首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The exine acts as a protectant of the pollen from environmental stresses, and the pollen coat plays an important role in the attachment and recognition of the pollen to the stigma. The pollen coat is made of lipidic organelles in the tapetum. The pollen coat is necessary for fertility, as pollen coat-less mutants, such as those deficient in sterol biosynthesis, show severe male sterility. In contrast, the exine is made of sporopollenin precursors that are biosynthesized in the tapetum. Some mutants involved in sporopollenin biosynthesis lose the exine but show the fertile phenotype. One of these mutants, cyp704b1, was reported to lose not only the exine but also the pollen coat. To identify the cause of the fertile phenotype of the cyp704b1 mutant, the detailed structures of the tapetum tissue and pollen surface in the mutant were analyzed. As a result, the cyp704b1 mutant completely lost the normal exine but had high-electron-density granules localized where the exine should be present. Furthermore, normal lipidic organelles in the tapetum and pollen coat embedded between high-electron-density granules on the pollen surface were observed, unlike in a previous report, and the pollen coat was attached to the stigma. Therefore, the pollen coat is necessary for fertility, and the structure that functions like the exine, such as high-electron-density granules, on the pollen surface may play important roles in retaining the pollen coat in the cyp704b1 mutant.  相似文献   

2.
In flowering plants, the exine components are derived from tapetum. Despite its importance to sexual plant reproduction, little is known about the translocation of exine materials from tapetum to developing microspores. Here we report functional characterization of the arabidopsis WBC27 gene. WBC27 encodes an adenosine tri-phosphate binding cassette (ABC) transporter and is expressed preferentially in tapetum. Mutation of WBC27 disrupted the exine formation. The wbc27 mutant microspores began to degenerate once released from tetrads and most of the microspores collapsed at the uninucleate stage. Only a small number of wbc27-1 microspores could develop into tricellular pollen grains. These survival pollen grains lacked exine and germinated in the anther before anthesis. All of these results suggest that the ABC transporter, WBC27 plays important roles in the formation of arabidopsis exine, possibly by translocation of lipidic precursors of sporopollenin from tapetum to developing microspores.  相似文献   

3.
Tapetum: regulation and role in sporopollenin biosynthesis in Arabidopsis   总被引:1,自引:0,他引:1  
Pollen acts as a biological protector for protecting male sperm from various harsh conditions and is covered by an outer cell wall polymer called the exine, a major constituent of which is sporopollenin. The tapetum is in direct contact with the developing gametophytes and plays an essential role in pollen wall and pollen coat formation. The precise molecular mechanisms underlying tapetal development remain highly elusive, but molecular genetic studies have identified a number of genes that control the formation, differentiation, and programmed cell death of tapetum and interactions of genes in tapetal development. Herein, several lines of evidence suggest that sporopollenin is built up via catalytic enzyme reactions in the tapetum. Furthermore, as based on genetic evidence, we review the currently accepted understanding of the molecular regulation of sporopollenin biosynthesis and examine unanswered questions regarding the requirements underpinning proper exine pattern formation.  相似文献   

4.
Pollen grains are encased by a multilayered, multifunctional wall. The sporopollenin and pollen coat constituents of the outer pollen wall (exine) are contributed by surrounding sporophytic tapetal cells. Because the biosynthesis and development of the exine occurs in the innermost cell layers of the anther, direct observations of this process are difficult. The objective of this study was to investigate the transport and assembly of exine components from tapetal cells to microspores in the intact anthers of Arabidopsis thaliana. Intrinsically fluorescent components of developing tapetum and microspores were imaged in intact, live anthers using two-photon microscopy. Mutants of ABCG26, which encodes an ATP binding cassette transporter required for exine formation, accumulated large fluorescent vacuoles in tapetal cells, with corresponding loss of fluorescence on microspores. These vacuolar inclusions were not observed in tapetal cells of double mutants of abcg26 and genes encoding the proposed sporopollenin polyketide biosynthetic metabolon (ACYL COENZYME A SYNTHETASE5, POLYKETIDE SYNTHASE A [PKSA], PKSB, and TETRAKETIDE α-PYRONE REDUCTASE1), providing a genetic link between transport by ABCG26 and polyketide biosynthesis. Genetic analysis also showed that hydroxycinnamoyl spermidines, known components of the pollen coat, were exported from tapeta prior to programmed cell death in the absence of polyketides, raising the possibility that they are incorporated into the exine prior to pollen coat deposition. We propose a model where ABCG26-exported polyketides traffic from tapetal cells to form the sporopollenin backbone, in coordination with the trafficking of additional constituents, prior to tapetum programmed cell death.  相似文献   

5.
Michel Abadie  Edith Bury 《Grana》2013,52(2):515-524
The elucidation of the ultrastructural cytochemistry, coupled with chemical stabilizing procedures during fixation and embedding, make a significant contribution to the understanding of pollen-exine ontogenesis. A combination of the Con-A agglutination and lanthanum precipitation methods proved particular advantageous during the intine formation stage. By using immunogold techniques, it is possible to demonstrate that only the mature exine of the atmospheric pollen grains reacted positively after sectioning, not the intine. An important difference appears when immature pollen grains are treated under the same conditions: in this case, both the microsporal cytoplasm of the future pollen grain and the immature exine react, but not the intine.

In untreated pollen grains, the exine is a biological material of exceptionally high density with a very low stainability: staining for proteins and lipids is only moderate. A degradation of exine structures by U. V. radiation of 254 nm can be easily proved and the framework obtained is comparable to that induced by some chemical attacks. When sporopollenin is degraded from filamentous sub-units of the exine, stainability increases, and the cytochemical tests for acid-mucopolysaccharids are positive. It is clear that glycocalyx units within exines are chemically bound to the sporopollenin matrix. Attention can also be profitably directed to the future investigation of the function of exine frameworks, through allergen fixation in living pollen grains.  相似文献   

6.
Pollen wall development in Sorghum bicolor is morphologically and temporally paralleled by the formation of a prominent orbicular wall on the inner tangential surface of the tapetum. In the late tetrad stage, a thin, nearly uniform primexine forms around each microspore (except at the pore site) beneath the intact callose; concurrently, small spherical bodies (pro-orbicules) appear between the undulate tapetal plasmalemma and the disappearing tapetal primary wall. Within the primexine, differentially staining loci appear, which only develop into young bacula as the callose disappears. Thus, microspore walls are devoid of a visible exine pattern when released from tetrads. Afterwards, sporopollenin accumulates simultaneously on the primexine and bacula, forming the exine, and on the pro-orbicules, forming orbicules. Channels develop in the tectum and nexine, and both layers thicken to complete the microspore exine. Channeled sporopollenin also accumulates on the orbicules. A prominent sporopollenin reticulum interconnects the individual orbicules to produce an orbicular wall; this wall persists even after the tapetal protoplasts degenerate and after anthesis. While the pollen grains become engorged with reserves, a thick intine, containing conspicuous cytoplasmic channels, forms beneath the exine. Fibrous material collects beneath the orbicular wall. The parallel development and morphological similarities between the tapetal and pollen walls are discussed.  相似文献   

7.
Mature pollen is covered by durable cell walls, principally composed of sporopollenin, an evolutionary conserved, highly resilient, but not fully characterized, biopolymer of aliphatic and aromatic components. Here, we report that ABORTED MICROSPORES (AMS) acts as a master regulator coordinating pollen wall development and sporopollenin biosynthesis in Arabidopsis thaliana. Genome-wide coexpression analysis revealed 98 candidate genes with specific expression in the anther and 70 that showed reduced expression in ams. Among these 70 members, we showed that AMS can directly regulate 23 genes implicated in callose dissociation, fatty acids elongation, formation of phenolic compounds, and lipidic transport putatively involved in sporopollenin precursor synthesis. Consistently, ams mutants showed defective microspore release, a lack of sporopollenin deposition, and a dramatic reduction in total phenolic compounds and cutin monomers. The functional importance of the AMS pathway was further demonstrated by the observation of impaired pollen wall architecture in plant lines with reduced expression of several AMS targets: the abundant pollen coat protein extracellular lipases (EXL5 and EXL6), and CYP98A8 and CYP98A9, which are enzymes required for the production of phenolic precursors. These findings demonstrate the central role of AMS in coordinating sporopollenin biosynthesis and the secretion of materials for pollen wall patterning.  相似文献   

8.
In the present study, microsporogenesis, microgametogenesis and pollen wall ontogeny in Campsis radicans (L.) Seem. were studied from sporogenous cell stage to mature pollen using transmission electron microscopy. To observe the ultrastructural changes that occur in sporogenous cells, microspores and pollen through progressive developmental stages, anthers at different stages of development were fixed and embedded in Araldite. Microspore and pollen development in C. radicans follows the basic scheme in angiosperms. Microsporocytes secrete callose wall before meiotic division. Meiocytes undergo meiosis and simultaneous cytokinesis which result in the formation of tetrads mostly with a tetrahedral arrangement. After the development of free and vacuolated microspores, respectively, first mitotic division occurs and two-celled pollen grain is produced. Pollen grains are shed from the anther at two-celled stage. Pollen wall formation in C. radicans starts at tetrad stage by the formation of exine template called primexine. By the accumulation of electron dense material, produced by microspore, in the special places of the primexine, first of all protectum then columellae of exine elements are formed on the reticulate-patterned plasma membrane. After free microspore stage, exine development is completed by the addition of sporopollenin from tapetum. Formation of intine layer of pollen wall starts at the late vacuolated stage of pollen development and continue through the bicellular pollen stage.  相似文献   

9.
The exine of the pollen wall shows an intricate pattern, primarily comprising sporopollenin, a polymer of fatty acids and phenolic compounds. A series of enzymes synthesize sporopollenin precursors in tapetal cells, and the precursors are transported from the tapetum to the pollen surface. However, the mechanisms underlying the transport of sporopollenin precursors remain elusive. Here, we provide evidence that strongly suggests that the Arabidopsis ABC transporter ABCG26/WBC27 is involved in the transport of sporopollenin precursors. Two independent mutations at ABCG26 coding region caused drastic decrease in seed production. This defect was complemented by expression of ABCG26 driven by its native promoter. The severely reduced fertility of the abcg26 mutants was caused by a failure to produce mature pollen, observed initially as a defect in pollen-wall development. The reticulate pattern of the exine of wild-type microspores was absent in abcg26 microspores at the vacuolate stage, and the vast majority of the mutant pollen degenerated thereafter. ABCG26 was expressed specifically in tapetal cells at the early vacuolate stage of pollen development. It showed high co-expression with genes encoding enzymes required for sporopollenin precursor synthesis, i.e. CYP704B1, ACOS5, MS2 and CYP703A2. Similar to two other mutants with defects in pollen-wall deposition, abcg26 tapetal cells accumulated numerous vesicles and granules. Taken together, these results suggest that ABCG26 plays a crucial role in the transfer of sporopollenin lipid precursors from tapetal cells to anther locules, facilitating exine formation on the pollen surface.  相似文献   

10.
The pollen morphology of Cephalotaxaceae was examined with LM, SEM and TEM. Pollen grains in this family are spheroidal or subspheroidal, rounded in polar view, but usually wrinkled with irregular shape. Pollen size is 22.6- 34.8 μm in diameter. There is a distinct or indistinct tenuity on distal face. The tenuity occasionally slightly rises above the outline of pollen grains, but often sukened. Exine rather thin, 1—1.5μm thick, layers obscure, surface of pollen grains is nearly psilate or weakly granulate. Under SEM exine is covered with fine and dense granules, and sparse Ubisch bodies are found on the granular layer. The Ubisch bodies are provided with minute gemmate processes on the surface. Acorrding to our observation under TEM, exine consists of ectexine and lamellate endexine, with the former divided into outer ectexine of granules densely arranged and inner ectexine of loosely arranged microgranules. Granules of the outer ectexine are relatively thick, and connected with each other, forming a structure just like tectum or separate from each other. Microgranules of the inner ectexine are distinct or indistinct. Endexine is provided with 5- 7 lamellae. As far as information of pollen morphology is concerned, Cephalotaxus oliveri is rather special in the Cephalotaxaceae. First, the tenuity in pollen grains occupies one half of the distal part, much larger than that of the other species in the family. Second, the ectexine in Cephalotaxus oliveri may be divided into two distinct layers, outer ectexine and inner ectexine. The former is made of a layer of sporopollenin masses, which are connected with each other to form tectumlike structure, while the latter consists of a layer of loosely arranged granules or small segments of sporopollenin. The inner ectexine is different from that of other species by having a thicker layer of sporopollenin granules. Based on these two features, we support the division of Cephalotaxus into two Sections, Sect. Pectinatae and Sect. Cephalotaxus. Pollen grains of Cephalotaxaceae are similar to those of the Taxaceae in having spheroidal shape and the tenuity on its distal face. These characteristics strengthen the evidence for a close relationship between the Cephalotaxaceae and Taxaceae. Although pollen grains of the Cephalotaxaceae and Taxaceae are similar in some characteristics, they have obvious differences in , for example, size of tenuity, the fine structure of Ulbisch bodies and of the outer and inner ectexine. On the basis of pollen morphology, the present author considers theCephalotaxaceae slightly more primitive than the Taxaceae.  相似文献   

11.
12.
M Grote  H G Fromme 《Histochemistry》1984,81(5):489-492
Pollen grains from Betula pendula were fixed in a mixture of p-formaldehyde and cetylpyridinium chloride (CPC) for the precipitation of soluble pollen glycoproteins. After dehydration and embedding at low temperatures in the water-soluble resin, Lowicryl K4M, ultrathin sections of the pollen grains were incubated using specific antibodies against birch-pollen extract and protein-A/gold complexes. Antigen activity was found in the CPC-precipitated surface material and within the exine (bacular cavities) and the cytoplasm (except for starch grains and lipidic droplets). There was no labelling within the intine. The region of the germinal aperture also showed a very low degree of antigen activity. The control sections were almost completely free of background staining.  相似文献   

13.
Compositae exhibit some of the most complex and diverse pollen grains in flowering plants. This paper reviews the evolutionary and developmental origins of this diversity in pollen structure using recent models based on the behaviour of colloids and formation of micelles in the differentiating microspore glycocalyx and primexine. The developmental model is consistent with observations of structures recovered by pollen wall dissolution. Pollen wall diversity in Compositae is inferred to result from small changes in the glycocalyx, for example ionic concentration, which trigger the self-assembly of highly diverse structures. Whilst the fine details of exine substructure are, therefore, not under direct genetic control, it is likely that genes establish differences in the glycocalyx which define the conditions for self-assembly. Because the processes described here for Compositae can account for some of the most complex exine structures known, it is likely that they also operate in pollen walls with much simpler organisation.  相似文献   

14.
Summary A study of pollen development in wheat was made using transmission electron microscopy (TEM). Microspores contain undifferentiated plastids and mitochondria that are dividing. Vacuolation occurs, probably due to the coalescence of small vacuoles budded off the endoplasmic reticulum (ER). As the pollen grain is formed and matures, the ER becomes distended with deposits of granular storage material. Mitochondria proliferate and become filled with cristae. Similarly, plastids divide and accumulate starch. The exine wall is deposited at a rapid rate throughout development, and the precursors appear to be synthesized in the tapetum. Tapetal cells become binucleate during the meiosis stage, and Ubisch bodies form on the plasma membrane surface that faces the locule. Tapetal plastids become surrounded by an electron-translucent halo. Rough ER is associated with the halo around the plastids and with the plasma membrane. We hypothesize that the sporopollenin precursors for both the Ubisch bodies and exine pollen wall are synthesized in the tapetal plastids and are transported to the tapetal cell surface via the ER. The microspore plastids appear to be involved in activities other than precursor synthesis: plastid proliferation in young microspores, and starch synthesis later in development. Plants treated with the chemical hybridizing agent RH0007 show a pattern of development similar to that shown by untreated control plants through the meiosis stage. In the young microspore stage the exine wall is deposited irregularly and is thinner than that of control plants. In many cases the microspores are seen to have wavy contours. With the onset of vacuolation, microspores become plasmolyzed and abort. The tapetal cells in RH0007-treated locules divide normally through the meiosis stage. Less sporopollenin is deposited in the Ubisch bodies, and the pattern is less regular than that of the control. In many cases, the tapetal cells expand into the locule. At the base of one of the locules treated with a dosage of RH0007 that causes 95% male sterility, several microspores survived and developed into pollen grains that were sterile. The conditions at the base of the locule may have reduced the osmotic stress on the microspores, allowing them to survive. Preliminary work showed that the extractable quantity of carotenoids in RHOOO7-treated anthers was slightly greater than in controls. We concluded that RH0007 appears to interfere with the polymerization of carotenoid precursors into the exine wall and Ubisch bodies, rather than interfering with the synthesis of the precursors.  相似文献   

15.
Summary Pollen grains from Betula pendula were fixed in a mixture of p-formaldehyde and cetylpyridinium chloride (CPC) for the precipitation of soluble pollen glycoproteins. After dehydration and embedding at low temperatures in the water-soluble resin, Lowicryl K4M, ultrathin sections of the pollen grains were incubated using specific antibodies against birch-pollen extract and protein-A/gold complexes. Antigen activity was found in the CPC-precipitated surface material and within the exine (bacular cavities) and the cytoplasm (except for starch grains and lipidic droplets). There was no labelling within the intine. The region of the germinal aperture also showed a very low degree of antigen activity. The control sections were almost completely free of background staining.  相似文献   

16.
In this paper, pollen grains of 32 species of the genus Iris in China were examined under light microscope and scanning elrctron microscope. Pollen grains in Iris of China are navicular or subspheroidal. According to the characters of aperture and shape, pollen grains may be divided into four types: (1) Monocolpate (distal): pollen grains navicular or subspheroidal, exine reticulate. (2) Monocolpate-colpoidal: pollen grains subspheroidal, exine pilate. (3) 2-syncolpate: polen grains subspheroidal or navicular, exine reticulate. (4) No aperture: pollen grains subspheroidal; exine verrucate. The evolutional trends of aperture and exine ornamentation are traced and systematic po-sitions of some species are discussed based on characteristics of pollen grains and other organs.  相似文献   

17.
Pollen of Crocus biflorus Miller subsp. biflorus from natural habitats of Tusculum (Frascati, near Rome, Italy) has been studied in order to compare its structure and physiology to pollen of other Crocus species belonging to the Crocus sativus group. Mature pollen grains are rounded, 60 μm in diameter, in-aperturate (but with surface incisions where exine is lacking). DAPI staining reveals a spindle-shaped generative nucleus which is intensely fluorescent, and vegetative nucleus which is less fluorescent, and is elongated with numerous lobes. At anthesis the pollen is bicellular, but about 2% of tricellular grains occur among the pollen grains released from the anthers as well as on both naturally or handpollinated stigmas. Pollen germination is low in vitro, but higher in vivo. The pollen tubes are of normal shape. An electron-dense surface coat is sometimes visible on the exine, which in many cases, is detached from the exine. The vegetative cytoplasm is very rich in glycolipid bodies surrounded by endoplasmic reticulum. The generative cell has a lobed cell wall and is surrounded by the vegetative nucleus.  相似文献   

18.
H. G. Dickinson  P. R. Bell 《Planta》1972,107(3):205-215
Summary In the microsporangium of Pinus the outer layer of the peritapetal membrane and the pro-orbicular cores are not only formed in a similar manner, but are composed of apparently identical materials. Precursors for this lipoidal material are produced by the tapetal protoplasts, as are the precursors of sporopollenin. Production the precursors is sequential and appears to involve different cytoplasmic structures.The sporopollenin synthesised by the tapetum condenses upon the pro-orbicular cores, the peritapetal membrane, the exine initials and, on fragmentation of the tapetum, parts of the disintegrating cytoplasm. The evident unpolarised nature of the tapetal protoplasts, and the sequential nature of the synthesis of the lipoid and the sporopollenin by them, may point to orbicule formation in gymnosperms being a necessary by-product of the development of the peritapetal membrane.  相似文献   

19.
The pollen wall of Canna generalis Bailey is exceptionally thick, but only a minor part of it contains detectable amounts of sporopollenin. The sporopollenin is in isolated spinules at the exine surface and in the intine near the plasma membrane. There is no sporopollenin in the > 10 μ thick channeled region between spinules and intine. We suggest that the entire pollen wall of C. generalis is similar to the thick intine and thin exine typical for germinal apertures in many pollen grain types. Considered functionally, the Canna pollen wall may offer an infinite number of sites for pollen tube initiation and would differ significantly from grains that are inaperturate in the sense of an exine lacking definite germinal apertures.  相似文献   

20.
Pollen of some species of the genus Quercus shows rod-shaped substructures in fresh or acetolysed exines, while in other species rod substructure is mostly masked by sporopollenin. Oxidation with potassium permanganate removes exine substance (sporopollenin) from between the rod substructures. We propose that the rods include receptors for sporopollenin. The sporopollenin between rods we refer to as ‘receptor-independent sporopollenin’. Pollen of Typha, when mature, has tectal surfaces with concave tops and sides, whereas during development the tectal surfaces are smoothly rounded. After acetolysis treatment followed by potassium permanganate the tectum surfaces again appear rounded. When these exines are subsequently eroded by a fast atom source, rod-shaped substructures are seen to protrude from the tectum. These structures are equivalent in size and shape to the rods of the exine of Quercus. Sporopollenin that accumulates over and masks rod substrucutre is less resistant to our degradative methods than the sporopollenin in rod structures of exines. We suggest that the exine material we call “receptor-independent sporopollenin” be given a simple positive name, such as masking-sporopollenin or abbreviated to masking-spn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号