首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In addition to the well characterized function of chemokines in mediating the homing and accumulation of leukocytes to tissues, some chemokines also exhibit potent antimicrobial activity. Little is known of the potential role of chemokines in bovine mammary gland health and disease. The chemokine CCL28 has previously been shown to play a key role in the homing and accumulation of IgA antibody secreting cells to the lactating murine mammary gland. CCL28 has also been shown to act as an antimicrobial peptide with activity demonstrated against a wide range of pathogens including bacteria, fungi and protozoans. Here we describe the cloning and function of bovine CCL28 and document the concentration of this chemokine in bovine milk. Bovine CCL28 was shown to mediate cellular chemotaxis via the CCR10 chemokine receptor and exhibited antimicrobial activity against a variety of bovine mastitis causing organisms. The concentration of bovine CCL28 in milk was found to be highly correlated with the lactation cycle. Highest concentrations of CCL28 were observed soon after parturition, with levels decreasing over time. These results suggest a potential role for CCL28 in the prevention/resolution of bovine mastitis.  相似文献   

2.
CCL25 (also known as thymus-expressed chemokine) and CCL28 (also known as mucosae-associated epithelial chemokine) play important roles in mucosal immunity by recruiting IgA Ab-secreting cells (ASCs) into mucosal lamina propria. However, their exact roles in vivo still remain to be defined. In this study, we first demonstrated in mice that IgA ASCs in small intestine expressed CCR9, CCR10, and CXCR4 on the cell surface and migrated to their respective ligands CCL25, CCL28, and CXCL12 (also known as stromal cell-derived factor 1), whereas IgA ASCs in colon mainly expressed CCR10 and CXCR4 and migrated to CCL28 and CXCL12. Reciprocally, the epithelial cells of small intestine were immunologically positive for CCL25 and CCL28, whereas those of colon were positive for CCL28 and CXCL12. Furthermore, the venular endothelial cells in small intestine were positive for CCL25 and CCL28, whereas those in colon were positive for CCL28, suggesting their direct roles in extravasation of IgA ASCs. Consistently, in mice orally immunized with cholera toxin (CT), anti-CCL25 suppressed homing of CT-specific IgA ASCs into small intestine, whereas anti-CCL28 suppressed homing of CT-specific IgA ASCs into both small intestine and colon. Reciprocally, CT-specific ASCs and IgA titers in the blood were increased in mice treated with anti-CCL25 or anti-CCL28. Anti-CXCL12 had no such effects. Finally, both CCL25 and CCL28 were capable of enhancing alpha4 integrin-dependent adhesion of IgA ASCs to mucosal addressin cell adhesion molecule-1 and VCAM-1. Collectively, CCL25 and CCL28 play essential roles in intestinal homing of IgA ASCs primarily by mediating their extravasation into intestinal lamina propria.  相似文献   

3.
Mucosae-associated epithelial chemokine (MEC) is a novel chemokine whose mRNA is most abundant in salivary gland, with strong expression in other mucosal sites, including colon, trachea, and mammary gland. MEC is constitutively expressed by epithelial cells; MEC mRNA is detected in cultured bronchial and mammary gland epithelial cell lines and in epithelia isolated from salivary gland and colon using laser capture microdissection, but not in the endothelial, hemolymphoid, or fibroblastic cell lines tested. Although MEC is poorly expressed in skin, its closest homologue is the keratinocyte-expressed cutaneous T cell-attracting chemokine (CTACK; CCL27), and MEC supports chemotaxis of transfected lymphoid cells expressing CCR10, a known CTACK receptor. In contrast to CTACK, however, MEC also supports migration through CCR3. Consistent with this, MEC attracts eosinophils in addition to memory lymphocyte subsets. These results suggest an important role for MEC in the physiology of extracutaneous epithelial tissues, including diverse mucosal organs.  相似文献   

4.
IgA immunoblasts can seed both intestinal and nonintestinal mucosal sites following localized mucosal immunization, an observation that has led to the concept of a common mucosal immune system. In this study, we demonstrate that the mucosae-associated epithelial chemokine, MEC (CCL28), which is expressed by epithelia in diverse mucosal tissues, is selectively chemotactic for IgA Ab-secreting cells (ASC): MEC attracts IgA- but not IgG- or IgM-producing ASC from both intestinal and nonintestinal lymphoid and effector tissues, including the intestines, lungs, and lymph nodes draining the bronchopulmonary tree and oral cavity. In contrast, the small intestinal chemokine, TECK (CCL25), attracts an overlapping subpopulation of IgA ASC concentrated in the small intestines and its draining lymphoid tissues. Surprisingly, T cells from mucosal sites fail to respond to MEC. These findings suggest a broad and unifying role for MEC in the physiology of the mucosal IgA immune system.  相似文献   

5.
Rotaviruses (RV) are the most important cause of severe childhood diarrheal disease. In suckling mice, infection with RV results in an increase in total and virus-specific IgA(+) plasmablasts in the small intestinal lamina propria (LP) soon after infection, providing a unique opportunity to study the mechanism of IgA(+) cell recruitment into the small intestine. In this study, we show that the increase in total and RV-specific IgA(+) plasmablasts in the LP after RV infection can be blocked by the combined administration of Abs against chemokines CCL25 and CCL28, but not by the administration of either Ab alone. RV infection in CCR9 knockout mice still induced a significant accumulation of IgA(+) plasmablasts in the LP, which was blocked by the addition of anti-CCL28 Ab, confirming the synergistic role of CCL25 and CCL28. The absence of IgA(+) plasmablast accumulation in LP following combined anti-chemokine treatment was not due to changes in proliferation or apoptosis in these cells. We also found that coadministration of anti-CCL25 and anti-CCL28 Abs with the addition of anti-alpha(4) Ab did not further inhibit IgA(+) cell accumulation in the LP and that the CCL25 receptor, CCR9, was coexpressed with the intestinal homing receptor alpha(4)beta(7) on IgA(+) plasmablasts. Finally, we showed that RV infection was associated with an increase in both CCL25 and CCL28 in the small intestine. Hence, our findings indicate that alpha(4)beta(7) along with either CCR9 or CCR10 are sufficient for mediating the intestinal migration of IgA(+) plasmablasts during RV infection.  相似文献   

6.
Epithelial tissues covering the external and internal surface of a body are constantly under physical, chemical or biological assaults. To protect the epithelial tissues and maintain their homeostasis, multiple layers of immune defense mechanisms are required. Besides the epithelial tissue-resident immune cells that provide the first line of defense, circulating immune cells are also recruited into the local tissues in response to challenges. Chemokines and chemokine receptors regulate tissue-specific migration, maintenance and functions of immune cells. Among them, chemokine receptor CCR10 and its ligands chemokines CCL27 and CCL28 are uniquely involved in the epithelial immunity. CCL27 is expressed predominantly in the skin by keratinocytes while CCL28 is expressed by epithelial cells of various mucosal tissues. CCR10 is expressed by various subsets of innate-like T cells that are programmed to localize to the skin during their developmental processes in the thymus. Circulating T cells might be imprinted by skin-associated antigen- presenting cells to express CCR10 for their recruitment to the skin during the local immune response. On the other hand, IgA antibody-producing B cells generated in mucosa-associated lymphoid tissues express CCR10 for their migration and maintenance at mucosal sites. Increasing evidence also found that CCR10/ligands are involved in regulation of other immune cells in epithelial immunity and are frequently exploited by epithelium-localizing or-originated cancer cells for their survival, proliferation and evasion from immune surveillance. Herein, we review current knowledge on roles of CCR10/ligands in regulation of epithelial immunity and diseases and speculate on related important questions worth further investigation.  相似文献   

7.
Suppressors of cytokine signaling (SOCS) proteins control many aspects of lymphocyte function through regulation of STAT pathways. SOCS1-deficient mice develop severe skin and eye diseases that result from massive infiltration of inflammatory cells into these tissues. In this study, we have used SOCS1-, STAT1-, or STAT6-deficient mice, as well as, T cells with stable overexpression or deletion of SOCS1, to examine whether SOCS1 is involved in regulating lymphocyte trafficking to peripheral tissues. We show that SOCS1-deficient mice have increased numbers of T cells with characteristics of effector memory cells and expression of CCR7, a protein that promotes retention of T cells in lymphoid tissues, is markedly reduced in these cells. The decrease in CCR7 expression correlates with hyperactivation of STAT6, suggesting that aberrant recruitment of T cells into SOCS1-deficient mouse skin or eye results from abrogation of negative feedback regulation of STAT6 activation and CCR7 expression. Consistent with in vivo regulation of CCR7 expression and lymphocyte migration by SOCS1, forced overexpression of SOCS1 in T cells up-regulates CCR7 expression and enhances chemotaxis toward CCL19 or CCL21. CCR6 and CXCR3 are also up-regulated on SOCS1-deficient T cells and in situ analysis of the cornea or retina further reveal that these cells may mediate the chronic skin and eye inflammation through recruitment of Th1 and Th17 cells into these tissues. Collectively, these results suggest that SOCS1 regulates steady-state levels of chemokine receptors through its inhibitory effects on STAT pathways and this may underscore its role in regulating recruitment and retention of effector cells into nonlymphoid tissues.  相似文献   

8.
Subsets of gammadelta T cells localize to distinct tissue sites in the absence of exogenous Ag stimulation or development of effector/memory cells. Selective lymphocyte homing from the blood into tissues is controlled by a multistep process involving vascular and lymphocyte adhesion molecules, and G protein-linked chemokine receptors. The role of these mechanisms in the tissue tropism of gammadelta T cells is still poorly understood. In this study, we demonstrate that a subset of gammadelta T cells, most of which express an antigenically distinct TCR and are characterized by coexpression of CD8, selectively accumulated in tissues that expressed high levels of the mucosal vascular addressin, mucosal addressin cell adhesion molecule 1. These cells expressed higher levels of alpha(4)beta(7) integrins than other gammadelta T cell subsets and selectively migrated to the CCR7 ligand secondary lymphoid-tissue chemokine (CCL21). Integrin activation by CCL21 selectively increased CD8(+)gammadelta T cell binding to recombinant mucosal addressin cell adhesion molecule 1. These results suggest that the tropism of circulating CD8(+)gammadelta T cells for mucosal tissues is due, at least in part, to selective developmental expression of adhesion molecules and chemokine receptors.  相似文献   

9.
Chemokines and their receptors fulfill specialized roles in inflammation and under homeostatic conditions. CCR7 and its ligands, CCL19 and CCL21, are involved in lymphocyte recirculation through secondary lymphoid organs and additionally navigate lymphocytes into distinct tissue compartments. The role of CCR7 in the migration of polarized T effector/memory cell subsets in vivo is still poorly understood. We therefore analyzed murine and human CD4(+) cytokine-producing cells developed in vivo for their chemotactic reactivity to CCR7 ligands. The responses of cells producing cytokines, such as IFN-gamma, IL-4, and IL-10, as well as of subsets defined by memory or activation markers were comparable to that of naive CD4(+) cells, with slightly lower reactivity in cells expressing IL-10 or CD69. This indicates that CCR7 ligands are able to attract naive as well as the vast majority of activated and effector/memory T cell stages. Chemotactic reactivity of these cells toward CCL21 was absent in CCR7-deficient cells, proving that effector cells do not use alternative receptors for this chemokine. Th1 cells generated from CCR7(-/-) mice failed to enter lymph nodes and Peyer's patches, but did enter a site of inflammation. These findings indicate that CD4(+) cells producing effector cytokines upon stimulation retain the capacity to recirculate through lymphoid tissues via CCR7.  相似文献   

10.
Mucosal tissues require constant immune surveillance to clear harmful pathogens while maintaining tolerance to self Ags. Regulatory T cells (Tregs) play a central role in this process and expression of alpha(E)beta(7) has been reported to define a subset of Tregs with tropism for inflamed tissues. However, the signals responsible for recruiting Tregs to epithelial surfaces are poorly understood. We have isolated a subset of CCR10-expressing CD25+CD4+Foxp3+ Tregs with potent anti-inflammatory properties from chronically inflamed human liver. The CCR10+ Tregs were detected around bile ducts that expressed increased levels of the CCR10 ligand CCL28. CCL28 was secreted by primary human cholangiocytes in vitro in response to LPS, IL-1beta, or bile acids. Exposure of CCR10+ Tregs to CCL28 in vitro stimulated migration and adhesion to mucosal addressin cell adhesion molecule-1 and VCAM-1. Liver-derived CCR10+ Tregs expressed low levels of CCR7 but high levels of CXCR3, a chemokine receptor associated with infiltration into inflamed tissue and contained a subset of alpha(E)beta7(+) cells. We propose that CXCR3 promotes the recruitment of Tregs to inflamed tissues and CCR10 allows them to respond to CCL28 secreted by epithelial cells resulting in the accumulation of CCR10+ Tregs at mucosal surfaces.  相似文献   

11.
Chemokines control the specificity of lymphocyte homing. Numerous chemokines have been identified but the significance of redundancy in chemokine networks is unexplained. Here we investigated the biological significance of distinct chemokines binding to the same receptor. Among CCR4 ligands, skin vessels endothelial cells present C-C chemokine ligand (CCL) 17 but not CCL22 consistent with CCL17 involvement in T lymphocyte arrest on endothelial cells. However, CCL22 is much more powerful than CCL17 in the induction of rapid integrin-dependent T cell adhesion on VCAM-1 under conditions of physiological flow. The dominance of CCL22 over CCL17 extends to other CCR4-mediated phenomena such as receptor desensitization and internalization and correlates with the peculiar kinetics of CCR4 engagement by the two ligands. A similar phenomenological pattern is also shown for CXC chemokine ligand 9 and CXC chemokine ligand 11, which share binding to CXCR3. Our analysis shows how quantitative variations in chemokine receptor expression level and ligand engagement may alter the selectivity of integrin-dependent lymphocyte adhesive responses, suggesting a mechanism by which chemokine networks may either generate or break the specificity of lymphocyte subset recruitment.  相似文献   

12.
The chemokine receptor CCR7 represents an important determinant for circulating lymphocytes to enter lymph nodes (LN) via high endothelial venules. High endothelial venules also represent the major site of entry for plasmacytoid dendritic cells (pDC). In the steady-state, murine pDC have been suggested to home to LN engaging the chemokine receptors CXCR3, CXCR4, and CCR5, whereas responsiveness to CCR7 ligands is thought to be acquired only upon activation. In this study, we show that already resting pDC express minute amounts of CCR7 that suffice to trigger migration to CCL19/CCL21 in vitro. Upon activation with TLR ligands, CCR7 levels on pDC are strongly increased. Notably, CCR7-deficient mice display substantially reduced pDC counts in LN but not in bone marrow and spleen. Adoptive cell transfer experiments revealed that under both steady-state as well as inflammatory conditions, the homing of CCR7-deficient pDC is severely impaired, indicating that the reduced cell counts of naive pDC observed in CCR7(-/-) mice reflect an intrinsic homing defect of pDC. Together, these observations provide strong evidence that similar to naive lymphocytes, nonstimulated pDC exploit CCR7 to gain entry into LN. This adds to the repertoire of chemokine receptors permitting them to enter diverse tissues.  相似文献   

13.
Mucosae-associated epithelial chemokine (MEC or CCL28) binds to CCR3 and CCR10 and recruits IgA-secreting plasma cells (IgA-ASCs) in the mucosal lamina propria. The ability of this chemokine to enhance migration of IgA-ASCs to mucosal sites was assessed in a mouse immunization model using HIV-1(IIIB) Virus-like particles (VLPs). Mice receiving either HIV-1(IIIB) VLPs alone, CCL28 alone, or the irrelevant CCL19 chemokine were used as controls. Results showed a significantly increased CCR3 and CCR10 expression on CD19(+) splenocytes of HIV-1(IIIB) VPL-CCL28-treated mice. HIV-1 Env-specific IFN-γ, IL-4 and IL-5 production, total IgA, anti-Env IgA as well as gastro-intestinal mucosal IgA-secreting plasma cells were also significantly augmented in these mice. Notably, sera and vaginal secretions from HIV-1(IIIB) VLP-CCL28-treated mice exhibited an enhanced neutralizing activity against both a HIV-1/B-subtype laboratory strain and a heterologous HIV-1/C-subtype primary isolate. These data suggest that CCL28 could be useful in enhancing the IgA immune response that will likely play a pivotal role in prophylactic HIV vaccines.  相似文献   

14.
Mice were induced to produce IgA antibodies against ferritin after oral immunization. Such antibodies were detected by immunofluorescence in plasma cells in the intestinal mucosa as well as in secretory sites located elsewhere, such as the lactating mammary gland, salivary gland, and respiratory tract. The observation suggested that cells immunized locally via the gut could home to distant secretory sites. To confirm this hypothesis, lymphocyte transfer studies were done with mesenteric node (MN) versus peripheral node (PN) cells from orally immunized donors into nonimmunized recipients. IgA anti-ferritin cells from MN homed to exocrine targets, whereas IgM and IgG anti-ferritin cells homed to PN. The findings overall support the concept of a generalized and interrelated secretory immune system.  相似文献   

15.
The chemokine receptor CCR7 and its ligands CCL19 and CCL21 control a diverse array of migratory events in adaptive immune function. Most prominently, CCR7 promotes homing of T cells and DCs to T cell areas of lymphoid tissues where T cell priming occurs. However, CCR7 and its ligands also contribute to a multitude of adaptive immune functions including thymocyte development, secondary lymphoid organogenesis, high affinity antibody responses, regulatory and memory T cell function, and lymphocyte egress from tissues. In this survey, we summarise the role of CCR7 in adaptive immunity and describe recent progress in understanding how this axis is regulated. In particular we highlight CCX-CKR, which scavenges both CCR7 ligands, and discuss its emerging significance in the immune system.  相似文献   

16.
1. The effects of starvation and refeeding on the disposal of oral [14C]triolein between 14CO2 production and 14C-lipid accumulation in tissues of virgin rats, lactating rats and lactating rats with pups removed were studied. 2. Starvation (24 h) increased 14CO2 production in lactating rats and lactating rats with pups removed to values found in virgin rats. This increase was accompanied by decreases in 14C-lipid accumulation in mammary gland and pups of lactating rats and in white and brown adipose tissue of lactating rats with pups removed. 3. Short-term (2 h) refeeding ad libitum decreased 14CO2 production in lactating rats and lactating rats with pups removed, and restored the 14C-lipid accumulation in mammary glands plus pups and in white and brown adipose tissue respectively 4. Insulin deficiency induced with mannoheptulose inhibited the restoration of 14C-lipid accumulation in white adipose tissue on refeeding of lactating rats with pups removed, but did not prevent the restoration of 14C-lipid accumulation in mammary gland. 5. Changes in the activity of lipoprotein lipase in mammary gland and white adipose tissue paralleled the changes in 14C-lipid accumulation in these tissues. 6. It is concluded that 14C-lipid accumulation in mammary gland may not be affected by changes in plasma insulin concentration and that it is less sensitive to starvation than is lipogenesis or lactose synthesis. This has the advantage that the milk lipid content can still be maintained from hepatic very-low-density lipoprotein for a period after withdrawal of food. The major determinant of the disposal of oral 14C-triolein appears to be the total tissue activity of lipoprotein lipase. When this is high in mammary gland (fed lactating rats) or white adipose tissue (fed lactating rats with pups removed), less triacylglycerol is available for the muscle mass and consequently less is oxidized.  相似文献   

17.
CCL25 and CCR9 constitute a chemokine/receptor pair involved in T cell development and in gut-associated immune responses. In this study, we generated CCL25(-/-) mice to answer questions that could not be addressed with existing CCR9(-/-) mice. Similar phenotypes were observed for both CCL25(-/-) and CCR9(-/-) mice, consistent with the notion that CCL25 and CCR9 interact with each other exclusively. We assessed the requirement for CCL25 in generating CCR9(high) CD8 intestinal memory-phenotype T cells and the subsequent accumulation of these cells within effector sites. TCR-transgenic naive CD8 T cells were transferred into wild-type or CCL25-deficient hosts. Oral sensitization with Ag allowed these naive donor cells to efficiently differentiate into CCR9(high) memory-phenotype cells within the mesenteric lymph nodes of wild-type hosts. This differentiation event occurred with equal efficiency in the MLN of CCL25-deficient hosts, demonstrating that CCL25 is not required to induce the CCR9(high) memory phenotype in vivo. However, we found that CCL25 deficiency severely impaired the Ag-dependent accumulation of donor-derived CD8 T cells within both lamina propria and epithelium of the small intestine. Thus, although CCL25 is not necessary for generating memory-phenotype CD8 T cells with "gut-homing" properties, this chemokine is indispensable for their trafficking to the small intestine.  相似文献   

18.
Previous studies demonstrated cross talk between mucosal and reproductive organs during secretory IgA Ab induction. In this study, we aimed to clarify the underlying mechanisms of this cross talk. We found significantly higher titers of Ag-specific secretory IgA Ab in the vaginal wash after mucosal vaccination by both the intranasal (i.n.) and the intravaginal routes but not by the s.c. route. Interestingly, Ag-specific IgA Ab-secreting cells (ASCs) were found mainly in the uterus but not in the cervix and vaginal canal after i.n. vaccination. The fact that most Ag-specific IgA ASCs isolated from the uteri of vaccinated mice migrated toward mucosa-associated epithelial chemokine (MEC)/CCL28 suggests dominant expression of CCR10 on the IgA ASCs. Further, IgA ASCs in the uteri of vaccinated mice were reduced drastically in mice treated with neutralizing anti-MEC/CCL28 Ab. Most intriguingly, the female sex hormone estrogen directly regulated MEC/CCL28 expression and was augmented by i.n. vaccination with cholera toxin or stimulators for innate immunity. Further, blockage of estrogen function in the uterus by oral administration of the estrogen antagonist raloxifene significantly inhibited migration of Ag-specific IgA ASCs after i.n. vaccination with OVA plus cholera toxin. Taken together, these data strongly suggest that CCR10(+) IgA ASCs induced by mucosal vaccination via the i.n. route migrate into the uterus in a MEC/CCL28-dependent manner and that estrogen might have a crucial role in the protection against genital infection by regulating MEC/CCL28 expression in the uterus.  相似文献   

19.
As they differentiate, precursor cells from the gut-associated lymphoid tissue are known to travel via the lymphatic system to the blood and then preferentially to home to various mucosal and exocrine sites such as the lamina propria of the gut and the lactating mammary gland, where they give rise to IgA-secreting plasma cells. The present study, directed at the mechanism by which the circulating precursors of mucosal IgA plasma cells selectively lodge in characteristic locations, explored the hypothesis that such homing is due to a locally produced chemotactic factor and that milk might be a source of such a factor. Subsets of lymphocytes bearing particular surface markers and purified by panning from lymph nodes of mice were examined in a micropore chemotaxis assay to search for the presence of chemotactic activity in mouse milk. The globulin fraction of whey was shown to contain a nondialyzable factor that is chemotactic for IgA (and also IgG)-positive lymphocytes when these are obtained from mesenteric lymph nodes as a source of mucosal-associated lymphoid tissue. Lymphocytes from peripheral lymph nodes, nonmucosal associated, were unaffected as were surface IgM-positive lymphocytes and T lymphocytes obtained from mesenteric nodes. Chemotactic activity for IgA lymphocytes was undetectable in mouse serum. The data are consistent with the idea that precursors of mucosal IgA plasma cells home to mucosal and exocrine sites in response to a specific chemotactic factor elaborated by local differentiated epithelial cells.  相似文献   

20.
The CC chemokine ligand-2 (CCL2) and its receptor CCR2 are essential for monocyte trafficking under inflammatory conditions. However, the mechanisms that determine the intensity and duration of alveolar monocyte accumulation in response to CCL2 gradients in inflamed lungs have not been resolved. To determine the potential role of CCR2-expressing monocytes in regulating alveolar CCL2 levels, we compared leukocyte recruitment kinetics and alveolar CCL2 levels in wild-type and CCR2-deficient mice in response to intratracheal LPS challenge. In wild-type mice, LPS elicited a dose- and time-dependent alveolar monocyte accumulation accompanied by low CCL2 levels in bronchoalveolar lavage fluid (BALF). In contrast, LPS-treated CCR2-deficient mice lacked alveolar monocyte accumulation, which was accompanied by relatively high CCL2 levels in BALF. Similarly, wild-type mice that were treated systemically with the blocking anti-CCR2 antibody MC21 completely lacked LPS-induced alveolar monocyte trafficking that was associated with high CCL2 levels in BALF. Intratracheal application of anti-CCR2 antibody MC21 to locally block CCR2 on both resident and recruited cells did not affect LPS-induced alveolar monocyte trafficking but led to significantly increased BALF CCL2 levels. Reciprocally bone marrow-transplanted, LPS-treated wild-type and CCR2-deficient mice showed a strict inverse relationship between alveolar monocyte recruitment and BALF CCL2 levels. In addition, freshly isolated human and mouse monocytes were capable of integrating CCL2 in vitro. LPS-induced alveolar monocyte accumulation is accompanied by monocytic CCR2-dependent consumption of CCL2 levels in the lung. This feedback loop may limit the intensity of monocyte recruitment to inflamed lungs and play a role in the maintenance of homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号