首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
P B O'Hara  S H Koenig 《Biochemistry》1986,25(6):1445-1450
A human serum transferrin complex was prepared in which Gd(III) was substituted for Fe(III) at the two metal-binding sites. Characteristic changes upon metal binding in both the UV absorption of ligated tyrosines and the solvent proton longitudinal magnetic relaxation rates demonstrated 2/1 metal stoichiometry and pH-dependent binding constants. Binding studies were complicated both by binding of Gd(III) to nonspecific sites on transferrin at pH less than or equal to 7 and by complexation of the Gd(III) by the requisite bicarbonate anion at pH greater than or equal to 6.0. A unique Gd(III) electron spin resonance spectrum, with a prominent signal at g = 4.96, was observed for the specific Gd(III)-transferrin complex. The major features of this spectrum were fit successfully by a model Hamiltonian which utilized crystal field parameters similar to those determined for Fe(III) in transferrin [Aasa, R. (1970) J. Chem. Phys. 52, 3919-3924]. The magnetic field dependence of the solvent proton relaxation rate was measured as a function of both pH and metal ion concentration. An observed biphasic dependence of the relaxation rate on metal concentration is attributed to either sequential metal binding to the two iron-binding sites with different relaxation properties or random binding to two sites that are similar but show conformationally induced changes in relaxation properties as the second metal is bound. The increase in the solvent proton relaxation rate with pH is consistent with a model in which a proton of a second coordination sphere water molecule is hydrogen bonded to a metal ligand which becomes deprotonated at pH 8.5.  相似文献   

2.
Experiments were conducted to characterise the changes, especially of water status in germinating and non-germinating wheat seeds by nuclear magnetic resonance (NMR) spectroscopy. NMR relaxation time (T2) measurements showed tri-phasic or bi-phasic characteristics during different stages of hydration, depending on the seed's ability to germinate. Component analysis of T2 data revealed the existence of only two components, bound and bulk water, in dry seeds. In contrast, both the germinating and non-germinating wheat seeds had a three-component water proton system (bound, bulk and free water) in phase I of hydration. During the lag phase (phase II) of hydration, bulk water component of non-germinating seeds disappeared completely, resulting in a two component water proton system. Nevertheless, the three component water proton system was observed in the germinating seeds in phase II. Following phase II, rapid hydration (phase III) was observed in germinating seeds only. Water protons were re-organised and there were increases in bulk and free water but decreases in bound water concomitantly. Comparison of the physical state of water in these seeds by NMR spectroscopy with that of tissue leachate conductivity measurement suggests that the seed membrane system was affected more evidently in non-germinating seeds, leading to the disorganised cell structure. The present study provides evidence that the reorganisation of physical state of water in germinating wheat seeds during hydration is essential for its subsequent event of germination.  相似文献   

3.
Direct laser excitation of aqueous Eu(III) bound to specific RNA fragments was used to probe the metal-binding sites of the anticodon loop of tRNA(Phe) from E. coli and of a tetraloop containing a GNRA consensus sequence. Binding of Mg(II) or Eu(III) to either RNA fragment resulted in a higher melting transition, but no global change in structure was observed. Aqueous Eu(III) exhibits a single weak excitation peak at 17273 cm(-1), the intensity of which increased upon addition of the tRNA loop fragment. Analysis of incremental increases in the luminescence intensity upon complexation with the tRNA loop indicated a stoichiometry of one high-affinity Eu(III)-binding site per loop fragment, with a Kd of 1.3 +/- 0.2 microM. Competition experiments between Eu(III) and Mg(II) were consistent with the two metal ions binding to a common site and with an approximately 30-fold lesser affinity of the tRNA loop for Mg(II) than for Eu(III). The rate of luminescence decay following excitation of Eu(III) bound to the tRNA loop corresponded to displacement of up to 4-5 (of a possible 9) waters of hydration on binding to the tRNA loop. By comparison, Eu(III) binds to the DNA analogue of the tRNA loop with an 8-fold lesser affinity and one fewer direct coordination site than to the RNA sequence, suggesting that a 2'OH of RNA is one of the direct ligands. In contrast with the absence of a shift in the excitation peak of aqueous Eu(III) upon formation of the tRNA loop complex, direct excitation of Eu(III) bound to a GNRA tetraloop fragment resulted in a substantially blue-shifted excitation peak (17290 cm(-1)). The tetraloop fragment also has a single Eu(III)-binding site, with a Kd of 12 +/- 3 microM. The bound Eu(III) was competed by Mg(II), although the relative affinity for Mg(II) was approximately 150-450-fold less than that for Eu(III). The Eu(III)-binding site of the tetraloop site is highly dehydrated, with approximately 7 water molecules displaced upon binding by RNA ligands, suggesting that the blue-shift of the excitation peak is the result of Eu(III) specifically bound in a nonpolar site within the GNRA loop structure.  相似文献   

4.
A Lanir  S Gradstajn  G Navon 《Biochemistry》1975,14(2):242-248
Longitudinal and transverse proton relaxation rates of water in solutions of manganese(II) bovine carbonic anhydrase have been measured by pulsed nuclear magnetic resonance spectrometry as a function of temperature (2-35 degrees), frequently (5-100 MHz) and pH. The pH dependence of the longitudinal relaxation rate was fitted to a sigmoidal curve with a pK value at 7.8, while the esterase activity of the manganese(II) enzyme in the hydrolysis of p-nitrophenyl acetate revealed an inflection point at pK = 8.2. The hydration number of manganese(II) carbonic anhydrase could be derived using either the frequency dependence of T1p or the T1p/T2p ratio at only one (high) frequency. Both treatments are in agreement with a model in which one water molecule is bound to the metal at high pH. At low pH the relaxation data imply that no-H20 exists in the first coordination sphere of the manganese ion. The various parameters which are responsible for the proton relaxation mechanisms have been evaluated and are compared to other manganese(II) enzyme systems. The pH dependence of the binding constant of manganese to apocarbonic anhydrase is also reported.  相似文献   

5.
The binding of cations by parvalbumins was studied by the proton relaxation enhancement (PRE) method using the paramagnetic probes Gd(III) and Mn(II). Gd(III) appears as a specific probe of the primary sites CD and EF with the following binding parameters: n = 2, KdGd = 0.5 x 10(-11) M and epsilon b = 2.3. The low value of epsilon b is the result of a nearly complete dehydration of the protein bound ions. Competition experiments between Gd(III) and various diamagnetic cations show the following order of affinity for the EF and CD sites: Mg2+ less than Zn2+ less than Sr2+ less than Ca2+ less than Cd2+ less than La3+ less than or equal to Gd3+. Mn 2+ is a specific probe of a secondary site with the following binding parameters: n = 1, KdMn = 0.6 x 10(-3) M and epsilon b = 17. The high value of epsilon b suggests that the protein bound Mn(II) has retained most of its hydration shell. Competition experiments between (Mn(II) and different cations show similar affinities for this site: Ca2+ less than or equal to Mg2+ less than or equal to Cd2+ less than or equal to Mn2+. This secondary site is located near the EF primary site.  相似文献   

6.
Longitudinal and traverse proton magnetic relaxation rates for water in the hydration sphere of Gd(III) bound to non-immune rabbit IgG (immunoglobulin G) have been determined over a wide range of frequencies (4-84 MHz) at constant temperature (19 degrees C) using pulsed nuclear magnetic resonance spectrometry. The rates have also been determined at temperatures between 0 and 40 degrees C for two frequencies (61 and 84 MHz). The rates were fitted to existing theory using a computer least-squares procedure. Further computer analysis was then carried out to determine the sensitivity of the best-fit error to variation in the variable parameters in the theoretical expressions used. These include the water co-ordination number (q) for which it was found large variations could occur (between approximately 2 and 8) for only small changes in the error of best-fit. It was concluded that a slow exchange contribution to the relaxation rates was important in deciding which parameters are poorly determined. A rotational correlation time (tau r) was obtained which suggested there might be considerable internal motion of the Fc region (C-terminal half of heavy-chain dimer) of the IgG molecule. However the possibility of large errors in this value prevented unequivocal conclusions being drawn.  相似文献   

7.
Longitudinal and transverse proton relaxation rates for water in the hydration spheres of Gd(III) bound to the non-immune rabbit IgG fragments Fc (C-terminal half of heavy-chain dimer), pFc' (C-terminal quarter of heavy-chain dimer) and Fab (N-terminal half of heavy and light chain) have been measured at a number of frequencies and temperatures using pulsed nuclear magnetic resonance spectrometry. For the fragments Fc and pFc', a full computer analysis showed that the results could be fitted by parameters of similar magnitude to those found previously for IgG. In contrast to the results for the other complexes the Fab -Gd(III) complex showed no slow exchange contribution to the relaxation rates. Under these circumstances it was found possible to obtain an accurate value for the hydration number (q) from measurements of the longitudinal and transverse relaxation rates at a chosen frequency such that the product of the nuclear Larmor frequency (omega1) and the correlation time for the dipolar relaxation processes (tauc) was approximately unity. Water-proton relaxation rates were also determined for the complex of Gd(III) with the Fv fragment of the mouse myeloma protein MOPC 315. A computer analysis of the results revealed a slow exchange contribution to the rates and this gave errors in the variable parameters similar to those observed previously for IgG, Fc and pFc'. The conclusions drawn from the different systems are discussed in terms of the present state of application of the proton relaxation enhancement technique in biology.  相似文献   

8.
Pulsed dye laser excitation spectroscopy of the 7F0----5D0 transition of Eu(III) reveals only a single peak as this ion is titrated into apocalmodulin. A titration based on the intensity of this transition shows that the first two Eu(III) ions bind quantitatively to two tight sites, followed by weaker binding (Kd = 2 microM) to two additional sites under conditions of high ionic strength (0.5 M KC1). This excitation experiment is also shown to be a general method for measuring contaminating levels of EDTA down to 0.2 microM in proton solutions. Experiments with Tb(III) using both direct laser excitation and indirect sensitization of Tb(III) luminescence through tyrosine residues in calmodulin also give evidence for two tight and two weaker binding sites (Kd = 2-3 microM). The indirect sensitization results primarily upon binding to the two weaker sites, implying that Tb(III) binds first to domains I and II, which are remote from tyrosine-containing domains III and IV. The 7F0----5D0 excitation signal of Eu(III) was used to measure the relative overall affinities of the tripositive lanthanide ions, Ln(III), across the series. Ln(III) ions at the end of the series are found to bind more weakly than those at the beginning and middle of the series. Eu(III) excited-state lifetime measurements in H2O and D2O reveal that two water molecules are coordinated to the Eu(III) at each of the four metal ion binding sites. Measurements of F?rster-type nonradiative energy-transfer efficiencies between Eu(III) and Nd(III) in the two tight sites were carried out by monitoring the excited-state lifetimes of Eu(III) in the presence and absence of the energy acceptor ion Nd(III).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Hydration of oxidized rubredoxin (Fe(III)(S-Cys)(4) center) was investigated by (1)H and (17)O relaxation measurements of bulk water as a function of the applied magnetic field (nuclear magnetic relaxation dispersion). Oxidized rubredoxin showed an increased water (1)H relaxation profile with respect to the diamagnetic gallium derivative or reduced species. Analysis of the data shows evidence of exchangeable proton(s) approximately 4.0-4.5 A from the metal ion, the exchange time being longer than 10(-10) s and shorter than 10(-5) s. The correlation time for the proton-electrons interaction is 7 x 10(-11) s and is attributed to the effective electron relaxation time. Its magnitude is consistent with the large signal linewidths of the protein donor nuclei, observed in high resolution NMR spectra. For reduced rubredoxin, such correlation time is proposed to be smaller than 10(-11) s. (17)O relaxation measurements suggest the presence of at least one long-lived protein-bound water molecule. Analogous relaxation measurements were performed on the C6S rubredoxin variant, whose iron(III) center has been previously shown to be coordinated to three cysteine residues and a hydroxide ion above pH 6. (1)H nuclear magnetic relaxation dispersion profiles indicate increased hydration with respect to the wild-type.  相似文献   

10.
Among the isozymes of carbonic anhydrase, isozyme III is the least efficient in the catalysis of the hydration of CO2 and was previously thought to be unaffected by proton transfer from buffers to the active site. We report that buffers of small size, especially imidazole, increase the rate of catalysis by human carbonic anhydrase III (HCA III) of (1) 18O exchange between HCO3- and water measured by membrane-inlet mass spectrometry and (2) the dehydration of HCO3- measured by stopped-flow spectrophotometry. Imidazole enhanced the rate of release of 18O-labeled water from the active site of wild-type carbonic anhydrase III and caused a much greater enhancement, up to 20-fold, for the K64H, R67H, and R67N mutants of this isozyme. Imidazole had no effect on the rate of interconversion of CO2 and HCO3- at chemical equilibrium. Steady-state measurements showed that the addition of imidazole resulted in increases in the turnover number (kcat) for the hydration of CO2 catalyzed by HCA III and for the dehydration of HCO3- catalyzed by R67N HCA III. These results are consistent with the transfer of a proton from the imidazolium cation to the zinc-bound hydroxide at the active site, a step required to regenerate the active form of enzyme in the catalytic cycle. Like isozyme II of carbonic anhydrase, isozyme III can be enhanced in catalytic rate by the presence of small molecule buffers in solution.  相似文献   

11.
 A novel heptacoordinating ligand consisting of a thirteen-membered tetraazamacrocycle containing the pyridine ring and bearing three methylenephosphonate groups (PCTP-[13]) has been synthesized. Its Gd(III) complex displays a remarkably high longitudinal water proton relaxivity (7.7 mM–1 s–1 at 25  °C, 20 MHz and pH 7.5) which has been accounted for in terms of contributions arising from (1) one water molecule bound to the metal ion, (2) hydrogen-bonded water molecules in the second coordination sphere, or (3) water molecules diffusing near the paramagnetic chelate. Variable-temperature 17O-NMR transverse relaxation data indicate that the residence lifetime of the metal-bound water molecule is very short (8.0 ns at 25  °C) with respect to the Gd(III) complexes currently considered as contrast agents for magnetic resonance imaging. Furthermore, GdPCTP-[13] interacts with human serum albumin (HSA), likely through electrostatic forces. By comparing water proton relaxivity data for the GdPCTP-[13]-HSA adduct, measured as a function of temperature and magnetic field strength, with those for the analogous adduct with GdDOTP (a twelve-membered tetraaza macrocyclic tetramethylenephosphonate complex lacking a metal-bound water molecule), it has been possible to propose a general picture accounting for the main determinants of the relaxation enhancement observed when a paramagnetic Gd(III) complex is bound to HSA. Basically, the relaxation enhancement in these systems arises from (1) water molecules in the hydration shell of the macromolecule and protein exchangeable protons which lie close to the interaction site of the paramagnetic complex and (2) the metal bound water molecule(s). As far as the latter contribution is concerned, the interaction with the protein causes an elongation of the residence lifetime of the metal-bound water molecule, which limits, to some extent, the potential relaxivity enhancement expected upon the binding of the paramagnetic complex to HSA. Received: 27 January 1997 / Accepted: 12 May 1997  相似文献   

12.
Water proton nuclear magnetic spin-lattice relaxation rates are reported as a function of magnetic field strength for aqueous solutions of manganese tetrakis(4-sulfophenyl)porphine complexes. The manganese(III) complex displays relaxation that is remarkably independent of temperature at low magnetic field and a magnetic field dependence that is characteristic of the electron spin relaxation rates, making a contribution to the correlation time that dominates the electron-nuclear coupling. The manganese(II) complex is much more effective in relaxing water protons, but the usual models of first coordination sphere and outer-sphere relaxation fail to account for the magnitude and the magnetic field dependence of the relaxation rates. The data suggest that the delocalization of the electron density into the ligand system provides an increase in the effectiveness of what may be called the outer-sphere paths for water proton relaxation.  相似文献   

13.
At least four of the intermediate states of Ca2+-ATPase (and presumably ion transport) can be trapped and characterized using water proton relaxation measurements. Gd3+ binds to two occluded Ca2+ transport sites on Ca2+-ATPase which have a low accessibility to solvent water. In the presence of the MgATP analogue Co(NH3)4AMPPCP, a new state for bound Gd3+ with one less water of hydration) is observed. In the presence of Co(NH3)4ATP or ATP, two additional states for bound Gd3+ are detected by NMR, the first of which probably represents an intermediate state of ATP hydrolysis. The latter is the most occluded Gd3+ site yet observed in these studies and corresponds to the highly occluded E1-P state observed with CrATP (Vilsen and Andersen, Biochim. Biophys. Acta 898, 313 (1987).  相似文献   

14.
Binding of thiocyanate and cyanide ions to Mn(III) protoporphyrin-apohorseradish peroxidase complex [Mn(III)HRP] was investigated by relaxation rate measurements (at 50.68 MHz) of 15N resonance of SC15N- and C15N-. At pH = 4.0 the apparent dissociation constant (KD) for thiocyanate and cyanide binding to Mn(III)HRP was deduced to be 156 and 42 mM, respectively. The pH dependence of the 15N line width as well as apparent dissociation constant for thiocyanate and cyanide binding were quantitatively analyzed on the basis of a reaction scheme in which thiocyanate and cyanide in deprotonated form bind to the enzyme in a protonated form. The binding of thiocyanate and cyanide to Mn(III)HRP was found to be facilitated by protonation of an ionizable group on the enzyme [Mn(III)HRP] with a pKa = 4.0. From competitive binding studies it was shown that iodide, thiocyanate and cyanide bind to Mn(III)HRP at the same site; however, the binding site for resorcinol is different. The apparent dissociation constant for iodide binding deduced from competitive binding studies was found to be 117 mM, which agrees very well with the iodide binding to ferric HRP. The binding of thiocyanate and cyanide was shown to be away from the metal center and the distance of the 15N of thiocyanate and cyanide from the paramagnetic manganese ion in Mn(III)HRP was found to be 6.9 and 6.6 A, respectively. Except for cyanide binding, these observations parallel with the iodide and thiocyanate ion binding to native Fe(III)HRP. Water proton relaxivity measurements showed the presence of a coordinated water molecule to Mn(III)HRP with the distance of Mn-H2O being calculated to be 2.6 A. The slow reactivity of H2O2 towards Mn(III)HRP could be attributed to the presence of water at the sixth coordination position of the manganese ion.  相似文献   

15.
The residue phenylalanine 198 (Phe 198) is a prominent cause of the lower activity of human carbonic anhydrase III (HCA III) compared with HCA II and other isozymes which have leucine at this site. We report the crystal structures of HCA III and the site-directed mutant F198L HCA III, both at 2.1 A resolution, and the enhancement of catalytic activity by exogenous proton donors containing imidazole rings. Both enzymes had a hexahistidine extension at the carboxy-terminal end, used to aid in purification, that was ordered in the crystal structures bound in the active site cavity of an adjacent symmetry-related enzyme. This observation allowed us to comment on a number of possible binding sites for imidazole and derivatives as exogenous proton donors/acceptors in catalysis by HCA III. Kinetic and structural evidence indicates that the phenyl side chain of Phe 198 in HCA III, about 5 A from the zinc, is a steric constriction in the active site, may cause altered interactions at the zinc-bound solvent, and is a binding site for the activation of catalysis by histidylhistidine. This suggests that sites of activation of the proton-transfer pathway in carbonic anhydrase are closer to the zinc than considered in previous studies.  相似文献   

16.
Water proton spin-lattice relaxation is studied in dilute solutions of bovine serum albumin as a function of magnetic field strength, oxygen concentration, and solvent deuteration. In contrast to previous studies conducted at high protein concentrations, the observed relaxation dispersion is accurately Lorentzian with an effective correlation time of 41 +/- 3 ns when measured at low proton and low protein concentrations to minimize protein aggregation. Elimination of oxygen flattens the relaxation dispersion profile above the rotational inflection frequency, nearly eliminating the high field tail previously attributed to a distribution of exchange times for either whole water molecules or individual protons at the protein-water interface. The small high-field dispersion that remains is attributed to motion of the bound water molecules on the protein or to internal protein motions on a time scale of order one ns. Measurements as a function of isotope composition permit separation of intramolecular and intermolecular relaxation contributions. The magnitude of the intramolecular proton-proton relaxation rate constant is interpreted in terms of 25 +/- 4 water molecules that are bound rigidly to the protein for a time long compared with the rotational correlation time of 42 ns. This number of bound water molecules neglects the possibility of local motions of the water in the binding site; inclusion of these effects may increase the number of bound water molecules by 50%.  相似文献   

17.
The dynamic properties of water in the hydration shell of hemoglobin have been studied by means of dielectric permittivity measurements and nuclear magnetic resonance spectroscopy. The temperature behavior of the complex permittivity of hemoglobin solutions has been measured at 3.02, 3.98, 8.59, and 10.80 GHz. At a temperature of 298 K the average rotational correlation time tau of water within a hydration shell of 0.5-nm thickness is determined from the activation parameters to be 68 +/- 10 ps, which is 8-fold the corresponding value of bulk water. Solvent proton magnetic relaxation induced by electron-nuclear dipole interaction between hemoglobin bound nitroxide spin labels and water protons is used to determine the translational diffusion coefficient D(T) of the hydration water. The temperature dependent relaxation behavior for Lamor frequencies between 3 and 90 MHz yields an average value D(298K) = (5 +/- 2) x 10(-10)m2 s-1, which is about one-fifth of the corresponding value of bulk water. The decrease of the water mobility in the hydration shell compared to the bulk is mainly due to an enhanced activation enthalpy.  相似文献   

18.
The interaction of aromatic donor molecules with manganese(III) protoporphyrin-apohorseradish peroxidase complex [Mn(III)HRP] was investigated by optical difference spectroscopy and relaxation rate measurements of 1H resonances of aromatic donor molecules (at 500 MHz). pH dependence of substrate proton resonance line-widths indicated that the binding was facilitated by protonation of an amino acid residue (with a pKa of 6.1), which is presumably distal histidine. Dissociation constants were evaluated from both optical difference spectroscopy and 1H-NMR relaxation measurements (pH 6.1). The dissociation constants of aromatic donor molecules were not affected by the presence of excess of I-, CN- and SCN-. From competitive binding studies it was shown that all these aromatic donor molecules bind to Mn(III)HRP at the same site, which is different from the binding site of I-, CN- and SCN-. Comparison of the dissociation constants between the different substrates suggests that hydrogen bonding of the donors with distal histidyl amino acid and hydrophobic interaction between the donors and active site contribute significantly towards the associating forces. Free energy, entropy and enthalpy changes associated with the Mn(III)HRP-substrate equilibrium have been evaluated. These thermodynamic parameters were found to be all negative. Distances of the substrate protons from the paramagnetic manganese ion of Mn(III)HRP were found to be in the range of 7.7 to 9.4 A. The Kd values, the thermodynamic parameters and the distances of the bound aromatic donor protons from metal center in the case of Mn(III)HRP were found to be very similar as in the case of native Fe(III)HRP.  相似文献   

19.
Chemical shift and relaxation time measurements on the water protons in polyelectrolyte solutions containing divalent paramagnetic counterions have shown the existence of three types of counterions: - site bound with loss of water molecules and partial or complete release of the electrostriction in the first hydration sphere, - atmospherically trapped with no change in hydration, - free. The overall stoichiometry of the two former is in agreement with Manning's fraction of condensed counterions. A complete analysis of the frequency dependent contribution of site bound counterions to the water protons relaxation times leads us to interesting conclusions on the modifications of the first hydration shell and on the life time of site binding.  相似文献   

20.
Water proton nuclear relaxation measurements are used to detect and characterize four distinct intermediate states for Gd3+ bound to Ca2+ sites of sarcoplasmic reticulum Ca2+-ATPase in complexes with ATP analogues. In the absence of nucleotides, Gd3+ binds to two occluded Ca2+ transport sites on Ca2+-ATPase which have a low accessibility to solvent water. In the presence of the nonhydrolyzable ATP analogue, Co(NH3)4AMPPCP, a new state for bound Gd3+ (still occluded and with fewer waters of hydration) is observed. In the presence of Co(NH3)4ATP or ATP, two additional states for bound Gd3+ are detected in the NMR studies. The first of these probably represents an intermediate state for bound Gd3+ during ATP hydrolysis. The latter is the most occluded Gd3+ site yet observed in these studies and is probably analogous to the highly occluded E1-P state observed with CrATP [(1987) Biochim. Biophys. Acta 898, 313-322].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号