首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of dihydropyridine agonists and antagonists on neuronal voltage sensitive calcium channels was investigated. The resting intracellular calcium concentration of synaptosomes prepared from whole brain was 110 +/- 9 nM, as assayed by the indicator quin 2. Depolarisation of the synaptosomes with K+ produced an immediate increase in [Ca2+]i. The calcium agonist Bay K 8644 and antagonist nifedipine did not affect [Ca2+]i under resting or depolarising conditions. In addition, K+ stimulated 45Ca2+ uptake into synaptosomes prepared from the hippocampus was insensitive to Bay K 8644 and PY 108-068 in normal or Na+ free conditions. In neuronally derived NG108-15 cells the enantiomers of the dihydropyridine derivative 202-791 showed opposite effects in modulating K+ stimulated 45Ca2+ uptake. (-)-R-202-791 inhibited K+ induced 45Ca2+ uptake with an IC50 of 100 nM and (+)-S-202-791 enhanced K+ stimulated uptake with an EC50 of 80 nM. These results suggest that synaptosomal voltage sensitive calcium channels either are of a different type to those found in peripheral tissues and cells of neural origin or that expression of functional effects of dihydropyridines requires different experimental conditions to those used here.  相似文献   

2.
Intraterminal free Ca2+ concentration modulates the subsequent release of neurotransmitters. Depolarization of synaptosomes with 29 mM K+ augments cytosolic free Ca2+ concentration, which is triphasic, the peak times being at 10, 60, and 180 s. We examined the characteristics of each elevation of cytosolic free Ca2+ concentration in rat brain synaptosomes which had been preincubated for 3 min with a Ca2+-channel blocker, such as La3+, diltiazem, nifedipine, or verapamil, and under conditions of hypoxia or acidosis. The concentration of free Ca2+ in the quin-2-loaded rat brain synaptosomes was detected fluorometrically. All these elevations were suppressed in the presence of 200 microM EGTA or 100 microM La3+. At the first phase, the elevation of cytosolic free Ca2+ concentration with high K+ stimuli was significantly inhibited by La3+ (20 microM) or by acidosis (pH 6.7). On the other hand, diltiazem, which is a more potent blocker of the release of Ca2+ from the mitochondria, inhibited the increasing cytosolic free Ca2+ concentration at the third phase in a concentration-dependent manner. Hypoxia also showed inhibition at the third phase. These results suggest that the augmentation of high K+-evoked cytosolic free Ca2+ concentration may be due to the influx of extracellular Ca2+. The increase in cytosolic free Ca2+ concentration at the third phase is no doubt linked to the mitochondrial function.  相似文献   

3.
The nature of downhill Ca2+ net-transport into human erythrocytes was investigated using the experimental models of Ca2+ pump inhibition by vanadate and of intracellular chelation of Ca2+ by quin2. Ca2+ uptake by erythrocytes loaded with 0.5 mM vanadate and suspended in 145 mM Na+ -5 mM K+ media was reduced by about 60% when medium K+ was raised to 80 mM. Organic and inorganic Ca2+ entry blockers such as nifedipine (10(-5) M), verapamil (10(-4) M), diltiazem (10(-4) M), Co2+ (1.5 mM) and Cu2+ (0.1 mM) as well as the K+ channel blocker quinidine (1mM) inhibited Ca2+ uptake in 145 mM Na+ -5 mM K+ media by 60-75%. Flunarizine was less effective. In vanadate-loaded cells suspended in 70 mM Na+ -80 mM K+ media, in contrast, flunarizine exerted a dose-dependent inhibition of Ca2+ uptake by up to 80% at 10(-5) M, the other blockers being ineffective (except for verapamil at 10(-4) M). A similar pattern of inhibition was seen in quin2-loaded erythrocytes. The different susceptibility towards inhibitors may indicate that passive Ca2+ uptake by vanadate-loaded erythrocytes suspended in 145 mM Na+ -5 mM K+ media, on the one hand, and by vanadate-loaded erythrocytes suspended in 70 mM Na+ -80 mM K+ media as well as by quin2-loaded erythrocytes, on the other hand, is mediated by two different transport components.  相似文献   

4.
We have pharmacologically characterized voltage sensitive calcium channels (VSCCs) in GH3 cells, an anterior pituitary clonal cell line known to secrete prolactin and growth hormone. Raising the medium K+ concentration from 5 to 50 mM caused an immediate increase in net 45Ca2+ uptake which remained apparent over a 15 minute time course. 45Ca2+ uptake was maximally stimulated nearly 10-fold over basal levels. This K+-induced stimulation of Ca2+ uptake was not prevented by 10-5M tetrodotoxin or by replacing sodium with choline in the assay medium. Ca2+ uptake was, however, inhibited by several VSCC antagonists: nitrendipine, D-600, diltiazem and Cd2+. Further, the novel dihydropyridine VSCC agonists, BAY K8644 and CGP 28392, enhanced 50 mM K+-stimulated 45Ca2+ uptake and these effects were blocked by nitrendipine.  相似文献   

5.
Platelet-activating factor (PAF) is an autocrine trophic/survival factor for the preimplantation embryo. PAF induced an increase in intracellular calcium concentration ([Ca2+]i) in the 2-cell embryo that had an absolute requirement for external calcium. L-type calcium channel blockers (diltiazem, verapamil, and nimodipine) significantly inhibited PAF-induced Ca2+ transients, but inhibitors of P/Q type (omega-agatoxin; omega-conotoxin MVIIC), N-type (omega-conotoxin GVIA), T-type (pimozide), and store-operated channels (SKF 96365 and econazole) did not block the transient. mRNA and protein for the alpha1-C subunit of L-type channels was expressed in the 2-cell embryo. The L-type calcium channel agonist (+/-) BAY K 8644 induced [Ca2+]i transients and, PAF and BAY K 8644 each caused mutual heterologous desensitization of each other's responses. Depolarization of the embryo (75 mM KCl) induced a [Ca2+]i transient that was inhibited by diltiazem and verapamil. Whole-cell patch-clamp measurements detected a voltage-gated channel (blocked by diltiazem, verapamil, and nifedipine) that was desensitized by prior responses of embryos to exogenous or embryo-derived PAF. Replacement of media Ca2+ with Mn2+ allowed Mn2+ influx to be observed directly; activation of a diltiazem-sensitive influx channel was an early response to PAF. The activation of a voltage-gated L-type calcium channel in the 2-cell embryo is required for normal signal transduction to an embryonic trophic factor.  相似文献   

6.
Aluminum has been shown to have neurotoxic effects, but the mechanisms by which it acts are not well understood. Because it has been reported that aluminum can interact with Ca2+-binding sites, the possibility that aluminum might interfere with Ca2+ influx into synaptosomes was examined. At concentrations of 50 microM and greater, aluminum significantly inhibited the fast phase (0-1 s) of the voltage-dependent uptake of 45Ca2+ into synaptosomes. Higher concentrations of aluminum also reduced 45Ca2+ uptake measured at 1 s in nondepolarizing media and inhibited the slow phase of 45Ca2+ uptake into synaptosomes whether they were suspended in either low K or high K media. The possibility that aluminum competitively inhibits the fast phase of Ca2+ influx was investigated. Aluminum (250 microM) increased the apparent KT (concentration of Ca2+ at which Ca2+ transport is half maximal) for 45Ca2+ of fast phase voltage-dependent channels and slightly decreased the maximal influx (Jmax). These effects are characteristic of a mixed type inhibitor, and the apparent Ki for Al3+ is estimated to be 0.64 mM. The interaction of aluminum with the fast phase of voltage-dependent calcium influx may disrupt intraneuronal calcium homeostasis and may also represent a means by which aluminum could accumulate intraneuronally.  相似文献   

7.
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization.  相似文献   

8.
Contractions of guinea pig trachea in the absence and presence of indomethacin to LTD4 greater than LTC4 greater than K+ greater than histamine greater than acetylcholine were reduced following a 45 minute exposure of the tissues to calcium-free Krebs' solution (Ca2+-free Krebs' solution), were further reduced by a transient exposure to EGTA (1.25 mM) in Ca2+-free Krebs' solution and were virtually abolished when tested in the presence of EGTA (0.125 mM) in Ca2+-free Krebs' solution. In normal Krebs' solution (2.5 mM Ca2+) the Ca2+ entry blockers nifedipine (N) much greater than D-600 greater than verapamil (V) greater than diltiazem (D) almost completely abolished the contractions to K+ but blocked only a component of the maximum response to the other agonists. After exposure to Ca2+-free Krebs' solution for 45 minutes, any residual contractions to LTC4 & LTD4, were reversed by low concentrations of N (0.3 microM) or D-600 (2.1 microM). Leukotrienes appear to mobilize a superficial and a bound store of Ca2+ which gains entry through at least two types of Ca2+ channels (or mechanisms), one of which is blocked by N and D600. K+-induced contractions appear to be dependent on superficial and tightly bound Ca2+ but entry is solely through channels which are blocked by the Ca2+ entry blockers studied. Contraction to histamine and acetylcholine persisted following exposure of the tissues to Ca2+ free Krebs' solution but contractile activity was virtually abolished in Ca2+ free Krebs' solution containing EGTA. Residual contractions to histamine and part of the residual contractions to acetylcholine in Ca2+-free Krebs' solution were blocked by low dose N (0.3 microM) or D600 (2.1 microM). These findings suggest a major role for extracellular Ca2+ during spasmogen-induced contraction in this tissue.  相似文献   

9.
1. Effects of Ca2+ agonist and antagonists on cytosolic free Ca2+ concentration [( Ca2+]i)were studied using quin2. 2. Nicardipine (NIC), diltiazem (DIL) and verapamil (VER) had no effect on the rise in [Ca2+]i evoked by carbachol. Methoxamine-elevated [Ca2+]i was inhibited by VER but not by NIC and DIL. 3. All Ca2+ antagonists tested produced a decline of [Ca2+]i elevated by isoproterenol to the resting level. 4. The addition of 30 mM K+ gradually elevated [Ca2+]i in normal and Ca2+-free media, but it did not increase 45Ca2+ uptake into cells. BAY K 8644 did not increase [Ca2+]i. 5. We suggest that voltage-sensitive Ca2+ channels are lacking and that at least 2 distinct receptor-operated Ca2+ channels exist in rat parotid cells.  相似文献   

10.
The effects of the Ca2+ channel blockers verapamil, nifedipine, and diltiazem on triiodothyronine (T3) and thyroxine (T4) uptake were tested in cultured cardiomyocytes from 2-day-old rats. Experiments were performed at 37 degrees C in medium with 0.5% BSA for [125I]T3 (100 pM) or 0.1% BSA for [125I]T4 (350 pM). The 15-min uptake of [125I]T3 was 0.124 +/- 0.013 fmol/pM free T3 (n = 6); [125I]T4 uptake was 0.032 +/- 0.003 fmol/pM free T4 (n = 12). Neither T3 nor T4 uptake was affected by 1% DMSO (diluent for nifedipine and verapamil). Uptake of [125I]T3 but not of [125I]T4 was dose dependently reduced by incubation with 1-100 microM verapamil (49-87%, P < 0.05) or nifedipine (53-81%, P < 0.05). The relative decline in [125I]T3 uptake after 4 h of incubation with 10 microM verapamil or nifedipine was less than after 15 min or 1 h, indicating that the major inhibitory effect of the Ca2+ channel blockers occurred at the level of the plasma membrane. The reduction of nuclear [125I]T3 binding by 10 microM verapamil or nifedipine was proportional to the reduction of cellular [125I]T3 uptake. Diltiazem (1-100 microM) had no dose-dependent effect on [125I]T3 uptake but reduced [125I]T4 uptake by 45% (P < 0.05) at each concentration tested. Neither the presence of 20 mM K+ nor the presence of low Ca2+ in the medium affected [125I]T3 uptake. In conclusion, the inhibitory effects of Ca2+ channel blockers on T3 uptake in cardiomyocytes are not secondary to their effects on Ca2+ influx but, rather, reflect interference with the putative T3 carrier in the plasma membrane.  相似文献   

11.
S M Dunn 《Biochemistry》1988,27(14):5275-5281
The voltage dependence of binding of the calcium channel antagonist, (+)-[3H]PN200-110, to rat brain synaptosomes and the effects of dihydropyridines on 45Ca2+ uptake have been investigated. Under nondepolarizing conditions (+)-[3H]PN200-110 binds to a single class of sites with a Kd of 0.07 nM and a binding capacity of 182 fmol/mg of protein. When the synaptosomal membrane potential was dissipated either by osmotic lysis of the synaptosomes or by depolarization induced by raising the external K+ concentration, there was a decrease in affinity (approximately 7-fold) with no change in the number of sites. The effects of calcium channel ligands on 45Ca2+ uptake by synaptosomes have been measured as a function of external potassium concentration, i.e., membrane potential. Depolarization led to a rapid influx of 45Ca2+ whose magnitude was voltage-dependent. Verapamil (100 microM) almost completely inhibited calcium uptake at all potassium concentrations studied. In contrast, the effects of dihydropyridines (2 microM) appear to be voltage-sensitive. At relatively low levels of depolarization (10-25 mM K+) nitrendipine and PN200-110 completely inhibited 45Ca2+ influx, whereas the agonist Bay K8644 slightly potentiated the response. At higher K+ concentrations an additional dihydropyridine-insensitive component of calcium uptake was observed. These results provide evidence for the presence of dihydropyridine-sensitive calcium channels in synaptosomes which may be activated under conditions of partial depolarization.  相似文献   

12.
The contribution of Ca2+ channels and Na+/Ca2+ exchange to Ca2+ uptake in rat brain synaptosomes upon long- (t greater than or equal to 30 s) and short-term (t less than 30 s) depolarization by high K+ was studied by measuring the 45Ca content and free Ca2+ concentration (from Quin-2 fluorescence). At 37 degrees C, the system responsible for the K+-stimulated uptake of 45Ca (t greater than or equal to 30 s) and the Na+/Ca+ exchanger are characterized by a similar concentration dependence of external Ca2+ (Ca0(2+] and K0+ as well as by an equal sensitivity to verapamil (Ki = approximately 20-40 microM) and La2+ (Ki = approximately 50 microM). These data and the results from predepolarization suggest that the 45Ca entry into synaptosomes at t greater than or equal to 30 s is due to the activation of Na+/Ca+ exchange caused by its electrogenic component, while the insignificant contribution of Ca2+ channels can be accounted for by their inactivation. At low temperatures (2-4 degrees C) which decelerate the inactivation, the initial phase of 45Ca uptake is fully provided for by Ca2+ channels, showing a lower (as compared to the exchanger) affinity for Ca0(2+) (K0.5 greater than 1 mM)m a greater sensitivity to La3+ (Ki = approximately 0.2-0.3 microM) and verapamil (Ki = approximately 2-3 microM); these channels are fully inactivated by predepolarization with K0+, ouabain and batrachotoxin. The Ca2+ channels can be related to T-type channels, since they are not blocked by nicardipine and niphedipine.  相似文献   

13.
We have used a resting (5 mM K+) or depolarizing (60 mM K+) choline-based medium, and a nondepolarizing sodium-based or choline-based medium, to characterize the inhibitory potential of tricyclic antidepressants against the voltage-dependent calcium channels or the Na(+)-Ca2+ exchange process, respectively, in synaptosomes from rat brain cortex. Imipramine, desipramine, amitriptyline, and clomipramine inhibited net K(+)-induced 45Ca uptake with similar IC50 values (26-31 microM), and this uptake was also inhibited by diltiazem with an IC50 of 36 microM; these results indicate an inhibition of voltage-dependent calcium channels by tricyclic antidepressants. The net uptake of 45Ca induced by Na(+)-Ca2+ exchange was also inhibited by the four tricyclic antidepressants tested, but not by diltiazem; imipramine (IC50 = 94 microM) was a more potent inhibitor of this process than desipramine (IC50 = 151 microM), and the IC50 values of amitriptyline (107 microM) and clomipramine (97 microM) were similar to that of imipramine. Some degree (approximately 25%) of brain calcium channel blockade could be present at the steady-state concentrations of tricyclic antidepressants expected to occur therapeutic use of these compounds to treat depression or panic disorder.  相似文献   

14.
Opiate alkaloids and peptides are reported to inhibit 45Ca2+ binding to synaptic plasma membranes and uptake into brain synaptosomes. We have examined the effects of a number of opiates on 45Ca2+ uptake in a clonal cell line NCB20 which expresses multiple opioid binding sites. The cells express voltage-dependent calcium channels that are blocked by verapamil and nifedipine. In contrast to brain, 45Ca2+ uptake in these cells, in normal or high potassium medium, is unaffected by opiates. This difference may be due to the particular receptor types; the delta and sigma sites of these cells do not inhibit 45Ca2+ uptake.  相似文献   

15.
We have undertaken a detailed study of the mechanisms of maintenance of intracellular Ca2+ homeostasis in human polymorphonuclear neutrophils (PMN) and its implications for phagocytosis and IgG Fc receptor (FcR) signaling. When PMN were incubated in Ca(2+)-free medium, cytoplasmic calcium concentration ([Ca2+]i) was markedly depressed and intracellular stores were depleted of calcium. [Ca2+]i in these depleted cells increased within 1 min when PMN were placed in medium containing Ca2+ and then decreased to a level close to the normal basal [Ca2+]i, replenishing the intracellular Ca2+ pools. LaCl3 prevented entry of Ca2+ into Ca(2+)-depleted PMN, but the calcium channel blockers nifedipine, diltiazem, and verapamil did not. Nifedipine and diltiazem but not verapamil inhibited the movement of Ca2+ from cytosol to intracellular stores. Nifedipine and diltiazem inhibited the normal increase in [Ca2+]i from aggregated IgG binding to FcR and also prevented formyl-methionyl-leucyl-phenyl-alanine (fMLP)-induced [Ca2+]i rise. Verapamil had no effect on either an fMLP- or IgG-mediated increase in [Ca2+]i. Consistent with this, nifedipine and diltiazem inhibited fMLP-stimulated phagocytosis (which is dependent on an increase in [Ca2+]i) when PMN had repleted intracellular stores. In contrast, LaCl3 inhibited fMLP-stimulated ingestion only in PMN which had intracellular store depleted. None of these compounds had any effect on phorbol dibutyrate-stimulated ingestion (which is independent of a [Ca2+]i rise). In summary, these data show that Ca2+ is in rapid equilibrium between intracellular and extracellular compartments in PMN. Exchange of cytoplasmic Ca2+ with the extracellular space is inhibited by LaCl3, while exchange of Ca2+ between the cytosol and intracellular stores is inhibited by the dihydropyridine nifedipine and the benzothiazepine diltiazem. These data suggest that these drugs, which are known to regulate some plasma membrane Ca2+ channels in excitable cells, can also regulate Ca2+ release from intracellular stores in PMN and that this regulation may have significant effects on PMN function.  相似文献   

16.
The inhibitory effects of the Ca2+ channel antagonists D-600, diltiazem, nifedipine and seven 1,4-dihydropyridine analogs of nifedipine against 80 mM K+ depolarization induced responses in guinea pig trachea, parenchyma, and pulmonary artery and rat renal and mesenteric artery preparations were determined. Together with similar data previously obtained for guinea pig ileum and bladder, these data permitted an assessment of tissue selectivity of action in smooth muscles of a series of Ca2+ channel antagonists under constant conditions (saline composition) and an identical challenge (K+ depolarization). Very similar rank orders of activity were expressed in all tissues suggesting that the same basic structure-activity relationship operates. However, the series of antagonists were significantly less active in respiratory smooth muscle than in other visceral or vascular smooth muscles. pA2 values for a series of 1,4-dihydropyridine antagonists measured in guinea pig taenia coli against Ca2+-induced responses in K+-depolarizing media correlated with mean inhibitory concentration values against K+-induced responses, suggesting that the latter were an appropriate measure of antagonist potency. pA2 values measured for nifedipine, D-600, and diltiazem against Ca2+-induced responses in taenia coli in the presence of a depolarizing K+ saline, or methylfurmethide, histamine, or 5-hydroxytryptamine did not differ, suggesting that the same channels were activated regardless of stimulant.  相似文献   

17.
The characteristics of the release of endogenous dopamine and noradrenaline from rat brain synaptosomes were studied using HPLC with an electrochemical detector. The spontaneous release of dopamine and noradrenaline was inhibited by approximately 50-60% in a Ca2(+)-free medium or a 100 microM La3(+)-containing medium. Also, the high-K+ (30 mM)-evoked release of dopamine and noradrenaline was inhibited by approximately 50-60% in a Ca2(+)-free medium or a 100 microM La3(+)-containing medium. From these results, the ratio of the Ca2(+)-dependent component to the total release of noradrenaline seemed to be similar to that of dopamine. On the other hand, 20 microM La3+ or 1 microM diltiazem inhibited both the spontaneous and 30 mM K(+)-evoked release of dopamine by approximately 50-60% but inhibited neither the spontaneous nor the 30 mM K(+)-evoked release of noradrenaline. The K(+)-evoked rise in intrasynaptosomal Ca2+ concentration was mostly blocked in Ca2(+)-free medium or 100 microM La3(+)-containing medium but was only partially blocked by 20 microM La3+ or 1 microM diltiazem. These data indicate alternative possibilities in that the Ca2(+)-dependent release of noradrenaline might be less sensitive to a change of intracellular Ca2+ concentration than that of dopamine and that the calcium channels directly involved in the noradrenaline release may be more resistant to diltiazem and La3+ than those involved in the dopamine release.  相似文献   

18.
The role of dibutyryl 3',5'-cyclic adenosine monophosphate (dibutyryl cAMP) as putative second messenger for parathyroid hormone (PTH) in regulating canine proximal tubular basolateral membrane Na+-Ca2+ exchange and passive calcium permeability was assessed, as was the nature of this passive calcium permeability. Dibutyryl cAMP (50 mg) infused in vivo over 30 min increased fractional phosphate excretion from 4.9 +/- 1.8% to 20.5 +/- 4.6%, P less than 0.05, n = 6, but had no effect on either passive Ca2+ efflux or sodium-stimulated Ca2+ efflux from Ca2+-preloaded basolateral membrane vesicles (BLMV). Both of these mechanisms have been previously shown to be stimulated by PTH. Further studies were performed to investigate the mechanism of the passive calcium flux. Calcium uptake by BLMV was blocked by lanthanum (La3+) but not by the calcium-channel blocker verapamil. La3+ blocked efflux of Ca2+ from preloaded vesicles when it was placed in the external solution. This La3+-blockable efflux was larger in potassium equivalent BLMV prepared from normal dogs than in BLMV prepared from thyroparathyroidectomized dogs. Benzamil produced 50% inhibition of sodium-stimulated Ca2+ uptake at 250 microM whereas neither amiloride nor diltiazem achieved 50% inhibition at the maximal doses studied. Benzamil, 1 mM, had no effect on passive calcium efflux and neither did the substitution of sucrose for potassium, which has been shown to affect Ca2+-Ca2+ exchange by the Na+-Ca2+ exchanger. This suggests that the calcium flux under potassium equivalent conditions was not mediated by Ca2+-Ca2+ exchange by the Na+-Ca2+ exchanger. These results demonstrate that the basolateral membrane of proximal tubular cells possesses both a Na+-Ca2+ exchanger inhibitable by benzamil and a passive calcium permeability not inhibited by benzamil nor by verapamil but by La3+. Neither of these two mechanisms of calcium flux was affected by dibutyryl cAMP whereas both have been shown to be stimulated by PTH.  相似文献   

19.
Cadmium uptake and toxicity via voltage-sensitive calcium channels   总被引:14,自引:0,他引:14  
The mechanism of cellular uptake of cadmium, a highly toxic metal ion, is not known. We have studied cadmium uptake and toxicity in an established secretory cell line, GH4C1, which has well characterized calcium channels. Nimodipine, an antagonist of voltage-sensitive calcium channels, protected cells against cadmium toxicity by increasing the LD50 for CdCl2 from 15 to 45 microM, whereas the calcium channel agonist BAY K8644 decreased the LD50. Organic calcium channel blockers of three classes protected cells from cadmium toxicity at concentrations previously shown to block high K+-induced 45Ca2+ influx and secretion. Half-maximal protective effects were obtained at 20 nM nifedipine, 4 microM verapamil, and 7 microM diltiazem. Increasing the extracellular calcium concentration from 20 microM to 10 mM also protected cells from cadmium by causing a 5-fold increase in the LD50 for CdCl2. Neither the calcium channel antagonist nimodipine nor the agonist BAY K8644 altered intracellular metallothionein concentrations, while cadmium caused a 9-20-fold increase in metallothionein over 18 h. Cadmium was a potent blocker of depolarization-stimulated 45Ca2+ uptake (IC50 = 4 microM), and the net uptake of cadmium measured with 109Cd2+ was less than 0.3% that of calcium. Although the rate of cadmium uptake was low relative to that of calcium, entry via voltage-sensitive calcium channels appeared to account for a significant portion of cadmium uptake; 109Cd2+ uptake at 30 min was increased 57% by high K+/BAY K8644, which facilitates entry through channels. Furthermore, calcium channel blockade with 100 nM nimodipine decreased total cell 109Cd2+ accumulation after 24 h by 63%. These data indicate that flux of cadmium through dihydropyridine-sensitive, voltage-sensitive calcium channels is a major mechanism for cadmium uptake by GH4C1 cells, and that pharmacologic blockade of calcium channels can afford dramatic protection against cadmium toxicity.  相似文献   

20.
Y Nomura  M Tohda 《FEBS letters》1987,216(1):40-44
Depolarized stimulation 1.5-fold increased Ca2+ influx which was inhibited by pretreatment with verapamil or LaCl3. Treatment with pertussis toxin, islet-activating protein (IAP), induced a reduction in 50 mM K+-induced Ca2+ influx and stimulated adenylate cyclase (AC) activity in NG108-15 cells. However, addition of dibutyryl cAMP or forskolin treatment elevating cAMP level exerted no effects on a depolarization-induced Ca2+ influx. Dissociated B-oligomer of IAP after treatment with dithiothreitol and ATP increased a depolarization-evoked Ca2+ influx. It is suggested that inhibitory GTP-binding protein (G1) or other IAP substrate proteins could directly be involved in Ca2+ influx via voltage-sensitive Ca2+ channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号