首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
Abstract: The multisubunit γ-aminobutyric acid type A (GABAA) receptor is heterogeneous in molecular and pharmacological aspects. We used quantitative autoradiographic techniques to generate detailed pharmacological profiles for the binding of the GABAA-receptor ionophore ligand tert -[35S]butylbicyclophosphorothionate ([35S]TBPS) and its modulation by GABA and the GABAA antagonists bicuculline and 2'-(3'-carboxy-2',3'-propyl)-3-amino-6- p -methoxyphenylpyrazinium bromide (SR 95531). Regional differences in the actions of bicuculline and SR 95531 were correlated with the expression of 13 GABAA subunits in brain as reported previously. In some brain regions SR 95531 reduced [35S]TBPS binding much more than bicuculline, as illustrated by high ratios of bicuculline- to SR 95531-modulated [35S]TBPS binding. This ratio correlated positively with α2-subunit mRNA levels. Binding that was equally affected by SR 95531 and bicuculline occurred prominently in regions with abundant α1 mRNA expression. The present findings thus reveal a novel pharmacological heterogeneity based on differences between α1 and α2 subunit-containing GABAA receptors. The data aid in developing GABAA-receptor subtype-specific antagonists and in establishing receptor domains critical for the actions of GABAA antagonists.  相似文献   

2.
Abstract: Using receptors expressed from mouse brain mRNA in Xenopus oocytes, we found that enhancement of type A γ-aminobutyric acid (GABAA) receptor-gated Cl channel response is a common action of structurally diverse anesthetics, suggesting that the GABAA receptor plays an important role in anesthesia. To determine if GABAA receptor subunit composition influences actions of anesthetics, we expressed subunit cRNAs in Xenopus oocytes and measured effects of enflurane on GABA-activated Cl currents. Potentiation of GABA-activated currents by enflurane was dependent on the composition of GABAA receptor protein subunits; the order of sensitivity was α1β1 > α1β1γ2s1β1γ2L > total mRNA. The results suggest that anesthetics with simple structures may act on the GABAA receptor protein complex to modulate the Cl channel activity and provide a molecular explanation for the synergistic clinical interactions between benzodiazepines and general anesthetics.  相似文献   

3.
Abstract: The effects of GABA on the kinetics of tert -[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to the convulsant site of GABAA receptors were studied in membrane suspensions from the cerebral cortex of newborn (1-day-old) and adult (90-day-old) rats. TBPS dissociation was biphasic in neonates and adults, indicating that more than one interconvertible state of [35S]TBPS binding sites may be present in the cerebral cortex. In the absence of GABA, the fast ( t 1/2, 11 min) and slow ( t 1/2, 77 min) components of TBPS dissociation in newborn rats were approximately fourfold slower than in adults. The acceleration of the dissociation rates caused by 2 µ M GABA, however, was more robust in neonates than in adults (six- to ninefold vs. twofold increase, respectively). Moreover, the dissociation rates of TBPS in membranes preincubated with 2 µ M GABA (dissociation started by adding 40 µ M picrotoxin) were two- to fourfold slower than in membranes preincubated without GABA (dissociation started by adding 40 µ M picrotoxin plus 2 µ M GABA). Taken together, these results suggest that (1) the closed state of GABAA receptors is associated with a more effective steric barrier for the binding of TBPS in neonates compared with adults, (2) GABA produces a larger acceleration of the binding kinetics of TBPS in neonates than in adults, and (3) long incubations with GABA may cause receptor desensitization, which in turn slows down the dissociation rates of TBPS.  相似文献   

4.
Abstract: The effect of lindane administration on the specific binding of ligands to different sites on the GABAA receptor-ionophore complex was studied in the rat brain by receptor mapping autoradiography. [3H]Muscimol (Mus), [3H]flunitrazepam (Flu), and t -[35S]butylbicyclophosphorothionate (TBPS) were used as specific ligands of GABA, benzodiazepine, and picrotoxinin binding sites, respectively. Rats received a single oral dose of 30 mg/kg lindane and they were classified into two groups according to the absence or presence of convulsions. Vehicle-treated groups acted as controls. The effect of the xenobiotic on ligand binding was measured in different brain areas and nuclei 12 min or 5 h after its administration. Lindane induced a generalized decrease in [35S]TBPS binding, which was present shortly after dosing. In addition, [3H]Flu binding was increased in lindane-treated animals, this modification also appearing shortly after administration but diminishing during the studied time. Finally, lindane induced a decrease in [3H]Mus binding, which became more evident over time. These modifications were observed both in the presence and in the absence of convulsions. However, an increase in [3H]-Mus binding was detected shortly after lindane-induced convulsions. The observed decrease in [35S]TBPS binding is in agreement with the postulated action of lindane at the picrotoxinin binding site of the GABAA receptor chloride channel. The effects observed on the binding of [3H]Flu and [3H]Mus may be secondary to the action of lindane as an allosteric antagonist of the GABAA receptor.  相似文献   

5.
Abstract: The pentameric subunit composition of a large population (36%) of the cerebellar granule cell GABAA receptors that show diazepam (or clonazepam)-insensitive [3H]Ro 15-4513 binding has been determined by immunoprecipitation with subunit-specific antibodies. These receptors have α6, α1, γ2S, γ2L, and β2 or β3 subunits colocalizing in the same receptor complex.  相似文献   

6.
Abstract: GABAA and benzodiazepine receptors are allosterically coupled, and occupation of either receptor site increases the affinity of the other. Chronic exposure of primary neuronal cultures to benzodiazepine agonists reduces these allosteric interactions. Neurons express multiple GABAA receptor subunits, and it has been suggested that uncoupling is due to changes in the subunit composition of the receptor. To determine if uncoupling could be observed with expression of defined subunits, mouse Ltk cells stably transfected with GABAA receptors (bovine α1, β1, and γ2L subunits) were treated with flunitrazepam (Flu) or clonazepam. The increase in [3H]Flu binding affinity caused by GABA (GABA shift or coupling) was significantly reduced in cells treated chronically with the benzodiazepines, whereas the K D and B max of [3H]Flu binding were unaffected. The uncoupling caused by clonazepam treatment occurred rapidly with a t 1/2 of ∼30 min. The EC50 for clonazepam treatment was ∼0.3 µ M , and cotreatment with the benzodiazepine antagonist Ro 15-1788 (5.6 µ M ) prevented the effect of clonazepam. The uncoupling observed in this system was not accompanied by receptor internalization, is unlikely to be due to changes in receptor subunit composition, and probably represents posttranslational changes. The rapid regulation of allosteric coupling by benzodiazepine treatment of the stably transfected cells should provide insights to the mechanisms of coupling between GABAA and benzodiazepine receptors as well as benzodiazepine tolerance.  相似文献   

7.
Abstract: Tolerance to and withdrawal from pentobarbital were induced in rats by continuous intracerebroventricular infusion via subcutaneously implanted osmotic minipumps. In situ hybridization of GABAA receptor α1- and β3-subunit mRNA was conducted using synthetic 3'- end 35S-dATP-labeled oligodeoxynucleotide probes. Results were quantified by film densitometry. In animals that were tolerant to pentobarbital, levels of α1-subunit mRNA were decreased in hippocampus, superior colliculus, and inferior colliculus, but levels of β3-subunit mRNA were not affected. Dramatically increased levels of GABAA receptor subunit mRNA were observed in animals 24 h after withdrawal from chronic pentobarbital treatment. These increases occurred in cerebral cortex and cerebellum for the α1 subunit and in cerebral cortex only for the β3-subunit. These data provide further support to the structural and pharmacological GABAA receptor heterogeneity in discrete brain areas. The observed changes of subunit expression may underlie, at least in part, the receptor up- and down-regulation observed in receptor ligand binding studies.  相似文献   

8.
Abstract: The expression of six mRNA species (α2, α3, α5, β2, β3, and γ2) encoding for GABAA receptor subunits was followed in cultured early postnatal cortical neurons by in situ hybridization histochemistry. In untreated control cultures it was found that these subunit mRNA expression profiles closely follow those seen during development in vivo. α3, α5, and β3 subunit expression declined, α2 expression increased, whereas β2 and γ2 subunit mRNA expression remained relatively constant. To test the hypothesis that GABAA receptor stimulation regulates these expression profiles, we tested the effect of a GABAA receptor positive modulator, allopregnanolone, and a GABAA receptor noncompetitive antagonist, tert -butylbicyclophosphorothionate (TBPS). It was found that allopregnanolone augmented the rate at which the α3, α5, or β3 subunit mRNA expression declined and prevented the increase in α2 subunit mRNA expression. As well, allopregnanolone down-regulated β2 subunit mRNA expression. TBPS, on the other hand, up-regulated α3, α5, β2, and β3 subunit mRNA expression. It also down-regulated the expression of α2 subunit mRNA. Both allopregnanolone and TBPS had no effect on γ2 subunit mRNA expression. These results imply that the developmental switchover of GABA receptor subunit mRNA expression is regulated by GABAA receptor activity.  相似文献   

9.
Abstract: Ethanol dependence and tolerance involve perturbation of GABAergic neurotransmission. Previous studies have demonstrated that ethanol treatment regulates the function and expression of GABAA receptors throughout the CNS. Conceivably, changes in receptor function may be associated with alterations of subunit composition. In the present study, a comprehensive (1–12 weeks) ethanol treatment paradigm was used to evaluate changes in GABAA receptor subunit expression in several brain regions including the cerebellum, cerebral cortex, ventral tegmental area (VTA) (a region implicated in drug reward/dependence), and the hippocampus (a region involved in memory/cognition). Expression of α1 and α5 subunits was regulated by ethanol in a region-specific and time-dependent manner. Following 2–4 weeks of administration, cortical and cerebellar α1 and α5 subunit immunoreactivity was reduced. In the VTA, levels of α1 subunit immunoreactivity were significantly decreased after 12 weeks but not 1–4 weeks of treatment. Hippocampal α1 subunit immunoreactivity and mRNA content were also significantly reduced after 12 but not after 4 weeks of treatment. In contrast, α5 mRNA content was increased in this brain region. These data indicate that chronic ethanol administration alters GABAA receptor subunit expression in the VTA and hippocampus, effects that may play a role in the abuse potential and detrimental cognitive effects of alcohol.  相似文献   

10.
Abstract: A previous report has described the presence of f-[35S]- butylbicyclophosphorothionate binding sites and GABA-gated CI flux in the human neuroblastoma IMR-32 cell line. We now report the further characterisation of this binding site and, even more important, the identification of the GABAA receptor α3 subunit expressed in these cells. Cell membranes prepared from IMR-32 cells were screened by immunoblotting for reactivity with various GABAA receptor a subunit-specific antibodies. Of these, only anti-Cys α3 454-467 antibodies recognised specifically and in a dose-dependent manner an immunoreactive band. This Mr58,000 immunoreactive species and the N -deglycosylated derivatives were both coincident with the respective homologues found in both calf cerebral cortex membranes and purified receptor preparations. This is the first report of the identification of a specific GABAA receptor subunit expressed in a human cell line, and it therefore provides a convenient model for the study of receptor structure and regulation.  相似文献   

11.
Zolpidem is a positive allosteric modulator of GABAA receptors with sensitivity to subunit composition. While it acts with high affinity and efficacy at GABAA receptors containing the α1 subunit, it has a lower affinity to GABAA receptors containing α2, α3, or α5 subunits and has a very weak efficacy at receptors containing the α5 subunit. Here, we show that replacing histidine in position 105 in the α5 subunit by cysteine strongly stimulates the effect of zolpidem in receptors containing the α5 subunit. The side chain volume of the amino acid residue in this position does not correlate with the modulation by zolpidem. Interestingly, serine is not able to promote the potentiation by zolpidem. The homologous residues to α5H105 in α1, α2, and α3 are well-known determinants of the action of classical benzodiazepines. Other studies have shown that replacement of these histidines α1H101, α2H101, and α3H126 by arginine, as naturally present in α4 and α6, leads to benzodiazepine insensitivity of these receptors. Thus, the nature of the amino acid residue in this position is not only crucial for the action of classical benzodiazepines but in α5 containing receptors also for the action of zolpidem.  相似文献   

12.
Abstract: His101 of the GABAA receptor α1 subunit is an important determinant of benzodiazepine recognition and a major site of photolabeling by [3H]flunitrazepam. To investigate further the chemical specificity of the residue in this position, we substituted it with phenylalanine, tyrosine, lysine, glutamate, glutamine, or cysteine. The mutant α subunits were coexpressed with the rat β2 and γ2 subunits in TSA201 cells, and the effects of the substitutions on the binding of benzodiazepine site ligands were examined. [3H]Ro 15-4513 bound to all mutant receptors with equal or greater affinity than to the wild-type receptor. However, flunitrazepam and ZK93423 recognition was adversely affected by substitutions of the amino acid in this position. The binding of the antagonists, Ro 15-1788 and ZK93426, was also sensitive to the mutations, with the largest decreases in affinity occurring with the tyrosine, lysine, and glutamate substitutions. In all mutants that recognized flunitrazepam, GABA potentiated the binding of this ligand to a similar extent, suggesting that it is a full agonist at these receptors. The effects of GABA on the binding of Ro 15-1788 and Ro 15-4513 suggest that their efficacies may have been changed by some of the substitutions. This study further emphasizes the importance of the residue at position 101 in both ligand recognition and pharmacological effect.  相似文献   

13.
Abstract: Polyclonal antibodies were raised to synthetic peptides having amino acid sequences corresponding with the N- or C-terminal part of the γ-aminobutyric acidA (GABAA) receptor α5-subunit. These anti-peptide α5(2–10) or anti-peptide α5(427–433) antibodies reacted specifically with GABAA receptors purified from the brains of 5–10-day-old rats in an enzyme-linked immunosorbent assay and were able to dose-dependently immunoprecipitate up to 6.3 or 13.1% of the GABAA receptors present in the incubation, respectively. In immunoblots, each of these antibodies reacted with the same two protein bands with apparent molecular mass of 53 or 57 kDa. After exhaustive treatment of purified GABAA receptors with N -Glycanase, each of these antibodies identified two proteins with apparent molecular masses of 46 and 48 kDa. Additional treatment of GABAA receptors with neuraminidase and O -Glycanase resulted in an apparently single protein with molecular mass of 47 kDa, which again was identified by both the anti-peptide α5(2–10) and the anti-peptide α5(427–433) antibody. These results indicate the existence of at least two different α5-sub-units of the GABAA receptor that differ in their carbohydrate content. In contrast to other α- or β-subunits of GABAA receptors so far investigated, at least one of these two α5-subunits contains O-linked carbohydrates.  相似文献   

14.
Abstract: This study examined γ-aminobutyric acidA (GABAA) receptor function in cultured rat cerebellar granule cells by using microphysiometry following chronic flunitrazepam exposure, and correlated the findings with the α1 and β2/3 subunit protein expression and [3H]muscimol binding after the same treatment paradigm. Flunitrazepam treatment reduced ( p < 0.05) the maximal GABA-stimulated increase in extracellular acidification rate ( E max) (16.5 ± 1.2% and 11.3 ± 1.0%, 2-day control and treated cells, respectively; 17.4 ± 1.0% and 9.9 ± 0.7%, 7-day control and treated cells, respectively; best-fit E max± SEM, n = 7), without affecting the GABA concentration required to elicit 50% of maximal response (EC50) (1.2 ± 1.7 and 2.3 ± 1.8 µ M , 2-day control and treated cells, respectively; 1.7 ± 1.5 and 1.5 ± 1.5 µ M , 7-day control and treated cells, respectively; best-fit EC50± SEM, n = 7). Flunitrazepam exposure also abolished the flunitrazepam potentiation of the GABA response, caused a transient reduction of the GABAA receptor α1 and β2/3 subunit proteins over the initial 2 days, but did not alter [3H]muscimol binding compared with vehicle-treated cells. The results suggest that changes in GABAA receptor subunit protein expression, rather than loss of [3H]muscimol binding sites, underlie the chronic flunitrazepam-mediated desensitisation of GABAA receptor function.  相似文献   

15.
GABAA receptors are the major inhibitory neurotransmitter receptors in the brain. Some of them are targets of benzodiazepines that are widely used in clinical practice for their sedative/hypnotic, anxiolytic, muscle relaxant and anticonvulsant effects. In order to rationally separate these different drug actions, we need to understand the interaction of such compounds with the benzodiazepine-binding pocket. With this aim, we mutated residues located in the benzodiazepine-binding site individually to cysteine. These mutated receptors were combined with benzodiazepine site ligands carrying a cysteine reactive group in a defined position. Proximal apposition of reaction partners will lead to a covalent reaction. We describe here such proximity-accelerated chemical coupling reactions of α1S205C and α1T206C with a diazepam derivative modified at the C-3 position with a reactive isothiocyanate group (–NCS). We also provide new data that identify α1H101C and α1N102C as exclusive sites of the reaction of a diazepam derivative where the –Cl atom is replaced by a –NCS group. Based on these observations we propose a relative positioning of diazepam within the benzodiazepine-binding site of α1β2γ2 receptors.  相似文献   

16.
Abstract: The large intracellular loop (IL) of the γ2 subunit of the cloned human γ-aminobutyric acidA (GABAA) receptor (γ2IL) was expressed in bacteria as glutathione- S -transferase and staphylococcal protein A fusion proteins. Mice were immunized with the fusion proteins (one protein per animal), and monoclonal antibodies were obtained. Six monoclonal antibodies reacted with the γ2IL moiety of the fusion proteins. Three of these monoclonal antibodies also immunoprecipitated a high proportion of the GABAA/benzodiazepine receptors from bovine and rat brain and reacted with a wide 44,000–49,000-Mr peptide band in immunoblots of affinity-purified GABAA receptors. These monoclonal antibodies are valuable reagents for the molecular characterization of the GABAA receptors in various brain regions.  相似文献   

17.
Abstract: The accumulation and utilization of [35S]3'-phos-phoadenosine 5'-phosphosulfate (PAPS) were studied in slices from rat cerebral cortex incubated in the presence of inorganic [35S]sulfate. [35S]PAPS levels were directly evaluated after either isolation by ion-exchange chromatography or quantitative enzymatic transfer of its active [35S]sulfate group to an acceptor phenol under the action of added phenolsulfotransferase activity. [35S]PAPS formation was also indirectly followed by incubating slices in the presence of β-naphthol and measuring the levels of [35S]β-naphthyl sulfate ([35S]β-NS). Whereas [35S]PAPS levels rapidly reached a plateau, [35S]β-NS formation proceeded linearly with time for at least 1h, an observation indicating that the nucleotide was continuously synthesized and utilized for endogenous sulfation reactions. [35S]PAPS formation in ices was completely and rather potently blocked by 2,6-dichloro-4-nitrophenol (IC50= .10 μM), an inhibitor of the PAPS-synthesizing enzyme system in a cytosolic preparation. [35S]PAPS accumulation and [35S]β-NS'formation were strongly reduced by depolarizing agents such as potassium or veratridine. At millimolar concentrations, various excitatory amino acids (glutamate, aspartate, cysteate, quisqualate, and homocysteate) also elicited similar effects, whereas kainate and N -methyl-D-aspartate were inactive. This suggests that PAPS synthesis is turned off when cerebral cells are strongly depolarized.  相似文献   

18.
Abstract: Levels of mRNA for the major subunits of the GABAA receptor were assayed in the rat pituitary anterior and neurointermediate lobes by ribonuclease protection assay. α1, β1, β2, β3, and γ2s were found to be the predominant subunits in the anterior lobe, whereas α2, α3, β1, β3, γ2s, and γ1 were the predominant subunits expressed in the neurointermediate lobe. α5, α6, and δ subunits were not detectable. Hill and Scatchard analysis of [3H]muscimol binding to anterior and neurointermediate lobe membranes showed high-affinity binding sites with dissociation constants of 5.6 and 4.5 n M , respectively, and Hill coefficients near 1. Muscimol sites were present at a maximum of 126 fmol/mg in the anterior lobe and 138 fmol/mg in the neurointermediate lobe. The central-type benzodiazepine antagonist [3H]Ro 15-1788 bound to a high-affinity site with a dissociation constant of 1.5 n M in both tissues, at a maximum of 60 fmol/mg in anterior pituitary and 72 fmol/mg in neurointermediate lobe. A Hill coefficient of 1 was measured for this site in both tissues. Assays of CL 218 872 displacement of Ro 15-1788 were consistent with a pure type I benzodiazepine site in the anterior lobe and a pure type II site in the intermediate lobe. These results are consistent with both tissue-specific expression of particular GABAA receptor subunits and receptor heterogeneity within individual cells in the pituitary.  相似文献   

19.
Abstract: Most general anesthetics produce two distinct actions at GABAA receptors. Thus, these drugs augment GABA-gated chloride currents (referred to as an indirect action) and, at higher concentrations, elicit chloride currents in the absence of GABA (referred to as a direct action). Because a β subunit appears to be required for the direct action of intravenous anesthetics in recombinant GABAA receptors, site-directed mutagenesis of the β3 subunit was performed to identify amino acid residues that are critical for this action. In HEK293 cells expressing a prototypical GABAA receptor composed of α1β3γ2 subunits, mutation of amino acid 290 from Asn to Ser dramatically reduced both etomidate-induced chloride currents and its ability to stimulate [3H]flunitrazepam binding. By contrast, the ability of etomidate to augment GABA-gated chloride currents and GABA-enhanced [3H]flunitrazepam binding was retained. The demonstration that the direct, but not the indirect, actions of etomidate are dependent on β3(Asn290) indicates that the dual actions of this intravenous anesthetic at GABAA receptors are mediated via distinct loci.  相似文献   

20.
GABAA receptors are pentameric ligand-gated ion channels that are major mediators of fast inhibitory neurotransmission. Clinically relevant GABAA receptor subtypes are assembled from α5(1-3, 5), β1-3 and the γ2 subunit. They exhibit a stoichiometry of two α, two β and one γ subunit, with two GABA binding sites located at the α/β and one benzodiazepine binding site located at the α/γ subunit interface. Introduction of the H105R point mutation into the α5 subunit, to render α5 subunit-containing receptors insensitive to the clinically important benzodiazepine site agonist diazepam, unexpectedly resulted in a reduced level of α5 subunit protein in α5(H105R) mice. In this study, we show that the α5(H105R) mutation did not affect cell surface expression and targeting of the receptors or their assembly into macromolecular receptor complexes but resulted in a severe reduction of α5-selective ligand binding. Immunoprecipitation studies suggest that the diminished α5-selective binding is presumably due to a repositioning of the α5(H105R) subunit in GABAA receptor complexes containing two different α subunits. These findings imply an important role of histidine 105 in determining the position of the α5 subunit within the receptor complex by determining the affinity for assembly with the γ2 subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号