted following co-exposure to arsenic and fluoride. Arsenic and fluoride concentration increased significantly on exposure. Interestingly, their concentration decreased significantly on concomitant exposure for 8 weeks. However, the group which was administered arsenic for 4 weeks followed by 4 weeks of fluoride administration showed no such protection suggesting that the antagonistic effect of fluoride on arsenic or vice versa is possible only during interaction at the gastro intestinal sites. These results are new and interesting and require further exploration.  相似文献   

17.
Studies have shown that weed invasion into grasslands may be suppressed if the resident plant community is sufficiently diverse. The objective of this study was to determine whether increased forage plant diversity in grazed pasture communities might be associated with reduced weed abundance both in the aboveground vegetation and soil seed bank. Data were collected from a pasture experiment established in 1994 in Missouri, USA. The experiment consisted of 15 m×15 m plots sown with Festuca arundinacea Schreb. or Bromus inermis Leysser as a base species in mixtures of 1, 2, 3, 6, or 8 forage species. The plots were grazed by cattle during each growing season from 1998 to 2002. Aboveground plant species composition in each plot was measured using a point step method. Soil cores were collected in 1999 and 2002, and the species composition of germinable weed seeds in plots were evaluated by identifying seedlings as they germinated over an 8-week period. Species diversity was measured using several indices: species richness (S), Shannon–Wiener diversity index (H), and forage species evenness (J). Aboveground weed abundance in plots was unrelated to forage species richness (S), but weed abundance declined as the evenness (J) of resident forage species increased in mixtures. The species composition of mixtures may have affected weed abundance. Weeds both in the soil seed bank and aboveground vegetation were less abundant in mixtures that contained F. arundinacea compared with mixtures that contained B. inermis. Although variables like forage plant productivity may also suppress weed abundance in pastures, our results suggest that maintaining an evenly distributed mixture of forage species may help suppress weeds as well.

Zusammenfassung

Untersuchungen haben gezeigt, dass die Unkrautinvasion in Grünländer unterdrückt sein kann, wenn die ansässige Pflanzengemeinschaft ausreichend divers ist. Die Zielsetzung dieser Untersuchung war es zu bestimmen, ob eine erhöhte Futterpflanzendiversität in beweideten Grünlandgemeinschaften mit einer verringerten Unkrautabundanz sowohl bei der oberirdischen Vegetation als auch in der Bodensamenbank verbunden sein kann. Die Daten wurden in einem Weidelandexperiment gesammelt, das 1994 in Missouri, USA, etabliert wurde. Das Experiment bestand aus 15 m×15 m Probeflächen, die mit Festuca arundinacea Schreb. oder Bromus inermis Leysser als Basisarten in Mischungen von 1, 2, 3, 6 oder 8 Futterarten eingesät waren. Die Probeflächen wurden während jeder Wachstumssaison von 1998 bis 2002 stark mit Vieh beweidet. Die oberirdische Pflanzenartenzusammensetzung wurde in jeder Fläche mit einer Punktstopmethode gemessen. Bodenproben wurden 1999 und 2002 gesammelt und die Artenzusammensetzung der keimfähigen Unkrautsamen wurde in den Probeflächen bewertet, indem die Keimlinge identifiziert wurden, die in einer 8-wöchigen Periode keimten. Die Artendiversität wurde unter Verwendung verschiedener Indizes gemessen: Artenreichtum (S), Shannon–Wiener-Diversitätsindex (H) und Futterarten-Äquitabilität (J). Die oberirdische Unkrautartenabundanz in den Probeflächen stand in keiner Beziehung zum Futterartenreichtum (S), aber die Unkrautabundanz nahm ab, wenn die Äquitabilität (J) der ansässigen Futterarten in den Mischungen zunahm. Die Artenzusammensetzung der Mischungen könnte die Unkrautabundanz beeinflusst haben. Sowohl die Unkräuter in der Bodensamenbank, als auch in der oberirdischen Vegetation waren weniger abundant in Mischungen, die F. arundinacea enthielten, im Vergleich zu denen, die B. inermis enthielten. Obgleich Variablen wie die Futterpflanzenproduktivität möglicherweise ebenfalls die Unkrautabundanz im Weideland unterdrücken, lassen unsere Ergebnisse vermuten, dass die Aufrechterhaltung einer gleichmäßigen Mischung von Futterarten ebenfalls helfen kann, die Unkräuter zu unterdrücken.  相似文献   

18.
张芳  宋敏  彭晚霞  曾馥平  杜虎 《广西植物》2017,37(6):707-715
该研究采用砂培法,以狗骨木(Swida wilsoniana)和南酸枣(Choerospondias axillaris)两种岩溶植物为研究对象,用不同钙离子(Ca~(2+))浓度(设为5、35、70、150、300 mmol·L~(-1)的5个水平)的营养液进行培养,研究其对两种植物的生长及酶活性的影响。结果表明:狗骨木和南酸枣的株高在5 mmol·L~(-1)时最大,之后随Ca~(2+)浓度上升呈下降趋势,南酸枣在300 mmol·L~(-1)时有所回升。两种植物的根、枝、叶生物量和总生物量随着Ca~(2+)浓度增加而减少。狗骨木叶、枝、根的生物量分配比率为根枝叶,南酸枣在35 mmol·L~(-1)时表现为根枝叶,其他在Ca~(2+)浓度下均为枝根叶,叶生物量分配少。狗骨木和南酸枣的丙二醛(MDA)含量在150 mmol·L~(-1)时最低,且狗骨木的低于南酸枣。钙胁迫下,与南酸枣相比,狗骨木维持较高的过氧化氢酶(CAT)活性和可溶性糖含量。两种植物在5和150 mmol·L~(-1)的Ca~(2+)浓度下各项指标处于较适水平,而在300 mmol·L~(-1)的高钙离子浓度下受到明显的胁迫,对比两种植物,狗骨木较南酸枣在高钙浓度下有更好的适应性。  相似文献   

19.
Extremely high nutrient loads have been reported in grazed grassland regimes compared with cutting regimes in some dairy systems that include the use of supplemental feeding. The aim of this study was, therefore, to investigate the effects on productivity and behaviour of high-yielding dairy cows with limited access to indoor feed and restriction in the time at pasture in a continuous stocking system. During a 6-week period from the start of the grazing season 2005, an experiment was conducted with the aim of investigating the effect of restrictive indoor feeding combined with limiting the time at pasture on the productivity and behaviour of high-yielding dairy cows (31.0 ± 5.4 kg energy-corrected milk) in a system based on continuous stocking. The herd was split into three groups allocated to three treatments consisting of 4, 6.5 and 9 h at pasture, respectively. Each group of cows grazed in separate paddocks with three replicates and was separately housed in a cubicle system with slatted floor during the rest of the day. All cows were fed the same amount of supplement, adjusted daily to meet the ad libitum indoor intake of the cows at pasture for nine hours. The herbage allowance was 1650 kg dry matter (DM) per ha, and the intake of supplemental feed was 9.1 kg DM per cow daily. The limitation of the time at pasture to 4 h in combination with restrictive indoor feeding reduced the daily milk, fat and protein yield and live weight compared with 9 h of access to pasture. The proportion of time during which the cows were grazing while at pasture increased from 0.64 to 0.86 and the estimated herbage intake per h at pasture decreased from 2547 g DM to1398 g DM, when time at pasture changed from 4 to 9 h. It can be concluded, that in systems with a high herbage allowance, the cow was able to compensate for 0.8 of the reduction in time at pasture by increasing the proportion of time spent grazing and presumably also both the bite rate and mass, although the latter two have not been directly confirmed in the present study.  相似文献   

20.
Measuring the uptake of the chemical elements by plants usually requires the destructive harvest of the plants. Analyzing individual leaves is unsatisfactory because their elemental concentration depends on their age and position on the branch or stem. We aimed to find an easy method to determine the elemental concentrations using a few suitable single leaves along the main shoot of poplar (Populus monviso) and willow (Salix viminalis) cuttings at the end of the first season. Using Ca, Cd, Mn, Fe, K, P, Pb, and Zn concentrations, measured in selected leaves along the main shoots of the cuttings, mathematical functions were derived, which described best their distribution. Elemental allocation patterns were independent of the soil characteristics and soil element concentrations. Based on these functions, three leaves from specific positions along the main shoot were selected, which could accurately describe the derived functions. The deviation of the calculated average concentration, based on the 3-leaves method, was ≤15% in approximately 65% of the cases compared to the measured concentration. This method could be used to calculate element concentrations and fluxes in phytomanagement, biomonitoring, or biomass productions projects using one-season poplar or willow cuttings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号