首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aggrecan family proteoglycans, phosphacan/RPTPzeta/beta, and neuroglycan C (NGC) are the major classes of chondroitin sulfate proteoglycan in the developing mammalian brain. A multidomain is a common structural feature of these proteoglycans which can interact with various molecules including growth factors, cell adhesion molecules, and extracellular matrix molecules. Individual proteoglycans are distributed in the developing brain in a distinct temporal and spatial pattern, suggesting that they are involved in distinct phases of the brain development through multiple molecular interactions. This review mainly summarizes recent studies on the involvement of these three classes of proteoglycan in cell-cell and cell-substratum interactions during the brain development. Their expressions and proposed functional roles in injured brains are also mentioned. In addition, this review briefly covers potential functions of other neural chondroitin sulfate proteoglycans such as decorin, testican, NG2 proteoglycan, and amyloid precursor protein (APP) in developing and injured brains.  相似文献   

2.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.  相似文献   

4.
A microsomal preparation from chick embryo epiphyseal cartilage was incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form [14C] chondroitin-labeled proteoglycan. Two [14C]proteoglycan populations were obtained which differed in size, [14C]glycosaminoglycan content, and susceptibility to alkali. One population of [14C]proteoglycan appeared near the void volume on Sepharose 2B, while the other population was smaller, similar in size to monomer proteoglycan. The larger [14C]proteoglycan contained long [14C]chondroitin chains added to short primers; these chains were in part resistant to alkali cleavage from protein. The smaller [14C]proteoglycan contained mainly [14C]chondroitin chains of intermediate length added to endogenous chondroitin sulfate; these chains were all susceptible to alkali cleavage from protein. The larger [14C]proteoglycan may represent a precursor proteoglycan present at the site of glycosaminoglycan chain synthesis.  相似文献   

5.
A chondroitin sulfate proteoglycan fraction was prepared from the 3 M MgCl2 extract of porcine aortas by DEAE-cellulose chromatography, followed by gel filtration through Sepharose CL-4B. Affinity chromatography of the fraction with antithrombin III-agarose yielded two chondroitin sulfate proteoglycans of a non-binding (proteoglycan IA) and binding (proteoglycan IB) nature. Proteoglycans IA and IB were different from each other in molecular size, in proportion of the protein relative to the polysaccharide portion, and in size of the chondroitin sulfate chain. They were also distinguished immunochemically. These data indicate that the intima-media of the aorta contains at least two distinct species of chondroitin sulfate proteoglycan.  相似文献   

6.
7.
《The Journal of cell biology》1994,127(6):1703-1715
Phosphacan is a chondroitin sulfate proteoglycan produced by glial cells in the central nervous system, and represents the extracellular domain of a receptor-type protein tyrosine phosphatase (RPTP zeta/beta). We previously demonstrated that soluble phosphacan inhibited the aggregation of microbeads coated with N-CAM or Ng-CAM, and have now found that soluble 125I-phosphacan bound reversibly to these neural cell adhesion molecules, but not to a number of other cell surface and extracellular matrix proteins. The binding was saturable, and Scatchard plots indicated a single high affinity binding site with a Kd of approximately 0.1 nM. Binding was reduced by approximately 15% after chondroitinase treatment, and free chondroitin sulfate was only moderately inhibitory, indicating that the phosphacan core glycoprotein accounts for most of the binding activity. Immunocytochemical studies of embryonic rat spinal phosphacan, Ng-CAM, and N-CAM have overlapping distributions. When dissociated neurons were incubated on dishes coated with combinations of phosphacan and Ng-CAM, neuronal adhesion and neurite growth were inhibited. 125I-phosphacan bound to neurons, and the binding was inhibited by antibodies against Ng-CAM and N-CAM, suggesting that these CAMs are major receptors for phosphacan on neurons. C6 glioma cells, which express phosphacan, adhered to dishes coated with Ng-CAM, and low concentrations of phosphacan inhibited adhesion to Ng-CAM but not to laminin and fibronectin. Our studies suggest that by binding to neural cell adhesion molecules, and possibly also by competing for ligands of the transmembrane phosphatase, phosphacan may play a major role in modulating neuronal and glial adhesion, neurite growth, and signal transduction during the development of the central nervous system.  相似文献   

8.
9.
10.
Heparan sulfate proteoglycans (HSPGs) are associated with the cell surface and covalently linked to a small number of long unbranched chains of repeating disaccharides. Numerous biochemical studies of these extracellular matrix molecules have implicated them in a variety of biological phenomena, in particular cell-cell interactions. Recent genetic studies in Drosophila have begun to clarify the function of HSPGs in vivo and recent findings have implicated HSPGs in Wnt, Hedgehog, fibroblast growth factor and transforming growth factor-beta signaling pathways during development.  相似文献   

11.
We used a monoclonal antibody recognizing chondroitin sulfate (CS) to investigate by immunocytochemistry the characteristics displayed in situ by aortic proteoglycans (PG) containing CS side chains. The antibody specifically precipitated metabolically labeled PG from aortic extracts. Anti-CS specificity was also tested directly on tissue sections and was confirmed by the virtual abolition of immunolabeling on those previously digested with CS-specific enzymes. The overall CS-PG distribution assessed by light microscopy after embedding in Lowicryl KM4 by silver-enhanced immunogold recapitulated that obtained on frozen sections with immunoperoxidase. Extracellular concentrations of CS-PG were very high in the innermost regions of aorta and decreased in the media. The reaction was weak and diffuse in the adventitia. By electron microscopy, the detailed labeling of CS-PG discriminated patterns of organization at both the regional and the molecular level and enabled morphometric estimations. In relation to other components of the extracellular matrix, we found that CS-PG and elastin mutually excluded each other, while two types of CS-PG were differently associated with collagen within media or adventitia. The use of high-resolution immunodetection for the in situ characterization of aortic CS-PG could add specific information relevant to many biological processes in which these molecules have been implicated.  相似文献   

12.
We have recently shown that the large hyaluronan-aggregating chondroitin sulfate proteoglycan from cartilage (PG-LA) is unfavorable as a substrate for neural crest cell migration in vitro and that this macromolecule inhibits cell dispersion on fibronectin substrates when included in the medium (R. Perris and S. Johansson, 1987, J. Cell Biol. 105, 2511-2521). In this study we present data on the specificity of the migration-repressing activity of PG-LA and data on the molecular mechanisms by which the proteoglycan might impair neural crest cell motility. Soluble PG-LA potently impaired cell migration on substrates of laminin/laminin-nidogen, vitronectin, and collagen types I, III, IV, and VI. When tested in solid-phase binding assays, PG-LA bound avidly to substrates of collagen types I-III and V. Conversely, minimal amounts of the proteoglycan bound to substrates of laminin-nidogen, vitronectin, collagen types IV and VI, and fibronectin or to a proteolytic fragment encompassing its cell-binding domain (105 kDa). Preincubation of these substrates with soluble PG-LA prior to plating of the cells had no effect on their locomotory behavior. These results indicate that PG-LA affects neural crest cell movement primarily through an interaction with the cell surface, rather than by association with the cell motility-promoting substrate molecules. The molecular interaction of soluble PG-LA with neural crest cells was further examined by analyzing the effects of isolated domains of the proteoglycan on cell migration on fibronectin. Addition of chondroitin sulfate chains, the core protein free of glycosaminoglycans, the isolated hyaluronan-binding region (HABr), or a proteolytic fragment corresponding to the keratan sulfate-enriched domain of the PG-LA to neural crest cells migrating on fibronectin or the 105-kDa fibronectin fragment had no significant effect on their motility. After reduction and alkylation, PG-LA was considerably less efficient in perturbing cell movement on fibronectin substrates and virtually ineffective in altering migration on the 105-kDa fragment. In the presence of hyaluronan fragments of 16-30 monosaccharides in length, or an antiserum against the HABr, the migration repressing activity of PG-LA was reduced in a dose-dependent fashion. Furthermore, the inhibitory action of PG-LA was significantly reduced by treatment of the cells with Streptomyces hyaluronidase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Cultured human fetal lung fibroblasts produce some chondroitin sulfate proteoglycans that are extracted as an aggregate in chaotropic buffers containing 4 M guanidinium chloride. The aggregated proteoglycans are excluded from Sepharose CL4B and 2B, but become included, eluting with a Kav value of 0.53 from Sepharose CL4B, when Triton X-100 is included in the buffer. Conversely, some of the detergent-extractable chondroitin sulfate proteoglycans can be incorporated into liposomes, suggesting the existence of a hydrophobic membrane-intercalated chondroitin sulfate proteoglycan fraction. Purified preparations of hydrophobic chondroitin sulfate proteoglycans contain two major core protein forms of 90 and 52 kD. A monoclonal antibody (F58-7D8) obtained from the fusion of myeloma cells with spleen cells of BALB/c mice that were immunized with hydrophobic proteoglycans recognized the 90- but not the 52-kD core protein. The epitope that is recognized by the antibody is exposed at the surface of cultured human lung fibroblasts and at the surface of several stromal cells in vivo, but also at the surface of Kupffer cells and of epidermal cells. The core proteins of these small membrane-associated chondroitin sulfate proteoglycans are probably distinct from those previously identified in human fibroblasts by biochemical, immunological, and molecular biological approaches.  相似文献   

14.
Emerging studies have revealed new roles for the neural extracellular matrix in neuropathologies. The structure of this matrix is unusual and uniquely enriched in chondroitin sulfate proteoglycans, particularly those of the lectican family. Historically, lecticans have attracted considerable interest in the normal and injured brain for their prominent roles as inhibitors of cellular motility, neurite extension and synaptic plasticity. However, these molecules are structurally heterogeneous, have distinct expression patterns and mediate unique interactions, suggesting that they might have other functions in addition to their traditional role as chemorepulsants. Here, we review recent work demonstrating unique modifications and structural microheterogeneity of the lecticans in the diseased CNS, which might relate to novel roles of these molecules in neuropathologies.  相似文献   

15.
Infection with Plasmodium falciparum during pregnancy leads to the selective adherence of infected red blood cells (IRBCs) in the placenta causing placental malaria. The IRBC adherence is mediated through the chondroitin 4-sulfate (C4S) chains of unusually low-sulfated chondroitin sulfate proteoglycans (CSPGs) in the placenta. To study the structural interactions involved in C4S-IRBC adherence, various investigators have used CSPGs from different sources. Since the structural characteristics of the polysaccharide chains in CSPGs from various sources differ substantially, the CSPGs are likely to differentially bind IRBCs. In this study, the CSPG purified from bovine trachea, a CSPG form of human recombinant thrombomodulin (TM-CSPG), two CSPG fractions from bovine cornea, and the CSPGs of human placenta, the natural receptor, were studied in parallel for their IRBC binding characteristics. The TM-CSPG and corneal CSPG fractions could bind IRBCs at significantly higher density compared to the placental CSPGs. However, the avidity of IRBC binding by TM-CSPG was considerably low compared to placental CSPGs. The corneal CSPGs have substantially higher binding strengths. The bovine tracheal CSPG bound IRBCs at much lower density and exhibited significantly lower avidity than the placental CSPGs. These data demonstrated that the bovine tracheal CSPG and TM-CSPG are not ideal for studying the fine structural interactions involved in the IRBC adherence to the placental C4S, whereas the bovine corneal CSPGs are better alternatives to the placental CSPGs for determining these interactions.  相似文献   

16.
《The Journal of cell biology》1986,103(6):2475-2487
It is generally proposed that embryonic mesenchymal cells use sulfated macromolecules during in situ migration. Attempts to resolve the molecular mechanisms for this hypothesis using planar substrates have been met with limited success. In the present study, we provide evidence that the functional significance of certain sulfated macromolecules during mesenchyme migration required the presence of the endogenous migratory template; i.e., native collagen fibrils. Using three-dimensional collagen gel lattices and whole embryo culture procedures to produce metabolically labeled sulfated macromolecules in embryonic chick cardiac tissue, we show that these molecules were primarily proteoglycan (PG) in nature and that their distribution was class specific; i.e., heparan sulfate PG, the minor labeled component (15%), remained pericellular while chondroitin sulfate (CS) PG, the predominately labeled PG (85%), was associated with collagen fibrils as "trails" of 50-60-nm particles when viewed by scanning electron microscopy. Progressive "conditioning" of collagen with CS-PG inhibited the capacity of the template to support subsequent cell migration. Lastly, metabolically labeled, PG-derived CS chains were compared with respect to degree of sulfation in either the C-6 or C-4 position by chromatographic separation of chondroitinase AC digestion products. Results from temporal and regional comparisons of in situ-labeled PGs indicated a positive correlation between the presence of mesenchyme and an enrichment of disaccharide-4S relative to that from regions lacking mesenchyme (i.e., principally myocardial tissue). The suggestion of a mesenchyme-specific CS-PG was substantiated by similarly examining the PGs synthesized solely by cardiac mesenchymal cells migrating within hydrated collagen lattice in culture. These data were incorporated into a model of "substratum conditioning" which provides a molecular mechanism by which secretion of mesenchyme-specific CS-PGs not only provides for directed and sustained cell movement, but ultimately inhibits migration of the cell population as a whole.  相似文献   

17.
E-selectin is a cell adhesion molecule involved in the initial rolling and adhesion of leukocytes to the endothelium during inflammation. In addition, in vitro studies have suggested that an interaction between E-selectin and binding sites such as sialyl Lewis X-containing oligosaccharides on endothelial cells may be important for angiogenesis. In order to investigate the binding of E-selectin to endothelial cells, we developed an ELISA assay using chimeric E-selectin-Ig molecules and endothelial cells fixed on poly-L-lysine coated plates. Our results indicate that E-selectin-Ig binds to both bovine capillary endothelial cells and human dermal microvascular endothelial cells in a calcium-dependent and saturable manner. The binding is inhibited markedly by heparin and by syndecan-1 ectodomain, and moderately by chondroitin sulfate, but not by sialyl Lewis X-containing oligosaccharides. These results suggest that heparan sulfate and chondroitin sulfate proteoglycans on endothelial cells are potential ligands for E-selectin.  相似文献   

18.
The formation of the glial scar following a spinal cord injury presents a significant barrier to the regenerative process. It is primarily composed of chondroitin sulfate proteoglycans (CSPGs) that can inhibit axonal sprouting and regeneration. Although the inhibitory effects on neurons are well documented, little is known about their effects on oligodendrocyte progenitor cells (OPCs). In this study, we examined the effects of CSPGs on OPC process outgrowth and differentiation in vitro. The results show that specific CSPGs, in particularly those highly up-regulated following spinal cord injury, inhibit OPC process outgrowth and differentiation, and that treatment with chondroitinase ABC can completely reverse this inhibition. Additionally, treatment with the Rho kinase inhibitor Y-27632 also reverses the observed inhibition, implicating the activation of Rho kinase in the CSPG inhibition of OPC growth. Taken together, these findings demonstrate that the CSPGs found within the glial scar are not only inhibitory to neurons, but also to OPCs. Moreover, this study shows that chondroitinase ABC treatment, having shown promise in promoting axonal regeneration, may also enhance remyelination.  相似文献   

19.
We have previously shown that aggregation of microbeads coated with N- CAM and Ng-CAM is inhibited by incubation with soluble neurocan, a chondroitin sulfate proteoglycan of brain, suggesting that neurocan binds to these cell adhesion molecules (Grumet, M., A. Flaccus, and R. U. Margolis. 1993. J. Cell Biol. 120:815). To investigate these interactions more directly, we have tested binding of soluble 125I- neurocan to microwells coated with different glycoproteins. Neurocan bound at high levels to Ng-CAM and N-CAM, but little or no binding was detected to myelin-associated glycoprotein, EGF receptor, fibronectin, laminin, and collagen IV. The binding to Ng-CAM and N-CAM was saturable and in each case Scatchard plots indicated a high affinity binding site with a dissociation constant of approximately 1 nM. Binding was significantly reduced after treatment of neurocan with chondroitinase, and free chondroitin sulfate inhibited binding of neurocan to Ng-CAM and N-CAM. These results indicate a role for chondroitin sulfate in this process, although the core glycoprotein also has binding activity. The COOH-terminal half of neurocan was shown to have binding properties essentially identical to those of the full-length proteoglycan. To study the potential biological functions of neurocan, its effects on neuronal adhesion and neurite growth were analyzed. When neurons were incubated on dishes coated with different combinations of neurocan and Ng-CAM, neuronal adhesion and neurite extension were inhibited. Experiments using anti-Ng-CAM antibodies as a substrate also indicate that neurocan has a direct inhibitory effect on neuronal adhesion and neurite growth. Immunoperoxidase staining of tissue sections showed that neurocan, Ng-CAM, and N-CAM are all present at highest concentration in the molecular layer and fiber tracts of developing cerebellum. The overlapping localization in vivo, the molecular binding studies, and the striking effects on neuronal adhesion and neurite growth support the view that neurocan may modulate neuronal adhesion and neurite growth during development by binding to neural cell adhesion molecules.  相似文献   

20.
Functional domains of cell adhesion molecules.   总被引:8,自引:0,他引:8  
A number of molecules involved in cell adhesion (e.g. fibronectin, laminin, collagens I and IV, thrombospondin, entactin) have now been identified and the consequent roles that they play in the processes of growth, migration, differentiation and tumor spread have been described. Active sequences of the molecules have been identified using synthetic peptides derived from specific domains. Several adhesive molecules contain multiple active domains with different biological activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号