首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
MOTIVATION: Biological processes in cells are properly performed by gene regulations, signal transductions and interactions between proteins. To understand such molecular networks, we propose a statistical method to estimate gene regulatory networks and protein-protein interaction networks simultaneously from DNA microarray data, protein-protein interaction data and other genome-wide data. RESULTS: We unify Bayesian networks and Markov networks for estimating gene regulatory networks and protein-protein interaction networks according to the reliability of each biological information source. Through the simultaneous construction of gene regulatory networks and protein-protein interaction networks of Saccharomyces cerevisiae cell cycle, we predict the role of several genes whose functions are currently unknown. By using our probabilistic model, we can detect false positives of high-throughput data, such as yeast two-hybrid data. In a genome-wide experiment, we find possible gene regulatory relationships and protein-protein interactions between large protein complexes that underlie complex regulatory mechanisms of biological processes.  相似文献   

3.
MOTIVATION: Advances in molecular biological, analytical and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-cluster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e. who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting and bioengineering.  相似文献   

4.
5.
6.
A duplication growth model of gene expression networks   总被引:8,自引:0,他引:8  
  相似文献   

7.

Background

MicroRNAs (miRNAs) are a class of endogenous small regulatory RNAs. Identifications of the dys-regulated or perturbed miRNAs and their key target genes are important for understanding the regulatory networks associated with the studied cellular processes. Several computational methods have been developed to infer the perturbed miRNA regulatory networks by integrating genome-wide gene expression data and sequence-based miRNA-target predictions. However, most of them only use the expression information of the miRNA direct targets, rarely considering the secondary effects of miRNA perturbation on the global gene regulatory networks.

Results

We proposed a network propagation based method to infer the perturbed miRNAs and their key target genes by integrating gene expressions and global gene regulatory network information. The method used random walk with restart in gene regulatory networks to model the network effects of the miRNA perturbation. Then, it evaluated the significance of the correlation between the network effects of the miRNA perturbation and the gene differential expression levels with a forward searching strategy. Results show that our method outperformed several compared methods in rediscovering the experimentally perturbed miRNAs in cancer cell lines. Then, we applied it on a gene expression dataset of colorectal cancer clinical patient samples and inferred the perturbed miRNA regulatory networks of colorectal cancer, including several known oncogenic or tumor-suppressive miRNAs, such as miR-17, miR-26 and miR-145.

Conclusions

Our network propagation based method takes advantage of the network effect of the miRNA perturbation on its target genes. It is a useful approach to infer the perturbed miRNAs and their key target genes associated with the studied biological processes using gene expression data.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-255) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
Boolean networks are simplified models of gene regulatory networks. We derive an approximation of the size distribution of perturbation avalanches in Boolean networks based on known results in the theory of branching processes. We show numerically that the approximation works well for different kinds of Boolean networks. It has been suggested that gene regulatory networks may be dynamically critical. To study this, as an application of the presented theory we present a novel method for estimating an order parameter from microarray data. According to the available data and our method, we find that gene regulatory networks appear to be stable and reside near the phase transition between order and chaos.  相似文献   

10.
刘万霖  李栋  朱云平  贺福初 《遗传》2007,29(12):1434-1442
随着微阵列数据的快速增长, 微阵列基因表达数据日益成为生物信息学研究的重要数据源。利用微阵列基因表达数据构建基因调控网络也成为一个研究热点。通过构建基因调控网络, 可以解读复杂的调控关系, 发现细胞内的调控模式, 并进而在系统尺度上理解生物学进程。近年来, 人们引入了多种算法来利用基因芯片数据构建基因调控网络。文章回顾了这些算法的发展历史, 尤其是其在理论和方法上的改进, 给出了一些相关的软件平台, 并预测了该领域可能的发展趋势。  相似文献   

11.

Background  

One of main aims of Molecular Biology is the gain of knowledge about how molecular components interact each other and to understand gene function regulations. Using microarray technology, it is possible to extract measurements of thousands of genes into a single analysis step having a picture of the cell gene expression. Several methods have been developed to infer gene networks from steady-state data, much less literature is produced about time-course data, so the development of algorithms to infer gene networks from time-series measurements is a current challenge into bioinformatics research area. In order to detect dependencies between genes at different time delays, we propose an approach to infer gene regulatory networks from time-series measurements starting from a well known algorithm based on information theory.  相似文献   

12.
13.
Microarray gene expression data can provide insights into biological processes at a system-wide level and is commonly used for reverse engineering gene regulatory networks (GRN). Due to the amalgamation of noise from different sources, microarray expression profiles become inherently noisy leading to significant impact on the GRN reconstruction process. Microarray replicates (both biological and technical), generated to increase the reliability of data obtained under noisy conditions, have limited influence in enhancing the accuracy of reconstruction . Therefore, instead of the conventional GRN modeling approaches which are deterministic, stochastic techniques are becoming increasingly necessary for inferring GRN from noisy microarray data. In this paper, we propose a new stochastic GRN model by investigating incorporation of various standard noise measurements in the deterministic S-system model. Experimental evaluations performed for varying sizes of synthetic network, representing different stochastic processes, demonstrate the effect of noise on the accuracy of genetic network modeling and the significance of stochastic modeling for GRN reconstruction . The proposed stochastic model is subsequently applied to infer the regulations among genes in two real life networks: (1) the well-studied IRMA network, a real-life in-vivo synthetic network constructed within the Saccharomycescerevisiae yeast, and (2) the SOS DNA repair network in Escherichiacoli.  相似文献   

14.
15.
16.
17.
18.
Computational gene regulation models provide a means for scientists to draw biological inferences from time-course gene expression data. Based on the state-space approach, we developed a new modeling tool for inferring gene regulatory networks, called time-delayed Gene Regulatory Networks (tdGRNs). tdGRN takes time-delayed regulatory relationships into consideration when developing the model. In addition, a priori biological knowledge from genome-wide location analysis is incorporated into the structure of the gene regulatory network. tdGRN is evaluated on both an artificial dataset and a published gene expression data set. It not only determines regulatory relationships that are known to exist but also uncovers potential new ones. The results indicate that the proposed tool is effective in inferring gene regulatory relationships with time delay. tdGRN is complementary to existing methods for inferring gene regulatory networks. The novel part of the proposed tool is that it is able to infer time-delayed regulatory relationships.  相似文献   

19.
MOTIVATION: Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this article we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. RESULTS: We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our method first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation-inhibition networks to match the discretized data. Finally, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号