首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Activities catalyzing the synthesis of fructose-2,6-bisphosphate (fructose-6-phosphate,2-kinase or Fru-6-P,2K) and its breakdown (fructose-2,6-bisphosphatase or Fru-2,6-P2ase) were identified in leaves of corn (Zea mays), a C4 plant. Fru-6-P,2K and Fru-2,6-P2ase were both localized mainly, if not entirely, in the leaf mesophyll cells. A partially purified preparation containing the two activities revealed that the kinase and phosphatase were regulated by metabolite effectors in a manner generally similar to their counterparts in C3 species. Thus, corn Fru-6-P,2K was activated by inorganic phosphate (Pi) and fructose-6-phosphate, and was inhibited by 3-phosphoglycerate and dihydroxyacetone phosphate. Fru-2,6-P2ase was inhibited by its products, fructose-6-phosphate and Pi. However, unlike its spinach equivalent, corn Fru-2,6-P2ase was also inhibited by 3-phosphoglycerate and, less effectively, by dihydroxyacetone phosphate. The C4 Fru-6-P,2K and Fru-2,6-P2ase were also quite sensitive to inhibition by phosphoenolpyruvate, and each enzyme was also selectively inhibited by certain other metabolites.  相似文献   

2.
The inhibition of rabbit liver fructose 1,6-bisphosphatase (EC 3.1.3.11) by fructose 2,6-bisphosphate (Fru-2,6-P2) is shown to be competitive with the substrate, fructose 1,6-bisphosphate (Fru-1,6-P2), with Ki for Fru-2,6-P2 of approximately 0.5 μm. Binding of Fru-2,6-P2 to the catalytic site is confirmed by the fact that it protects this site against modification by pyridoxal phosphate. Inhibition by Fru-2,6-P2 is enhanced in the presence of a noninhibitory concentration (5 μm) of the allosteric inhibitor AMP and decreased by modification of the enzyme by limited proteolysis with subtilisin. Fru-2,6-P2, unlike the substrate Fru-1,6-P2, protects the enzyme against proteolysis by subtilisin or lysosomal proteinases.  相似文献   

3.
Summary A quantative cytochemical assay for PPi-PFK activity in the presence of Fru-2,6-P2 is described along with its application to determine levels of activity in embryos of Pisum sativum and Avena sativa. The activity of ATP-PFK has also been studied in parallel as have PFK activities during the switch from dormant to non-dormant embryos in Avena sativa. PPi-PFK activity, has been demonstrated in all tissues of Pisum sativum embryos and of Avena sativa embryos including the scutellum and the aleurone layers. The PPi-PFK activity was greater than that of ATP-PFK in both dormant and non-dormant seeds though with only marginally more activity in the dormant as opposed to the non-dormant state.Abbreviations AMP adenosine monophosphate - ATP adenosine triphosphate - Fru-1,6-P2 fructose 1,6-bisphosphate - Fru-2,6-P2 fructose 2,6-bisphosphate - Fru-6-P fructose 6-phosphate - FB Pase 2 fructose 2,6-bisphosphatase (EC 3.1.3.46) - Gl-3-PD glyceraldehyde-3-phosphate dehydrogenase - NAD nicotinamide adenine dinucleotide - NBT nitroblue tetrazolium - PEP phosphoenolpyruvate - PFK 6-phosphofructokinase (EC 2.7.1.11) - PFK2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PPi pyrophosphate - PPi-PFK pyrophosphate: fructose 6-phosphate 1-phosphotransferase (EC 2.7.1.90) - PVA polyvinyl alcohol (G04/140 Wacke Chemical Company)  相似文献   

4.
Phosphoglucose isomerase negative mutant of mucoid Pseudomonas aeruginosa accumulated relatively higher concentration of fructose 1,6-bisphosphate (Fru-1,6-P2) when mannitol induced cells were incubated with this sugar alcohol. Also the toluene-treated cells of fructose 1,6-bisphosphate aldolase negative mutant of this organism produced Fru-1,6-P2 from fructose 6-phosphate in presence of ATP, but not from 6-phosphogluconate. The results together suggested the presence of an ATP-dependent fructose 6-phosphate kinase (EC 2.7.1.11) in mucoid P. aeruginosa.Abbreviations ALD Fru-1,6-P2 aldolse - DHAP dihydroxyacetone phosphate - F6P fructose 6-phosphate - G6P glucose 6-phosphate - Gly3P glyceraldehyde 3-phosphate - KDPG 2-keto 3-deoxy 6-phosphogluconate - PFK fructose 6-phosphate kinase - PGI phosphoglucose isomerase - 6PG 6-phosphogluconate  相似文献   

5.
Purified chicken liver 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase was phosphorylated either from fructose 2,6-bis[2-32P]phosphate or fructose 2-phosphoro[35S]thioate 6-phosphate. The turnover of the thiophosphorylated enzyme intermediate as well as the overall phosphatase reaction was four times faster than with authentic fructose 2,6-bisphosphate. Fructose 2-phosphorothioate 6-phosphate was 10-100-fold less potent than authentic fructose 2,6-bisphosphate in stimulating 6-phosphofructo-1-kinase and pyrophosphate:fructose 6-phosphate phosphotransferase, but about 10 times more potent in inhibiting fructose 1,6-bisphosphatase. The analogue was twice as effective as authentic fructose 2,6-bisphosphate in stimulating pyruvate kinase from trypanosomes.  相似文献   

6.
Fructose 2,6-bisphosphate (Fru-2,6-P2) is an important metabolite that controls glycolytic and gluconeogenic pathways in several cell types. Its synthesis and degradation are catalyzed by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2). Four genes, designated Pfkfb1-4, codify the different PFK-2 isozymes. The Pfkfb3 gene product, ubiquitous PFK-2 (uPFK-2), has the highest kinase/bisphosphatase activity ratio and is associated with proliferation and tumor metabolism. A transgenic mouse model that overexpresses uPFK-2 under the control of the phosphoenolpyruvate carboxykinase promoter was designed to promote sustained and elevated Fru-2,6-P2 levels in the liver. Our results demonstrate that in diet-induced obesity, high Fru-2,6-P2 levels in transgenic livers caused changes in hepatic gene expression profiles for key gluconeogenic and lipogenic enzymes, as well as an accumulation of lipids in periportal cells, and weight gain.  相似文献   

7.
How fructose 2,6-bisphosphate and metabolic intermediates interact to regulate the activity of the cytosolic fructose 1,6-bisphosphatase in vitro has been investigated. Mg2+ is required as an activator. There is a wide pH optimum, especially at high Mg2+. The substrate dependence is not markedly pH dependent. High concentrations of Mg2+ and fructose 1,6-bisphosphate are inhibitory, especially at higher pH. Fructose 2,6-bisphosphate inhibits over a wide range of pH values. It acts by lowering the maximal activity and lowering the affinity for fructose 1,6-bisphosphate, for which sigmoidal saturation kinetics are induced, but the Mg2+ dependence is not markedly altered. On its own, adenosine monophosphate inhibits competitively to Mg2+ and noncompetitively to fructose 1,6-bisphosphate. In the presence of fructose 2,6-bisphosphate, adenosine monophosphate inhibits in a fructose 1,6-bisphosphate-dependent manner. In the presence of adenosine monophosphate, fructose 2,6-bisphosphate inhibits in Mg2+-dependent manner. Fructose 6-phosphate and phosphate both inhibit competitively to fructose 1,6-bisphosphate. Fructose 2,6-bisphosphate does not affect the inhibition by phosphate, but weakens inhibition by fructose 6-phosphate. Dihydroxyacetone phosphate and hydroxypyruvate inhibit noncompetitively to fructose 1,6-bisphosphate and to Mg2+, but both act as activators in the presence of fructose 2,6-bisphosphate by decreasing the S0.5 for fructose 1,6-bisphosphate. A model is proposed to account for the interaction between these effectors.  相似文献   

8.
Studies on the entry of fructose-2,6-bisphosphate into chloroplasts   总被引:13,自引:2,他引:11       下载免费PDF全文
The regulatory metabolite fructose-2,6-bisphosphate (Fru-2,6-P2) has an important function in controlling the intermediary carbon metabolism of leaves. Fru-2,6-P2 controls two cytosolic enzymes involved in the interconversion of fructose-6-phosphate and fructose-1,6-bisphosphate (fructose-1,6-bisphosphatase and pyrophosphate, fructose-6-phosphate 1-phosphotransferase) and thereby controls the partitioning of photosynthate between sucrose and starch. It has been demonstrated that Fru-2,6-P2 is present mainly in the cytosol. Here we present evidence that Fru-2,6-P2 can be taken up by isolated intact chloroplasts but at a very slow rate (about 0.01 micromoles per milligram of chlorophyll per hour). This uptake is time and concentration dependent and is inhibited by PPi. When provided a physiological concentration of Fru-2,6-P2 (10 micromolar), chloroplasts accumulated up to 0.6 micromolar Fru-2,6-P2 in the stroma. Elevated plastid Fru-2,6-P2 levels had no effect on overall photosynthetic rates of isolated chloroplasts. The results indicate that, while Fru-2,6-P2 enters isolated chloroplasts at a sluggish rate, caution should be exercised in ascribing physiological importance to effects of Fru-2,6-P2 on chloroplast enzymes.  相似文献   

9.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

10.
β-d-Fructose-2,6-bisphosphate (Fru-2,6-P2) is an important regulator of eukaryotic glucose homeostasis, functioning as a potent activator of 6-phosphofructo-1-kinase and inhibitor of fructose-1,6-bisphosphatase. Pharmaceutical manipulation of intracellular Fru-2,6-P2 levels, therefore, is of interest for the treatment of certain diseases, including diabetes and cancer. [2-32P]Fru-2,6-P2 has been the reagent of choice for studying the metabolism of this effector molecule; however, its short half-life necessitates frequent preparation. Here we describe a convenient, economical, one-pot enzymatic preparation of high-specific-activity tritium-labeled Fru-2,6-P2. The preparation involves conversion of readily available, carrier-free d-[6,6′-3H]glucose to [6,6′-3H]Fru-2,6-P2 using hexokinase, glucose-6-phosphate isomerase, and 6-phosphofructo-2-kinase. The key reagent in this preparation, bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from human liver, was produced recombinantly in Escherichia coli and purified in a single step using an appendant C-terminal hexa-His affinity tag. Following purification by anion exchange chromatography using triethylammonium bicarbonate as eluant, radiochemically pure [6,6′-3H]Fru-2,6-P2 having a specific activity of 50 Ci/mmol was obtained in yields averaging 35%. [6,6′-3H]Fru-2,6-P2 serves as a stable, high-specific-activity substrate in a facile assay capable of detecting fructose-2,6-bisphosphatase in the range of 10−14 to 10−15 mol, and it should prove to be useful in many studies of the metabolism of this important biofactor.  相似文献   

11.
Fernie AR  Roscher A  Ratcliffe RG  Kruger NJ 《Planta》2001,212(2):250-263
The aim of this work was to establish the influence of fructose 2,6-bisphosphate (Fru-2,6-P2) on non-photosynthetic carbohydrate metabolism in plants. Heterotrophic callus lines exhibiting elevated levels of Fru-2,6-P2 were generated from transgenic tobacco (Nicotiana tabacum L.) plants expressing a modified rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Lines containing increased amounts of Fru-2,6-P2 had lower levels of hexose phosphates and higher levels of 3-phosphoglycerate than the untransformed control cultures. There was also a greater redistribution of label into the C6 position of sucrose and fructose, following incubation with [1-13C]glucose, in the lines possessing the highest amounts of Fru-2,6-P2, indicating a greater re-synthesis of hexose phosphates from triose phosphates in these lines. Despite these changes, there were no marked differences between lines in the metabolism of 14C-substrates, the rate of oxygen uptake, carbohydrate accumulation or nucleotide pool sizes. These data provide direct evidence that physiologically relevant changes in the level of Fru-2,6-P2 can affect pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) activity in vivo, and are consistent with PFP operating in a net glycolytic direction in the heterotrophic culture. However, the results also show that activating PFP has little direct effect on heterotrophic carbohydrate metabolism beyond increasing the rate of cycling between hexose phosphates and triose phosphates. Received: 29 March 2000 / Accepted: 13 June 2000  相似文献   

12.
Fructose 2,6-bisphosphate was identified in Saccharomyces cerevisiae grown on glucose both by its property to be an acid-labile stimulator of 6-phosphofructo 1-kinase and by its ability to be quantitatively converted into fructose 6-phosphate under mild acid conditions. Fructose 2,6-bisphosphate was undetectable in cells grown on non-glucose sources. When glucose was added to the culture, fructose 2,6-bisphosphate was rapidly synthesized, reaching within 1 min concentrations able to cause a profound inhibition of fructose 1,6-bisphosphatase and a great stimulation of 6-phosphofructo 1-kinase.  相似文献   

13.
Regulation of fructose 2,6-bisphosphate concentration in spinach leaves   总被引:8,自引:0,他引:8  
Fructose-6-phosphate 2-kinase and fructose-2,6-bisphosphatase have been partially purified from spinach leaves and their regulatory properties studied. Fructose-6-phosphate 2-kinase was activated by phosphate and fructose 6-phosphate, and inhibited by 3-phosphoglycerate and dihydroxyacetone phosphate. Fructose-2,6-bisphosphatase was inhibited by fructose 6-phosphate and phosphate. The interaction between these effectors was studied when they were varied, alone or in combination, over a range of concentrations representative of those in the cytosol of spinach leaf cells. In conditions when dihydroxyacetone phosphate or 3-phosphoglycerate rise, as is typical during photosynthesis, the fructose 2,6-bisphosphate level will decrease, which will favour sucrose synthesis. In conditions when fructose 6-phosphate accumulates, fructose 2,6-bisphosphate should rise, which will favour a restriction of sucrose synthesis and promotion of starch synthesis.  相似文献   

14.
Scott P  Lange AJ  Kruger NJ 《Planta》2000,211(6):864-873
The aim of this work was to examine the role of fructose 2,6-bisphosphate (Fru-2,6-P2) in photosynthetic carbon partitioning. The amount of Fru-2,6-P2 in leaves of tobacco (Nicotiana tabacum L. cv. Samsun) was reduced by introduction of a modified mammalian gene encoding a functional fructose-2,6-bisphosphatase (EC 3.1.3.46). Expression of this gene in transgenic plants reduced the Fru-2,6-P2 content of darkened leaves to between 54% and 80% of that in untransformed plants. During the first 30 min of photosynthesis sucrose accumulated more rapidly in the transgenic lines than in the untransformed plants, whereas starch production was slower in the transgenic plants. On illumination, the proportion of 14CO2 converted to sucrose was greater in leaf disks of transgenic lines possessing reduced amounts of Fru-2,6-P2 than in those of the control plants, and there was a corresponding decrease in the proportion of carbon assimilated to starch in the transgenic lines. Furthermore, plants with smaller amounts of Fru-2,6-P2 had lower rates of net CO2 assimilation. In illuminated leaves, decreasing the amount of Fru-2,6-P2 resulted in greater amounts of hexose phosphates, but smaller amounts of 3-phosphoglycerate and dihydroxyacetone phosphate. These differences are interpreted in terms of decreased inhibition of cytosolic fructose-1,6-bisphosphatase resulting from the lowered Fru-2,6-P2 content. The data provide direct evidence for the importance of Fru-2,6-P2 in co-ordinating chloroplastic and cytosolic carbohydrate metabolism in leaves in the light. Received: 8 February 2000 / Accepted: 25 April 2000  相似文献   

15.
Theodorou ME  Kruger NJ 《Planta》2001,213(1):147-157
A major problem in defining the physiological role of pyrophosphate:fructose 6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) is the 1,000-fold discrepancy between the apparent affinity of PFP for its activator, fructose 2,6-bisphosphate (Fru-2,6-P2), determined under optimum conditions in vitro and the estimated concentration of this signal metabolite in vivo. The aim of this study was to investigate the combined influence of metabolic intermediates and inorganic phosphate (Pi) on the activation of PFP by Fru-2,6-P2. The enzyme was purified to near-homogeneity from leaves of spinach (Spinacia oleracea L.). Under optimal in vitro assay conditions, the activation constant (K a) of spinach leaf PFP for Fru-2,6-P2 in the glycolytic direction was 15.8 nM. However, in the presence of physiological concentrations of fructose 6-phosphate, inorganic pyrophosphate (PPi), 3-phosphoglycerate (3PGA), phosphoenolpyruvate (PEP), ATP and Pi the K a of spinach leaf PFP for Fru-2,6-P2 was up to 2000-fold greater than that measured in the optimised assay and V max decreased by up to 62%. Similar effects were observed with PFP purified from potato (Solanum tuberosum L.) tubers. Cytosolic metabolites and Pi also influenced the response of PFP to activation by its substrate fructose 1,6-bisphosphate (Fru-1,6-P2). When assayed under optimum conditions in the gluconeogenic direction, the K a of spinach leaf PFP for Fru-1,6-P2 was approximately 50 μM. Physiological concentrations of PPi, 3PGA, PEP, ATP and Pi increased K a up to 25-fold, and decreased V max by over 65%. From these results it was concluded that physiological concentrations of metabolites and Pi increase the K a of PFP for Fru-2,6-P2 to values approaching the concentration of the activator in vivo. Hence, measured changes in cytosolic Fru-2,6-P2 levels could appreciably alter the activation state of PFP in vivo. Moreover, the same levels of metabolites increase the K a of PFP for Fru-1,6-P2 to an extent that activation of PFP by this compound is unlikely to be physiologically relevant. Received: 21 July 2000 / Accepted: 15 September 2000  相似文献   

16.
The regulatory properties of citrate on the activity of phosphofructokinase (PFK) purified from rat-kidney cortex has been studied. Citrate produces increases in the K0.5 for Fru-6-P and in the Hill coefficient as well as a decrease in the Vmax of the reaction without affecting the kinetic parameters for ATP as substrate. ATP potentiates synergistically the effects of citrate as an inhibitor of the enzyme. Fru-2,6-P2 and AMP at concentrations equal to Ka were not able to completely prevent citrate inhibition of the enzyme. Physiological concentrations of ATP and citrate produce a strong inhibition of renal PFK suggesting that may participate in the control of glycolysisin vivo.Abbreviations PFK 6-Phosphofructo-1-kinase (EC 2.7.1.11) - Fru-6-P Fructose 6-phosphate - Fru-2,6-P2 Fructose 2,6-bisphosphate  相似文献   

17.
18.
19.
In ripening banana (Musa sp. [AAA group, Cavendish subgroup] cv Valery) fruit, the concentration of glycolytic intermediates increased in response to the rapid conversion of starch to sugars and CO2. Glucose 6-phosphate (G-6-P), fructose 6-phosphate (Fru 6-P), and pyruvate (Pyr) levels changed in synchrony, increasing to a maximum one day past the peak in ethylene synthesis and declining rapidly thereafter. Fructose 1,6-bisphosphate (Fru 1,6-P2) and phosphoenolpyruvate (PEP) levels underwent changes dissimilar to those of G 6-P, Fru 6-P, and Pyr, indicating that carbon was regulated at the PEP/Pyr and Fru 6-P/Fru 1,6-P2 interconversion sites. During the climacteric respiratory rise, gluconeogenic carbon flux increased 50- to 100-fold while glycolytic carbon flux increased only 4- to 5-fold. After the climacteric peak in CO2 production, gluconeogenic carbon flux dropped dramatically while glycolytic carbon flux remained elevated. The steady-state fructose 2,6-bisphosphate (Fru 2,6-P2) concentration decreased to ½ that of preclimacteric fruit during the period coinciding with the rapid increase in gluconeogenesis. Fru 2,6-P2 concentration increased thereafter as glycolytic carbon flux increased relative to gluconeogenic carbon flux. It appears likely that the initial increase in respiration in ripening banana fruit is due to the rapid influx of carbon into the cytosol as starch is degraded. As starch reserves are depleted and the levels of intermediates decline, the continued enhancement of respiration may, in part, be maintained by an increased steady-state Fru 2,6-P2 concentration acting to promote glycolytic carbon flux at the step responsible for the interconversion of Fru 6-P and Fru 1,6-P2.  相似文献   

20.
1. Fructose 6-phosphate, 2-kinase and fructose 2,6-bisphosphatase occurred in Euglena gracilis SM-ZK, and is located in cytosol. 2. Fructose 6-phosphate, 2-kinase and fructose 2,6-bisphosphatase were partially purified, and both enzyme activities were not separated during the partial purification. 3. The pH optimum for fructose 6-phosphate, 2-kinase activity was 7.0. The saturation curve of the enzyme activity for ATP concentration was hyperbolic, and the Km value for the substrate was 0.88 mM. On the other hand, the saturation curve of the enzyme activity for fructose 6-phosphate concentration was sigmoidal, and the K0.5 value for the substrate was 70 microM. 4. The pH optimum for fructose 2,6-bisphosphatase activity was 6.5. The saturation curve for fructose 2,6-bisphosphate concentration was sigmoidal, and the K0.5 value for the substrate was 1.29 microM. Fructose 2,6-bisphosphate showed a substrate inhibition at high concentration over 5 microM, and the enzyme activity was completely inhibited by 20 microM of fructose 2,6-bisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号