首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract. Serpulidae encompasses polychaete species whose members have fused anterior ends bearing a tentacular crown, a heteronomous segmented body with a thorax and abdomen, and “chaetal inversion” between the two tagmata. The sessile filter‐feeding organisms live in self‐built, coiled, calcareous tubes on algae. The F‐actin muscular subset of Spirorbis cf. spirorbis was stained with phalloidin and three‐dimensionally reconstructed by means of cLSM, aiming to investigate (1) how the tentacular crown is organized and moved, (2) whether the internal structures, e.g., musculature, follow the thorax–abdomen inversion, and (3) whether circular muscles are present in serpulids. The third aim is by reason of recent investigations suggesting that lack of circular muscle fibers may be a common situation rather than a rare variation in polychaetes. In this manner, this article is part of a comparative evaluation of polychaete muscle systems. We found that longitudinal muscles of the body wall project into the tentacular crown, and that radioli and pinnulae possess three muscle types each, facilitating their great mobility. Operculum, collar, and a pair of unidentified organs possess distinct F‐actin filaments. The trunk is mainly moved by five longitudinal muscle strands, most obvious in the abdomen: two dorsal, two ventral, and an unpaired ventromedian one, out of which the dorsal ones are the strongest. In anterior regions, the two dorsal strands form a single continuous layer; the separated strands lessen posteriorly. Solitary transverse fibers are located ventrally in the middle of each segment, stretching between longitudinal muscles and coelomic lining laterally, where they end. Peripheral and central dorsoventral muscles, two pairs per segment each, are present. Circular fibers as well as bracing muscles were not detected. The results indicate that the musculature does not follow the thorax–abdomen inversion and Serpulidae represents the 15th polychaete taxon in which circular fibers are totally missing.  相似文献   

2.
Kajihara  Hiroshi  Gibson  Ray  Mawatari  Shunsuke F. 《Hydrobiologia》2001,456(1-3):187-198
A new genus and species of monostiliferous hoplonemertean, Diopsonemertes acanthocephala gen. et sp. nov., is described from Otsuchi Bay, Japan. Significant anatomical features of the new form include a body wall longitudinal musculature anteriorly divided into inner and outer layers by connective tissue, no pre-cerebral septum, the presence of a thin coat of diagonal muscle fibres between the body wall longitudinal and circular muscle layers in the foregut body region, cephalic retractor muscles derived only from the inner portion of the divided longitudinal muscles and a rhynchocoel more than half the body length.  相似文献   

3.
Functional morphology and evolution of tail autotomy in salamanders   总被引:1,自引:0,他引:1  
Basal tail constriction occurs in about two-thirds of the species of plethodontid salamanders. The constriction, which marks the site of tail autotomy, is a result of a reduction in length and diameter of the first caudal segment. Gross and microscopic anatomical studies reveal that many structural specializations are associated with basal constriction, and these are considered in detail. Areas of weakness in the skin at the posterior end of the first caudal segment, at the attachment of the musculature to the intermyotomal septum at the anterior end of the same segment, and between the last caudosacral and first caudal vertebrae precisely define the route of tail breakage. During autotomy the entire tail is shed, and a cylinder of skin one segment long closes over the wound at the end of the body. It is suggested that specializations described in this paper have evolved independently in three different groups of salamanders. Experiments and field observations reveal that, contrary to expectations, frequency of tail breakage is less in species with apparent provisions for tail autotomy than in less specialized species. The tail is a very important, highly functional organ in salamanders and it is suggested that selection has been for behavioral and structural adaptations for control of tail loss, rather than for tail loss per se.  相似文献   

4.
R. Sexton 《Protoplasma》1979,99(1-2):53-66
Summary The abscission of leaves fromImpatiens sultani Hook. occurs as the direct result of the weakening of a narrow band of cells running transversely across the base of the petiole. This loss of strength of the abscission zone is due to the breakdown of the central cell wall in two or three layers of cells. The process of wall degeneration is first visible 13 hours after the induction of abscission in a small group of cells found just below the concave groove on the adaxial side of the petiole. As the abscission zone gets progressively weaker the area of cells showing wall breakdown expands, spreading through the parenchyma to the lower side of the stele. The walls of the collenchyma and epidermis along the sides and base of the petiole and the central vascular tissues are the last to break down. Experiments in which the abscission zone was dissected into small pieces were undertaken to investigate whether cell wall hydrolysis was a contagious phenomenon, spreading from cell to cell by direct contact. The results of these investigations indicated that there was little requirement for cell to cell contact in either the temporal or spatial integration of cell wall breakdown.  相似文献   

5.
Leaflet abscission in Sambucus nigra is the result of cell wall breakdown at the site of separation. Associated with wall degradation is an increase in the activity of the enzyme β1,4 glucanase (E.C.3.1.2.4) in the cells that comprise the abscission zone. The enzyme has been extracted from abscission zone tissue and purified using a substrate affinity column. A qualitative enzyme assay procedure has been developed and this has facilitated the purification process. The β1,4 glucanase enzyme has a pH optimum of 7 and a molecular mass of 54kDa. Antibodies have been raised to the purified protein. The role of the enzyme in the abscission process is discussed.  相似文献   

6.
Arthropods are characterized by a rigid, articulating, exoskeleton operated by a lever‐like system of segmentally arranged, antagonistic muscles. This skeletomuscular system evolved from an unsegmented body wall musculature acting on a hydrostatic skeleton, similar to that of the arthropods’ close relatives, the soft‐bodied onychophorans. Unfortunately, fossil evidence documenting this transition is scarce. Exceptionally‐preserved panarthropods from the Cambrian Lagerstätte of Sirius Passet, Greenland, including the soft‐bodied stem‐arthropod Pambdelurion whittingtoni and the hard‐bodied arthropods Kiisortoqia soperi and Campanamuta mantonae, are unique in preserving extensive musculature. Here we show that Pambdelurion's myoanatomy conforms closely to that of extant onychophorans, with unsegmented dorsal, ventral and longitudinal muscle groups in the trunk, and extrinsic and intrinsic muscles controlling the legs. Pambdelurion also possesses oblique musculature, which has previously been interpreted as an arthropodan characteristic. However, this oblique musculature appears to be confined to the cephalic region and first few body segments, and does not represent a shift towards arthropodan myoanatomy. The Sirius Passet arthropods, Kiisortoqia and Campanamuta, also possess large longitudinal muscles in the trunk, although, unlike Pambdelurion, they are segmentally divided at the tergal boundaries. Thus, the transition towards an arthropodan myoanatomy from a lobopodian ancestor probably involved the division of the peripheral longitudinal muscle into segmented units.  相似文献   

7.
The ease of autotomy in Hemigrapsus oregonensis was tested by crushing the propodite of each walking leg. Individual curves of percent autotomy in groups of 18–21 animals were drawn for six different sequences of stimulation. Lumped data show peaks in ease of autotomy for the third anatomical leg of each side and for the second leg stimulated regardless of anatomical position. Later autotomies are more severely depressed when the stimulation sequence is from posterior to anterior. Segmental and lateral interaction and the characteristics of individual responses suggest that autotomy of legs in the crab, while depending upon specific structural features of the legs, is less a unisegmental reflex, than an accident occurring during escape.  相似文献   

8.
Jon L. Norenburg 《Hydrobiologia》1993,266(1-3):203-218
Riserius pugetensis gen. n., sp. n. is described from the northwest coast of Washington, U.S.A. It is probably a heteronemertine and, as such, would be the first known mesopsammic member of that order; it lives in the interstices of medium to coarse, moderately clean sands. Its morphology presents some attributes considered characteristic of mesopsammic fauna. The effect of some of these attributes is a generalized appearance of anatomical ‘simplicity’ and, as with other mesopsammic metazoans, this presents difficulties in distinguishing between primitiveness and reduction. In the new species such problematic features include the lack of subepidermal glandular cells and connective tissue, reduced proboscideal musculature, simple blood-vascular system, and the presence of a ‘secondary’, outer circular musculature in the body wall. The general appearance of this new species is very similar to the so-called palaeonemertine Hubrechtella and characteristics of both suggest relationship with the baseodiscid heteronemertines. These relationships are explored in light of a modified interpretation of proboscideal musculature, a traditional cornerstone of heteronemertmean taxonomy.  相似文献   

9.
In the zucchini squash, Cucurbita pepo, a well coordinated abscission of the female flower during fruit set is essential to obtain a fruit of commercial value. In Spain zucchini is mainly produced in greenhouses in Almería, where high temperatures during the spring-summer period provoke a cultivar-dependent defect in fruits known as the “sticky flower” syndrome. This disorder is characterised by an arrest in growth and maturation of floral organs, and a lack of female floral abscission, thus diminishing fruit shelf-life, commercial quality and value. The aim of the present work was to improve knowledge of the abscission process in C. pepo to better understand the fundamental causes of this disorder. The anatomical analysis of abscission shows a well defined male floral abscission zone (AZ), few hours after anthesis, which differs from the female zone which is not differentiated from the adjacent tissue until the abscission process has begun, and which occurs as a consequence of AZ cell enlargement and the dissolution of their cell walls. To evaluate the role of ethylene and auxins in the regulation of floral abscission in zucchini we performed several treatments, with: ethylene, added as 0.25% ethrel solution; AVG, the inhibitor of ethylene synthesis, at 100 μM; indol-3-acetic acid, 100 μM; and TIBA, the inhibitor of auxin polar transport, at 10 mM. These treatments show that ethylene is an accelerator of zucchini floral abscission, and also promotes abscission in isolated AZs of sticky flowers. On the other hand, IAA delays abscission of the female flowers, whilst the inhibitor of auxin polar transport promotes it. The activity of the cell wall hydrolytic enzymes, polygalacturonase and cellulase, sharply increased just before the shedding of zucchini floral organs (72 h after anthesis). Moreover, both enzyme activities were induced by ethylene, which partly explains the ethylene promoting effect.  相似文献   

10.
Cell Wall Solubilization in Pedicel Abscission of Begonia Flower Buds   总被引:1,自引:0,他引:1  
Effects of metabolic inhibitors and growth regulators on the course of abscission and on the activities of cell wall solubilizing enzymes were studied in pedicel explants of Begonia flower buds. Actinomycin D, chloramphenicol and 2,4-dinitrophenol slightly retarded abscission, whereas cycloheximide exerted a strong inhibition if applied until 10.5 h after explant excision. Indoleacetic acid retarded and ethylene promoted abscission and cell wall solubilization. However, the activities of cell wall solubilizing enzymes did not correspond with the course of abscission. No polygalacturonase and pectic acid and pectin transeliminases could be detected in the abscission zone during abscission, whereas a low pectin methylesterase activity did not change. Endo- and exocellulase activities did not increase until about 10 h after the onset of abscission, indicating that they are the result rather than the cause of abscission.  相似文献   

11.
 The pharynx of Gnathostomula paradoxa consists of the partly syncytial pharyngeal musculature, a pharyngeal epithelium, myoepitheliocytes, receptors, nerves, and three solid parts, called the jugum, the basal plate, and the jaw. Extended non-contractile regions of both pharyngeal and body wall musculature form the so-called parenchymatous tissue between the digestive tract and the body wall. The pharyngeal epithelium mediates the force from the pharyngeal musculature to the solid parts. The basal plate and jaw contain longitudinal cuticular rods which are elastic antagonists of the musculature. There is no buccal ganglion in G. paradoxa. The study supports the monophyly of the Gnathostomulida and Gnathifera. Accepted: 4 April 1997  相似文献   

12.
13.
Abscission is an important developmental process in the life cycle of the plant, regulating the detachment of organs from the main body of the plant. This mechanism can be initiated in response to environmental cues such as disease or pathogen, or it can be a programmed shedding of organs that no longer provide essential functions to the plant. We have identified five novel dab (delayed floral organ abscission) mutants (dab1-1, dab2-1, dab3-1, dab3-2, and dab3-3) in Arabidopsis. These mutants each display unique anatomical and physiological characteristics and are governed by three independent loci. Scanning electron microscopy shows delayed development of the flattened fracture plane in some mutants and irregular elongation in the cells of the fracture plane in other mutants. The anatomical observations are also supported by breakstrength measurements that show high breakstrength associated with broken cells, moderate levels for the flattened fracture plane, and low levels associated with the initial rounding of cells. In addition, observations on the expression patterns in the abscission zone of cell wall hydrolytic enzymes, chitinase and cellulose, show altered patterns in the mutants. Last, we have compared these mutants with the ethylene-insensitive mutants etr1-1 and ein2-1 to determine if ethylene is an essential component of the abscission process and find that although ethylene can accelerate abscission under many conditions, the perception of ethylene is not essential. The role of the dab genes and the ethylene response genes during the abscission process is discussed.  相似文献   

14.
Divergent morphologies among related species are often correlated with distinct behaviors and habitat uses. Considerable morphological and behavioral differences are found between two major clades within the polychaete family Opheliidae. For instance, Thoracophelia mucronata burrows by peristalsis, whereas Armandia brevis exhibits undulatory burrowing. We investigate the anatomical differences that allow for these distinct burrowing behaviors, then interpret these differences in an evolutionary context using broader phylogenetic (DNA‐based) and morphological analyses of Opheliidae and taxa, such as Scalibregmatidae and Polygordiidae. Histological three‐dimensional‐reconstruction of A. brevis reveals bilateral longitudinal muscle bands as the prominent musculature of the body. Circular muscles are absent; instead oblique muscles act with unilateral contraction of longitudinal muscles to bend the body during undulation. The angle of helical fibers in the cuticle is consistent with the fibers supporting turgidity of the body rather than resisting radial expansion from longitudinal muscle contraction. Circular muscles are present in the anterior of T. mucronata, and they branch away from the body wall to form oblique muscles. Helical fibers in the cuticle are more axially oriented than those in undulatory burrowers, facilitating radial expansion during peristalsis. A transition in musculature accompanies the change in external morphology from the thorax to the abdomen, which has oblique muscles similar to A. brevis. Muscles in the muscular septum, which extends posteriorly to form the injector organ, act in synchrony with the body wall musculature during peristalsis: they contract to push fluid anteriorly and expand the head region following a direct peristaltic wave of the body wall muscles. The septum of A. brevis is much thinner and is presumably used for eversion of a nonmuscular pharynx. Mapping of morphological characters onto the molecular‐based phylogeny shows close links between musculature and behavior, but less correlation with habitat. J. Morphol. 275:548–571, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Azolla, a small water fern, abscises its roots and branches within 30 min upon treatment with various stresses. This study was conducted to test whether, in the rapid abscission that occurs in Azolla, breakdown of wall components of abscission zone cells by OH is involved. Experimentally generated OH caused the rapid separation of abscission zone cells from detached roots and the rapid shedding of roots from whole plants. Electron microscopic observations revealed that OH rapidly and selectively dissolved a well‐developed middle lamella between abscission zone cells and resultantly caused rapid cell separation and shedding. Treatment of abscission zones of Impatiens leaf petiole with OH also accelerated the separation of abscission zone cells. However, compared with that of Azolla roots, accelerative effects in Impatiens were weak. A large amount of OH was cytochemically detected in abscission zone cells both of Azolla roots and of Impatiens leaf petioles. These results suggest that OH is involved in the cell separation process not only in the rapid abscission in Azolla but also in the abscission of Impatiens. However, for rapid abscission to occur, a well‐developed middle lamella, a unique structure, which is sensitive to the attack of OH, might be needed.  相似文献   

16.
A fundamental event in abscission is the breakdown of cell wall material in a discrete zone of cells known as the separation layer. Three dimensional images produced by viewing tissue prints of abscission zones on nitrocellulose (NC) membranes with incident illumination showed changes in the tissue integrity taking place in the separation layer as the process of abscission proceeded. The cell softening which occurs due to the dissolution of the cell wall appeared in the tissue prints as a diffuse line at the anatomical transition between the pulvinus and petiole and was easily observed on NC tissue prints of either longitudinal or serial cross-sections through abscission zones. In bean leaf abscission the dissolution of cell walls has been correlated with the appearance of a form of cellulase with an isoelectric point of pH 9.5. Antibodies specific for this enzyme were used to study the localization of 9.5 cellulase in the distal abscission zone of Phaseolus vulgaris L., cv Red Kidney after tissue printing on NC. It was found that 9.5 cellulase was localized in the separation layer but also occurred in the vascular tissue of the adjacent pulvinus. No antibody binding was observed in nonabscising tissue or preimmune controls. These results confirm previous biochemical studies and demonstrate that immunostaining of nitrocellulose tissue prints is a fast and reliable method to localize proteins or enzymes in plant tissue.  相似文献   

17.
Anatomical, histochemical, and mechanical studies indicated the presence of a highly modified and weakened stem base in Kochia scoparia L. Schrader. This base, the abscission zone, is the site for stem abscission. In autumn progressive desiccation of the plant is accompanied by the gradual loss of stem flexibility and concomitant increase in rigidity. The tissues of the stem remain relatively tough, but abscission zone tissues become very brash or brittle. When conditioned plants are stressed by winds, the stem acts as a moment arm, and large stresses are generated in the abscission zone. Rupture then occurs across the stem base, often abruptly. Strength tests indicated that breakage occurred with 40% less stress if a soil-inhabiting fungus (Rhizoctonia sp.) had degraded the nonlignified cell wall components of the abscission zone. Abscission, therefore, is caused by the wind, an external driving variable, but tissue desiccation, changes in anatomy, and decay are internal, preparatory variables.  相似文献   

18.
Abstract. Ceratal autotomy by the aeolid nudibranch Phidinna crassicornis is common in the field and was induced in the laboratory by mechanical and predatory stimuli. The ceras detaches from the body wall along an autotomy plane located at its basal constriction. Cerata released copious amounts of mucus during autotomy and exhibited a prolonged writhing response that continued for several hours after detachment. Regeneration of cerata autotomized in the field and in the laboratory was documented. Four days after autotomy, regenerating cerata appeared as small protuberances. By day 24 the regenerates acquired their mature structural organisation and vivid colour. The cerata subsequently increased in length and diameter and were indistin‐guishable from surrounding cerata by 41 to 43 days after autotomy. Regeneration rates of cerata induced to autotomize in the laboratory and regeneration of cerata autotomized in the field were similar, averaging 0.08 and 0.067 mdday, respectively. The sequence of morphological events involved with regeneration following experimental and natural induction of autotomy was identical. The kelp crab Pugettia productn induced autotomy by holding cerata with its chelae. This crab also fed on autotomized cerata and consumed locomotory and ceratal mucus. Ceratal autotomy may be an important mechanism of escape from this predatory crustacean. Other potential predators including hermit crabs and tidepool sculpins did not elicit defensive behaviour in P. crussicornis. Nematocysts were present in the enidosacs and their role in defense was investigated. Fired nematocysts were observed in podia of the asteroid Crossaster papposus following ceratal contact but were not seen in the podia of Pycnopodia helianthoides in a similar trial. For P. crassicornis, the cnidosacs may function primarily as a storage device for safe sequestering of nematoeysts that could pose a threat to the digestive system. They did not play a major defensive role against the predators tested, but may be important in the field against other predators.  相似文献   

19.
The organisation of the praesoma in the parasite Acanthocephalus anguillae was studied on the light and electron microscopic level, with emphasis on the morphology of the musculature. The study was compiled to add new data to the ground pattern of the Acanthocephala for analysis of the phylogenetic relationships within the Gnathifera. In A. anguillae the praesomal epidermis and lemnisci form a coherent syncytium, separated from the epidermis of the trunk. Hooks are seen to be derivatives of the subepidermal basal lamina and are covered by the praesomal epidermis. The praesomal circular body wall musculature forms a network of anastomosing muscle fibres that lines the proboscis; a praesomal longitudinal body wall musculature does not exist. The truncal circular and longitudinal body wall musculature rise up to the praesomal proboscis. The unpaired proboscis retractor, consisting of longitudinal circomyar fibres, forms an outer and an inner concentric tube; the latter extends through the entire praesoma and penetrates the receptacle wall. The sack-like receptacle is surrounded by a receptacle constrictor. The nervous system of the praesoma consists of a prominent cerebral ganglion, three nerves which extend anteriorly, ramify and end within the praesomal musculature, and two strong lateral posterior nerves. A. anguillae lacks an apical organ, lateral organs and a support cell. Many of the features present in the praesoma of A. anguillae can be assumed as ground-pattern characteristics of the Acanthocephala. Accepted: 22 January 2001  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号