首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myocytes from the failing myocardium exhibit depressed and prolonged intracellular Ca(2+) concentration ([Ca(2+)](i)) transients that are, in part, responsible for contractile dysfunction and unstable repolarization. To better understand the molecular basis of the aberrant Ca(2+) handling in heart failure (HF), we studied the rabbit pacing tachycardia HF model. Induction of HF was associated with action potential (AP) duration prolongation that was especially pronounced at low stimulation frequencies. L-type calcium channel current (I(Ca,L)) density (-0.964 +/- 0.172 vs. -0.745 +/- 0.128 pA/pF at +10 mV) and Na(+)/Ca(2+) exchanger (NCX) currents (2.1 +/- 0.8 vs. 2.3 +/- 0.8 pA/pF at +30 mV) were not different in myocytes from control and failing hearts. The amplitude of peak [Ca(2+)](i) was depressed (at +10 mV, 0.72 +/- 0.07 and 0.56 +/- 0.04 microM in normal and failing hearts, respectively; P < 0.05), with slowed rates of decay and reduced Ca(2+) spark amplitudes (P < 0.0001) in myocytes isolated from failing vs. control hearts. Inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a revealed a greater reliance on NCX to remove cytosolic Ca(2+) in myocytes isolated from failing vs. control hearts (P < 0.05). mRNA levels of the alpha(1C)-subunit, ryanodine receptor (RyR), and NCX were unchanged from controls, while SERCA2a and phospholamban (PLB) were significantly downregulated in failing vs. control hearts (P < 0.05). alpha(1C) protein levels were unchanged, RyR, SERCA2a, and PLB were significantly downregulated (P < 0.05), while NCX protein was significantly upregulated (P < 0.05). These results support a prominent role for the sarcoplasmic reticulum (SR) in the pathogenesis of HF, in which abnormal SR Ca(2+) uptake and release synergistically contribute to the depressed [Ca(2+)](i) and the altered AP profile phenotype.  相似文献   

2.
Liu W  Yasui K  Opthof T  Ishiki R  Lee JK  Kamiya K  Yokota M  Kodama I 《Life sciences》2002,71(11):1279-1292
Transplant of immature cardiomyocytes is recently attracting a great deal of interest as a new experimental strategy for the treatment of failing hearts. Full understanding of normal cardiomyogenesis is essential to make this regenerative therapy feasible. We analyzed the molecular and functional changes of Ca(2+) handling proteins during development of the mouse heart from early embryo at 9.5 days postcoitum (dpc) through adulthood. From the early to the late (18 dpc) embryonic stage, mRNAs estimated by the real time PCR for ryanodine receptor (type 2, RyR2), sarcoplasmic reticulum (SR) Ca(2+) pump (type 2, SERCA2) and phospholamban (PLB) increased by 3-15 fold in the values normalized to GAPDH mRNA, although Na(+)/Ca(2+) exchanger (type 1, NCX1) mRNA was unchanged. After birth, there was a further increase in the mRNAs for RyR2, SERCA2 and PLB by 18-33 fold, but a 50% decrease in NCX1 mRNA. The protein levels of RyR2, SERCA2, PLB and NCX1, which were normalized to total protein, showed qualitatively parallel developmental changes. L-type Ca(2+) channel currents (I(Ca-L)) were increased during the development (1.3-fold at 18 dpc, 2.2-fold at adult stage, vs. 9.5 dpc). At 9.5 dpc, the Ca(2+) transient was, unlike adulthood, unaffected by the SR blockers, ryanodine (5 microM) and thapsigargin (2 microM), and also by a blocker of the Ca(2+) entry via Na(+)/Ca(2+) exchanger, KB-R 7943 (1 microM). The Ca(2+) transient was abolished after application of nisoldipine (5 microM). These results indicate that activator Ca(2+) for contraction in the early embryonic stage depends almost entirely on I(Ca-L).  相似文献   

3.
Regulation of cellular Ca(2+) cycling is central to myocardial contractile function. Loss of Ca(2+) regulation is associated with cardiac dysfunction and pathology. Estrogen has been shown to modify contractile function and to confer cardioprotection. Therefore, we investigated the effect of estrogen on expression of rat heart myocardial Ca(2+)-handling proteins and beta-adrenergic receptor (beta(1)-AR) and examined functional correlates. Female rats were sham-operated (SHAM) or ovariectomized. Two weeks after ovariectomy rats were injected (i.p.) daily with estradiol benozoate (OVX+EB) or sesame oil (OVX) for 2 weeks. Protein abundance was measured by immunoblotting and mRNA was quantified by real-time RT-PCR. OVX significantly decreased estrogen and progesterone levels and EB replacement returned both estrogen and progesterone to physiological levels. OVX induced a 75% reduction of uterine weight and a gain in body weight. Replacement restored weights to SHAM level. OVX increased and estrogen-replacement normalized abundance of beta(1)-AR and L-type Ca(2+) channel (Cav1.2) protein. OVX decreased sodium-Ca(2+) exchange protein (NCX) and estrogen restored protein abundance to SHAM levels. Sarcoplasmic reticular ATPase (SERCA), phospholamban (PLB), and ryanodine receptor (RyR) abundance was not altered by hormone status. Levels of mRNA encoding for beta(1)-AR, Cav1.2, and NCX were not influenced by OVX or estrogen replacement. OVX had no effect on SERCA and PLB mRNA level but estrogen replacement elicited a significant increase compared to OVX and SHAM. Estrogen-dependent changes in Ca(2+)-handling proteins and beta(1)-AR are theoretically consistent reduced myocellular Ca(2+) load. However, hormone-dependent alterations in protein were not associated with changes in contractile function.  相似文献   

4.
In heart failure (HF), arrhythmogenic Ca(2+) release and chronic Ca(2+) depletion of the sarcoplasmic reticulum (SR) arise due to altered function of the ryanodine receptor (RyR) SR Ca(2+)-release channel. Dantrolene, a therapeutic agent used to treat malignant hyperthermia associated with mutations of the skeletal muscle type 1 RyR (RyR1), has recently been suggested to have effects on the cardiac type 2 RyR (RyR2). In this investigation, we tested the hypothesis that dantrolene exerts antiarrhythmic and inotropic effects on HF ventricular myocytes by examining multiple aspects of intracellular Ca(2+) handling. In normal rabbit myocytes, dantrolene (1 μM) had no effect on SR Ca(2+) load, postrest decay of SR Ca(2+) content, the threshold for spontaneous Ca(2+) wave initiation (i.e., the SR Ca(2+) content at which spontaneous waves initiate) and Ca(2+) spark frequency. In cardiomyocytes from failing rabbit hearts, SR Ca(2+) load and the wave initiation threshold were decreased compared with normal myocytes, Ca(2+) spark frequency was increased, and the postrest decay was potentiated. Using a novel approach of measuring cytosolic and intra-SR Ca(2+) concentration (using the low-affinity Ca(2+) indicator fluo-5N entrapped within the SR), we showed that treatment of HF cardiomyocytes with dantrolene rescued postrest decay and increased the wave initiation threshold. Additionally, dantrolene decreased Ca(2+) spark frequency while increasing the SR Ca(2+) content in HF myocytes. These data suggest that dantrolene exerts antiarrhythmic effects and preserves inotropy in HF cardiomyocytes by decreasing the incidence of diastolic Ca(2+) sparks, increasing the intra-SR Ca(2+) threshold at which spontaneous Ca(2+) waves occur, and decreasing the loss of Ca(2+) from the SR. Furthermore, the observation that dantrolene reduces arrhythmogenicity while at the same time preserves inotropy suggests that dantrolene is a potentially useful drug in the treatment of arrhythmia associated with HF.  相似文献   

5.
Preventing Ca(2+)-leak during diastole may provide a means to improve overall cardiac function. The immunosuppressant FK506-binding protein 12.6 (FKBP12.6) regulates ryanodine receptor-2 (RyR2) gating and binds to and inhibits calcineurin (Cn). It is also involved in the pathophysiology of heart failure (HF). Here, we investigated the effects of FKBP12.6 over-expression and gender on Ca(2+)-handling proteins (RyR2, SERCA2a/PLB, and NCX), and on pro-(CaMKII, Cn/NFAT) and anti-hypertrophic (GSK3β) signalling pathways in a thoracic aortic constriction (TAC) mouse model. Wild type mice (WT) and mice over-expressing FKBP12.6 of both genders underwent TAC or sham-operation (Sham). FKBP12.6 over-expression ameliorated post-TAC survival rates in both genders. Over time, FKBP12.6 over-expression reduced the molecular signature of left ventricular hypertrophy (LVH) and the transition to HF (BNP and β-MHC mRNAs) and attenuated Cn/NFAT activation in TAC-males only. The gender difference in pro- and anti-hypertrophic LVH signals was time-dependent: TAC-females exhibited earlier pathological LVH associated with concomitant SERCA2a down-regulation, CaMKII activation, and GSK3β inactivation. Both genotypes showed systolic dysfunction, possibly related to down-regulated RyR2, but only FK-TAC-males exhibited preserved diastolic LV function. Although FKBP12.6 over-expression did not impact the vicious cycle of TAC-induced HF, this study reveals some subtle sequential and temporal gender differences in Ca(2+)-signalling pathways of pathological LVH.  相似文献   

6.
Phosphorylation of phospholamban (PLB) at Ser16 (protein kinase A site) and at Thr17 [Ca2+/calmodulin kinase II (CaMKII) site] increases sarcoplasmic reticulum Ca2+ uptake and myocardial contractility and relaxation. In perfused rat hearts submitted to ischemia-reperfusion, we previously showed an ischemia-induced Ser16 phosphorylation that was dependent on beta-adrenergic stimulation and an ischemia and reperfusion-induced Thr17 phosphorylation that was dependent on Ca2+ influx. To elucidate the relationship between these two PLB phosphorylation sites and postischemic mechanical recovery, rat hearts were submitted to ischemia-reperfusion in the absence and presence of the CaMKII inhibitor KN-93 (1 microM) or the beta-adrenergic blocker dl-propranolol (1 microM). KN-93 diminished the reperfusion-induced Thr17 phosphorylation and depressed the recovery of contraction and relaxation after ischemia. dl-Propranolol decreased the ischemia-induced Ser16 phosphorylation but failed to modify the contractile recovery. To obtain further insights into the functional role of the two PLB phosphorylation sites in postischemic mechanical recovery, transgenic mice expressing wild-type PLB (PLB-WT) or PLB mutants in which either Thr17 or Ser16 were replaced by Ala (PLB-T17A and PLB-S16A, respectively) into the PLB-null background were used. Both PLB mutants showed a lower contractile recovery than PLB-WT. However, this recovery was significantly impaired all along reperfusion in PLB-T17A, whereas it was depressed only at the beginning of reperfusion in PLB-S16A. Moreover, the recovery of relaxation was delayed in PLB-T17A, whereas it did not change in PLB-S16A, compared with PLB-WT. These findings indicate that, although both PLB phosphorylation sites are involved in the mechanical recovery after ischemia, Thr17 appears to play a major role.  相似文献   

7.
This study characterized the cardiac contractile function and IGF-I response in a transgenic diabetic mouse model. Mechanical properties were evaluated in cardiac myocytes from OVE26 diabetic and FVB wild-type mice, including peak shortening (PS), time to PS (TPS), time to 90% relengthening (TR(90)) and maximal velocity of shortening/relengthening (+/-dL/dt). Intracellular Ca(2+) was evaluated as Ca(2+)-induced Ca(2+) release [difference in fura 2 fluorescent intensity (Delta FFI)] and fluorescence decay rate (tau). Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a, phospholamban (PLB), Na(+)-Ca(2+) exchanger (NCX), GLUT4, and the serine-threonine kinase Akt were assessed by Western blot. RhoA and IGF-I/IGF-I receptor mRNA levels were determined by RT-PCR and Northern blot. OVE26 myocytes displayed decreased PS, +/-dL/dt, and Delta FFI associated with prolonged TPS, TR(90), and tau. SERCA2a, NCX, and Akt activation were reduced, whereas PLB and RhoA were enhanced in OVE26 hearts. GLUT4 was unchanged. IGF-I enhanced PS and Delta FFI in FVB but not OVE26 myocytes. IGF-I mRNA was increased, but IGF-I receptor mRNA was reduced in OVE26 hearts and livers. These results validate diabetic cardiomyopathy in OVE26 mice due to reduced SERCA2, NCX, IGF-I response, and Akt activation associated with enhanced RhoA level, suggesting a therapeutic potential for Akt and RhoA.  相似文献   

8.
9.
Human studies reveal sex differences in myocardial function as well as in the incidence and manifestation of heart disease. Myocellular Ca(2+) cycling regulates normal contractile function; whereas cardiac dysfunction in heart failure has been associated with alterations in Ca(2+)-handling proteins. Beta-adrenergic receptor (beta-AR) signaling regulates activity of several Ca(2+)-handling proteins and alterations in beta-AR signaling are associated with heart disease. This study examines sex differences in expression of beta(1)-AR, beta(2)-AR, and Ca(2+)-handling proteins including: L-type calcium channel (Ca(v)1.2) , ryanodine calcium-release channels (RyR), sarcoplasmic reticular Ca(2+) ATPase (SERCA2), phospholamban (PLB) and Na(+)-Ca(2+) exchange protein (NCX) in healthy hearts from male and female Sprague-Dawley rats. Protein levels were examined using Western blot analysis. Abundance of mRNA was determined by real time RT-PCR normalized to abundance of GAPDH mRNA. Contraction parameters were measured in right ventricular papillary muscle in the presence and absence of isoproterenol. Results demonstrate that female ventricle has significantly higher levels of Ca(v)1.2, RyR, and NCX protein compared to males. Messenger RNA abundance for RyR, and NCX protein was significantly higher in females whereas Ca(v)1.2 mRNA was higher in males. No differences were detected in beta-ARs, SERCA2 or PLB. Female right papillary muscle had a faster maximal rate of force development and decline (+/- dF/dt). There were no sex differences in response to isoproterenol. Results show significant sex differences in expression of key ventricular Ca(2+)-handling proteins that are associated with small functional differences in +/- dF/dt. Further studies will determine whether differences in the abundance of these key proteins play a role in sex disparities in the incidence and manifestation of heart disease.  相似文献   

10.
11.
The phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 decreased steady-state contraction in neonatal rat ventricular myocytes (NRVM). To determine whether the effect on steady-state contraction could be due to decreased intracellular Ca(2+) content, Ca(2+) content was assessed with fluorescent plate reader analysis by using the caffeine-releasable Ca(2+) stores as an index of sarcoplasmic reticulum (SR) Ca(2+) content. Caffeine-releasable Ca(2+) content was diminished in a dose-dependent manner with LY-294002, suggesting that the decrease in steady-state contraction was due to diminished intracellular Ca(2+) content. Activation of the L-type Ca(2+) channel by BAY K 8644 was attenuated by LY-294002, suggesting the effect of LY-294002 is to reduce Ca(2+) influx at this channel. To investigate whether additional proteins involved in excitation-contraction (EC) coupling are likewise regulated by PI3K activity, the effects of compounds acting at sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a), the ryanodine receptor, and the Na/Ca exchanger (NCX) were compared with LY-294002. Inhibition of SERCA2a by thapsigargin increased basal Ca(2+) levels in contrast to LY-294002, indicating that SERCA2a activity is sustained in the presence of LY-294002. Ryanodine decreased SR Ca(2+) content. The additive effect with coadministration of LY-294002 could be attributed to a decrease in Ca(2+) influx at the L-type Ca(2+) channel. The NCX inhibitor Ni(2+) was used to investigate whether the decrease in intracellular Ca(2+) content with LY-294002 could be due to inhibition of the NCX reverse-mode activity. The minimal effect of LY-294002 with Ni(2+) suggests that the primary effect of LY-294002 on EC coupling occurs through inhibition of PI3K-mediated L-type Ca(2+) channel activity.  相似文献   

12.
Early cardiovascular changes evoked by pressure overload (PO) may reveal adaptive strategies that allow immediate survival to the increased hemodynamic load. In this study, systolic and diastolic Ca(2+) cycling was analyzed in left ventricular rat myocytes before (day 2, PO-2d group) and after (day 7, PO-7d group) development of hypertrophy subsequent to aortic constriction, as well as in myocytes from time-matched sham-operated rats (sham group). Ca(2+) transient amplitude was significantly augmented in the PO-2d group. In the PO-7d group, intracellular Ca(2+) concentration ([Ca(2+)](i)) was reduced during diastole, and mechanical twitch relaxation (but not [Ca(2+)](i) decline) was slowed. In PO groups, fractional sarcoplasmic reticulum (SR) Ca(2+) release at a twitch, SR Ca(2+) content, SR Ca(2+) loss during diastole, and SR-dependent integrated Ca(2+) flux during twitch relaxation were significantly greater than in sham-operated groups, whereas the relaxation-associated Ca(2+) flux carried by the Na(+)/Ca(2+) exchanger was not significantly changed. In the PO-7d group, mRNA levels of cardiac isoforms of SR Ca(2+)-ATPase (SERCA2a), phospholamban, calsequestrin, ryanodine receptor, and NCX were not significantly altered, but the SERCA2a-to-phospholamban ratio was increased 2.5-fold. Moreover, greater sensitivity to the inotropic effects of the beta-adrenoceptor agonist isoproterenol was observed in the PO-7d group. The results indicate enhanced Ca(2+) cycling between SR and cytosol early after PO imposition, even before hypertrophy development. Increase in SR Ca(2+) uptake may contribute to enhancement of excitation-contraction coupling (augmented SR Ca(2+) content and release) and protection against arrhythmogenesis due to buildup of [Ca(2+)](i) during diastole.  相似文献   

13.
14.
Dan P  Lin E  Huang J  Biln P  Tibbits GF 《Biophysical journal》2007,93(7):2504-2518
Mechanisms of cardiac excitation-contraction coupling in neonates are still not clearly defined. Previous work in neonates shows reverse-mode Na(+)-Ca(2+) exchange to be the primary route of Ca(2+) entry during systole and the neonatal sarcoplasmic reticulum to have similar capability as that of adult in storing and releasing Ca(2+). We investigated Na(+)-Ca(2+) exchanger (NCX) and ryanodine receptor (RyR) distribution in developing ventricular myocytes using immunofluorescence, confocal microscopy, and digital image analysis. In neonates, both NCX and RyR clusters on the surface of the cell displayed a short longitudinal periodicity of approximately 0.7 microm. However, by adulthood, both proteins were also found in the interior. In the adult, clusters of NCX on the surface of the cell retained the approximately 0.7-microm periodicity whereas clusters of RyR adopted a longer longitudinal periodicity of approximately 2.0 microm. This suggests that neonatal myocytes also have a peri-M-line RyR distribution that is absent in adult myocytes. NCX and RyR colocalized voxel density was maximal in neonates and declined significantly with ontogeny. We conclude in newborns, Ca(2+) influx via NCX could potentially activate the dense network of peripheral Ca(2+) stores via peripheral couplings, evoking Ca(2+)-induced Ca(2+) release.  相似文献   

15.
Pathological stress including myocardial infarction and hypertension causes a negative effect on calcium regulation and homeostasis. Nevertheless, few studies reveal that Ca(2+) regulatory genes are related to pathological status in cardiomyocytes under early hypoxia. To determine the alteration of Ca(2+)-related gene in hypoxic myocytes, primary neonatal rat ventricular cardiomyocytes (NRVCMs) was isolated. Survival of hypoxic NRVCMs was significantly decreased in 6?h. We confirmed an increase of reactive oxygen species (ROS) generation and Ca(2+) overload in hypoxic NRVCMs by using 2',7'-dichlorodihydro-fluorescein diacetate (H2DCFDA) and FACS analysis. Furthermore, survival/apoptotic signals were also regulated in same condition. The expression profiles of more than 30,000 genes from NRVCMs that were subjected to early hypoxia revealed 630 genes that were differentially regulated. The intracellular Na(+) overload and Ca(2+) handling genes with at least two-fold changes were confirmed. The levels of Ca(2+)-handling proteins (calsequestrin, calmodulin, and calreticulin), ion channels (NCX, Na(+)-K(+)-ATPase, SERCA2a, and PLB), and stress markers (RyR2, ANP, and BNP) were significantly altered in early hypoxia. These results demonstrate that early hypoxia alters Ca(2+)-related gene expression in NRVCMs, leading to pathological status.  相似文献   

16.
Postmyocardial infarction (MI) rat myocytes demonstrated depressed Na(+)/Ca(2+) exchange (NCX1) activity, altered contractility, and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients. We investigated whether NCX1 downregulation in normal myocytes resulted in contractility changes observed in MI myocytes. Myocytes infected with adenovirus expressing antisense (AS) oligonucleotides to NCX1 had 30% less NCX1 at 3 days and 66% less NCX1 at 6 days. The half-time of relaxation from caffeine-induced contracture was twice as long in ASNCX1 myocytes. Sarcoplasmic reticulum (SR) Ca(2+)-ATPase abundance, SR Ca(2+) uptake, resting membrane potential, action potential amplitude and duration, L-type Ca(2+) current density and cell size were not affected by ASNCX1 treatment. At extracellular Ca(2+) concentration ([Ca(2+)](o)) of 5 mM, ASNCX1 myocytes had significantly lower contraction and [Ca(2+)](i) transient amplitudes and SR Ca(2+) contents than control myocytes. At 0.6 mM [Ca(2+)](o), contraction and [Ca(2+)](i) transient amplitudes and SR Ca(2+) contents were significantly higher in ASNCX1 myocytes. At 1.8 mM [Ca(2+)](o), contraction and [Ca(2+)](i) transient amplitudes were not different between control and ASNCX1 myocytes. This pattern of contractile and [Ca(2+)](i) transient abnormalities in ASNCX1 myocytes mimics that observed in rat MI myocytes. We conclude that downregulation of NCX1 in adult rat myocytes resulted in decreases in both Ca(2+) influx and efflux during a twitch. We suggest that depressed NCX1 activity may partly account for the contractile abnormalities after MI.  相似文献   

17.
Calsequestrin (CSQ) is a Ca(2+) storage protein that interacts with triadin (TRN), the ryanodine receptor (RyR), and junctin (JUN) to form a macromolecular tetrameric Ca(2+) signaling complex in the cardiac junctional sarcoplasmic reticulum (SR). Heart-specific overexpression of CSQ in transgenic mice (TG(CSQ)) was associated with heart failure, attenuation of SR Ca(2+) release, and downregulation of associated junctional SR proteins, e.g., TRN. Hence, we tested whether co-overexpression of CSQ and TRN in mouse hearts (TG(CxT)) could be beneficial for impaired intracellular Ca(2+) signaling and contractile function. Indeed, the depressed intracellular Ca(2+) concentration ([Ca](i)) peak amplitude in TG(CSQ) was normalized by co-overexpression in TG(CxT) myocytes. This effect was associated with changes in the expression of cardiac Ca(2+) regulatory proteins. For example, the protein level of the L-type Ca(2+) channel Ca(v)1.2 was higher in TG(CxT) compared with TG(CSQ). Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) expression was reduced in TG(CxT) compared with TG(CSQ), whereas JUN expression and [(3)H]ryanodine binding were lower in both TG(CxT) and TG(CSQ) compared with wild-type hearts. As a result of these expressional changes, the SR Ca(2+) load was higher in both TG(CxT) and TG(CSQ) myocytes. In contrast to the improved cellular Ca(2+), transient co-overexpression of CSQ and TRN resulted in a reduced survival rate, an increased cardiac fibrosis, and a decreased basal contractility in catheterized mice, working heart preparations, and isolated myocytes. Echocardiographic and hemodynamic measurements revealed a depressed cardiac performance after isoproterenol application in TG(CxT) compared with TG(CSQ). Our results suggest that co-overexpression of CSQ and TRN led to a normalization of the SR Ca(2+) release compared with TG(CSQ) mice but a depressed contractile function and survival rate probably due to cardiac fibrosis, a lower SERCA2a expression, and a blunted response to β-adrenergic stimulation. Thus the TRN-to-CSQ ratio is a critical modulator of the SR Ca(2+) signaling.  相似文献   

18.
In heart failure (HF), arrhythmogenic spontaneous sarcoplasmic reticulum (SR) Ca(2+) release and afterdepolarizations in cardiac myocytes have been linked to abnormally high activity of ryanodine receptors (RyR2s) associated with enhanced phosphorylation of the channel. However, the specific molecular mechanisms underlying RyR2 hyperphosphorylation in HF remain poorly understood. The objective of the current study was to test the hypothesis that the enhanced expression of muscle-specific microRNAs (miRNAs) underlies the HF-related alterations in RyR2 phosphorylation in ventricular myocytes by targeting phosphatase activity localized to the RyR2. We studied hearts isolated from canines with chronic HF exhibiting increased left ventricular (LV) dimensions and decreased LV contractility. qRT-PCR revealed that the levels of miR-1 and miR-133, the most abundant muscle-specific miRNAs, were significantly increased in HF myocytes compared with controls (2- and 1.6-fold, respectively). Western blot analyses demonstrated that expression levels of the protein phosphatase 2A (PP2A) catalytic and regulatory subunits, which are putative targets of miR-133 and miR-1, were decreased in HF cells. PP2A catalytic subunit mRNAs were validated as targets of miR-133 by using luciferase reporter assays. Pharmacological inhibition of phosphatase activity increased the frequency of diastolic Ca(2+) waves and afterdepolarizations in control myocytes. The decreased PP2A activity observed in HF was accompanied by enhanced Ca(2+)/calmodulin-dependent protein kinase (CaMKII)-mediated phosphorylation of RyR2 at sites Ser-2814 and Ser-2030 and increased frequency of diastolic Ca(2+) waves and afterdepolarizations in HF myocytes compared with controls. In HF myocytes, CaMKII inhibitory peptide normalized the frequency of pro-arrhythmic spontaneous diastolic Ca(2+) waves. These findings suggest that altered levels of major muscle-specific miRNAs contribute to abnormal RyR2 function in HF by depressing phosphatase activity localized to the channel, which in turn, leads to the excessive phosphorylation of RyR2s, abnormal Ca(2+) cycling, and increased propensity to arrhythmogenesis.  相似文献   

19.
Lakatta EG 《Cell calcium》2004,35(6):629-642
The ability of the heart to acutely beat faster and stronger is central to the vertebrate survival instinct. Released neurotransmitters, norepinephrine and epinephrine, bind to beta-adrenergic receptors (beta-AR) on pacemaker cells comprising the sinoatrial node, and to beta-AR on ventricular myocytes to modulate cellular mechanisms that govern the frequency and amplitude, respectively, of the duty cycles of these cells. While a role for sarcoplasmic reticulum Ca(2+) cycling via SERCA2 and ryanodine receptors (RyR) has long been appreciated with respect to cardiac inotropy, recent evidence also implicates Ca(2+) cycling with respect to chronotropy. In spontaneously beating primary sinoatrial nodal pacemaker cells, RyR Ca(2+) releases occurring during diastolic depolarization activate the Na(+)-Ca(2+) exchanger (NCX) to produce an inward current that enhances their diastolic depolarization rate, and thus increases their beating rate. beta-AR stimulation synchronizes RyR activation and Ca(2+) release to effect an increased beating rate in pacemaker cells and contraction amplitude in myocytes: in pacemaker cells, the beta-AR stimulation synchronization of RyR activation occurs during the diastolic depolarization, and augments the NCX inward current; in ventricular myocytes, beta-AR stimulation synchronizes the openings of unitary L-type Ca(2+) channel activation following the action potential, and also synchronizes RyR Ca(2+) releases following depolarization, and in the absence of depolarization, both leading to the generation of a global cytosolic Ca(i) transient of increased amplitude and accelerated kinetics. Thus, beta-AR stimulation induced synchronization of RyR activation (recruitment of additional RyRs to fire) and of the ensuing Ca(2+) release cause the heart to beat both stronger and faster, and is thus, a common mechanism that links both the maximum achievable cardiac inotropy and chronotropy.  相似文献   

20.
Systematic immunological and biochemical studies indicate that the level of expression of sarcoplasmic reticulum (SR) Ca(2+)-ATPase regulatory protein phospholamban (PLB) in mammalian slow-twitch fibers varies from zero, in the rat, to significant levels in the rabbit, and even higher in humans. The lack of PLB expression in the rat, at the mRNA level, is shown to be exclusive to slow-twitch skeletal muscle, and not to be shared by the heart, thus suggesting a tissue-specific, in addition to a species-specific regulation of PLB. A comparison of sucrose density-purified SR of rat and rabbit slow-twitch muscle, with regard to protein compositional and phosphorylation properties, demonstrates that the biodiversity is two-fold, i.e. (a) in PLB membrane density; and (b) in the ability of membrane-bound Ca(2+)-calmodulin (CaM)-dependent protein kinase II to phosphorylate both PLB and SERCA2a (slow-twitch isoform of Ca(2+)-ATPase). The basal phosphorylation state of PLB at Thr-17 in isolated SR vesicles from rabbit slow-twitch muscle, colocalization of CaM K II with PLB and SERCA2a at the same membrane domain, and the divergent subcellular distribution of PKA, taken together, seem to argue for a differential heterogeneity in the regulation of Ca(2+) transport between such muscle and heart muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号