首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toll-like receptors (TLRs) are pattern recognition receptors that recognize conserved molecular patterns expressed by pathogens. Pneumolysin, an intracellular toxin found in all Streptococcus pneumoniae clinical isolates, is an important virulence factor of the pneumococcus that is recognized by TLR4. Although TLR2 is considered the most important receptor for Gram-positive bacteria, our laboratory previously could not demonstrate a decisive role for TLR2 in host defence against pneumonia caused by a serotype 3 S. pneumoniae . Here we tested the hypothesis that in the absence of TLR2, S. pneumoniae can still be sensed by the immune system through an interaction between pneumolysin and TLR4. C57BL/6 wild-type (WT) and TLR2 knockout (KO) mice were intranasally infected with either WT S. pneumoniae D39 (serotype 2) or the isogenic pneumolysin-deficient S. pneumoniae strain D39 PLN. TLR2 did not contribute to antibacterial defence against WT S. pneumoniae D39. In contrast, pneumolysin-deficient S. pneumoniae only grew in lungs of TLR2 KO mice. TLR2 KO mice displayed a strongly reduced early inflammatory response in their lungs during pneumonia caused by both pneumolysin-producing and pneumolysin-deficient pneumococci. These data suggest that pneumolysin-induced TLR4 signalling can compensate for TLR2 deficiency during respiratory tract infection with S. pneumoniae.  相似文献   

2.
Toll-like receptor (TLR) family acts as pattern recognition receptors for pathogen-specific molecular patterns. We previously showed that TLR2 recognizes Gram-positive bacterial components whereas TLR4 recognizes LPS, a component of Gram-negative bacteria. MyD88 is shown to be an adaptor molecule essential for TLR family signaling. To investigate the role of TLR family in host defense against Gram-positive bacteria, we infected TLR2- and MyD88-deficient mice with Staphylococcus aureus. Both TLR2- and MyD88-deficient mice were highly susceptible to S. aureus infection, with more enhanced susceptibility in MyD88-deficient mice. Peritoneal macrophages from MyD88-deficient mice did not produce any detectable levels of cytokines in response to S. aureus. In contrast, TLR2-deficient macrophages produced reduced, but significant, levels of the cytokines, and TLR4-deficient macrophages produced the same amounts as wild-type cells, indicating that S. aureus is recognized not only by TLR2, but also by other TLR family members except for TLR4.  相似文献   

3.
Jones CL  Weiss DS 《PloS one》2011,6(6):e20609
BACKGROUND: Early detection of microorganisms by the innate immune system is provided by surface-expressed and endosomal pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). Detection of microbial components by TLRs initiates a signaling cascade leading to the expression of proinflammatory cytokines including IL-6 and IL-1β. Some intracellular bacteria subvert the TLR response by rapidly escaping the phagosome and entering the cytosol. However, these bacteria may be recognized by the inflammasome, a multi-protein complex comprised of a sensor protein, ASC and the cysteine protease caspase-1. Inflammasome activation leads to release of the proinflammatory cytokines IL-1β and IL-18 and death of the infected cell, an important host defense that eliminates the pathogen's replicative niche. While TLRs and inflammasomes are critical for controlling bacterial infections, it is unknown whether these distinct host pathways cooperate to activate defenses against intracellular bacteria. METHODOLOGY/SIGNIFICANT FINDINGS: Using the intracellular bacterium Francisella novicida as a model, we show that TLR2(-/-) macrophages exhibited delayed inflammasome activation compared to wild-type macrophages as measured by inflammasome assembly, caspase-1 activation, cell death and IL-18 release. TLR2 also contributed to inflammasome activation in response to infection by the cytosolic bacterium Listeria monocytogenes. Components of the TLR2 signaling pathway, MyD88 and NF-κB, were required for rapid inflammasome activation. Furthermore, TLR2(-/-) mice exhibited lower levels of cell death, caspase-1 activation, and IL-18 production than wild-type mice upon F. novicida infection. CONCLUSIONS/SIGNIFICANCE: These results show that TLR2 is required for rapid inflammasome activation in response to infection by cytosolic bacterial pathogens. In addition to further characterizing the role of TLR2 in host defense, these findings broaden our understanding of how the host integrates signals from spatiotemporally separated PRRs to coordinate an innate response against intracellular bacteria.  相似文献   

4.
Cathepsin E, an intracellular aspartic proteinase, is predominantly localized in the endosomal compartments of immune system cells. In the present study, we investigated the role of cathepsin E in immune defense systems against bacterial infection. Cathepsin E-deficient (CatE(-/-)) mice showed dramatically increased susceptibility to infection with both the Gram-positive bacterium Staphyrococcus aureus, and the Gram-negative bacterium Porphyromonas gingivalis when compared with syngeneic wild-type mice, most likely due to impaired regulation of bacterial elimination. Peritoneal macrophages from CatE(-/-) mice showed significantly impaired tumor necrosis factor-alpha and IL-6 production in response to S. aureus and decreased bactericidal activities toward this bacterium. Moreover, the cell surface levels of Toll-like receptor-2 (TLR2) and TLR4, which recognize specific components of Gram-positive and -negative bacteria, respectively, were decreased in CatE(-/-) macrophages, despite no significant difference in the total cellular expression levels of these receptors between the wild-type and CatE(-/-) macrophages, implying trafficking defects in these surface receptors in the latter. These results indicate an essential role of cathepsin E in immune defense against invading microorganisms, most probably due to regulation of the cell surface expression of TLR family members required for innate immune responses.  相似文献   

5.
TLR3 was the first member of the TLR family of pattern recognition receptors found to detect a conserved viral molecular pattern, dsRNA, yet supporting evidence for a major role in host defense against viral pathogens is limited. Punta Toro virus (PTV) has been shown to produce severe infection in mice, modeling disease caused by the related highly pathogenic Rift Valley fever phlebovirus in humans and domesticated ungulates. Using TLR3-deficient mice, we investigated the involvement of TLR3 in host defense against PTV infection. Compared with wild-type, TLR3(-/-) mice demonstrate increased resistance to lethal infection and have reduced liver disease associated with hepatotropic PTV infection. Infectious challenge produced comparable peak liver and serum viral loads; however, TLR3(-/-) mice were able to clear systemic virus at a slightly faster rate. Cytokine profiling suggests that TLR3 plays an important role in PTV pathogenesis through the overproduction of inflammatory mediators, which may be central to the observed differences in survival and disease severity. Compared with TLR3-deficient mice, IL-6, MCP-1, IFN-gamma, and RANTES were all present at higher levels in wild-type animals. Most dramatic was the exaggerated levels of IL-6 found systemically and in liver tissue of infected wild-type mice; however, IL-6-deficient animals were found to be more susceptible to lethal PTV infection. Taken together, we conclude that the TLR3-mediated response to PTV infection is detrimental to disease outcome and propose that IL-6, although critical to establishing antiviral defense, contributes to pathogenesis when released in excess, necessitating its controlled production as is seen with TLR3(-/-) mice.  相似文献   

6.
Heterologous expression of Toll-like receptor (TLR)2 and CD14 in Chinese hamster ovary fibroblasts was reported to confer responsiveness to pneumococcal peptidoglycan. The present study characterized the role of TLR2 in the host immune response and clinical course of pneumococcal meningitis. Pneumococcal infection of mice caused a significant increase in brain TLR2 mRNA expression at both 4 and 24 h postchallenge. Mice with a targeted disruption of the TLR2 gene (TLR2-/-) showed a moderate increase in disease severity, as evidenced by an aggravation of meningitis-induced intracranial complications, a more pronounced reduction in body weight and temperature, and a deterioration of motor impairment. These symptoms were associated with significantly higher cerebellar and blood bacterial titers. Brain expression of the complement inhibitor complement receptor-related protein y was significantly higher in infected TLR2-/- than in wild-type mice, while the expression of the meningitis-relevant inflammatory mediators IL-1beta, TNF-alpha, IL-6, macrophage-inflammatory protein (MIP)-2, inducible NO synthase, and C3 was similar in both genotypes. We first ectopically expressed single candidate receptors in HEK293 cells and then applied peritoneal macrophages from mice lacking TLR2 and/or functional TLR4 for further analysis. Overexpression of TLR2 and TLR4/MD-2 conferred activation of NF-kappaB in response to pneumococcal exposure. However, pneumococci-induced TNF-alpha release from peritoneal macrophages of wild-type and TLR2/functional TLR4/double-deficient mice did not differ. Thus, while TLR2 plays a significant role in vivo, yet undefined pattern recognition receptors contribute to the recognition of and initiation of the host immune defense toward Streptococcus pneumoniae infection.  相似文献   

7.
C-reactive protein (CRP) is an acute phase reactant with roles in innate host defense, clearance of damaged cells, and regulation of the inflammatory response. These activities of CRP depend on ligand recognition, complement activation, and binding to FcgammaR. CRP binds to phosphocholine in the Streptococcus pneumoniae cell wall and provides innate defense against pneumococcal infection. These studies examine the effect of this early innate defense molecule on the development of Abs and protective immunity to S. pneumoniae. Dendritic cells (DC) initiate and direct the adaptive immune response by integrating innate stimuli with cytokine synthesis and Ag presentation. We hypothesized that CRP would direct uptake of S. pneumoniae to FcgammaR on DC and enhance Ag presentation. CRP opsonization of the R36a strain of S. pneumoniae increased the uptake of bacteria by DC. DC pulsed with untreated or CRP-opsonized R36a were transferred into recipient mice, and Ab responses were measured. In mice challenged with free R36a, CRP opsonization resulted in higher secondary and memory IgG responses to both phosphocholine and pneumococcal surface protein A. Furthermore, mice immunized with DC that had been pulsed with CRP-opsonized R36a showed increased resistance to intranasal infection with virulent S. pneumoniae. The effects of CRP on Ag uptake, Ab responses, and protection from infection all required FcR gamma-chain expression on DC. The results indicate that innate recognition by CRP enhances effective uptake and presentation of bacterial Ags through FcgammaR on DC and stimulates protective adaptive immunity.  相似文献   

8.
Innate resistance against Mycobacterium tuberculosis is thought to depend critically on engagement of pattern recognition receptors on macrophages. However, the relative contribution of these receptors for containing M. tuberculosis infection has remained unexplored in vivo. To address this issue, we infected mice defective in CD14, TLR2, or TLR4 with M. tuberculosis by aerosol. Following infection with 100 mycobacteria, either mutant strain was as resistant as congenic control mice. Granuloma formation, macrophage activation, and secretion of proinflammatory cytokines in response to low-dose aerosol infection were identical in mutant and control mice. However, high-dose aerosol challenge with 2000 CFU M. tuberculosis revealed TLR2-, but not TLR4-defective mice to be more susceptible than control mice. In conclusion, while TLR2 signaling contributes to innate resistance against M. tuberculosis in borderline situations, its function, and that of CD14 and TLR4, in initiating protective responses against naturally low-dose airborne infection is redundant.  相似文献   

9.
Toll-like receptors and corneal innate immunity   总被引:1,自引:0,他引:1  
The ocular surface is constantly exposed to a wide array of microorganisms. The ability of the cornea to recognize pathogens as foreign and eliminate them is critical to retain its transparency, hence preservation of sight. In the eye, as in other parts of the body, the early response against invading pathogens is provided by innate immunity. Corneal innate immune system uses a series of pattern recognition receptors to detect the presence of pathogens thus allowing for rapid host defense responses to invading microbes. A key component of such receptors is the "Toll-like receptors" (TLRs), which have come to occupy the center stage in innate immunity against invading pathogens. An increasing number of studies have shown that TLRs are expressed by a variety of tissues and cells of the eye and play an important role in ocular defense against microbial infection. Here in this review we summarize the current knowledge about TLR expression in human eye with main emphasis on the cornea, and discuss the future directions of the field.  相似文献   

10.
Toll-like receptors (TLR) are an important component in the innate immune response to a wide variety of pathogens. Recently, a series of studies has addressed the hypothesis that TLR4 also participates in the host innate response against respiratory syncytial virus (RSV), the leading cause of lower respiratory tract infections in infants and young children. In most of the studies available, RSV, which is not a natural pathogen of mice, has been systematically used in mouse models of human bronchiolitis, with conflicting results. Pneumonia virus of mice (PVM), a member of the pneumovirus genus, shares many similarities with RSV. The serological and structural relationships that exist between them suggest that the immune response to these viruses may be similar in their respective natural hosts. To determine the role of TLR4 in host defense against PVM, TLR4-competent and TLR4-deficient mice were intranasally infected with PVM. Variation of body weight, pulmonary function values, histopathology, and pulmonary viral loads were analyzed. None of the investigated clinical, functional, histological and virological parameters was different between strains, which demonstrates that the sensitivity of the mouse to its natural pneumovirus infection is independent of the presence or absence of TLR4 sensing.  相似文献   

11.
The remarkable resistance of the urinary tract to infection has been attributed to its physical properties and the innate immune responses triggered by pattern recognition receptors lining the tract. We report a distinct TLR4 mediated mechanism in bladder epithelial cells (BECs) that abrogates bacterial invasion, a necessary step for successful infection. Compared to controls, uropathogenic type 1 fimbriated Escherichia coli and Klebsiella pneumoniae invaded BECs of TLR4 mutant mice in 10-fold or greater numbers. TLR4 mediated suppression of bacterial invasion was linked to increased intracellular cAMP levels which negatively impacted Rac-1 mediated mobilization of the cytoskeleton. Artificially increasing intracellular cAMP levels in BECs of TLR4 mutant mice restored resistance to type 1 fimbriated bacterial invasion. This finding reveals a novel function for TLR4 and another facet of bladder innate defense.  相似文献   

12.
TLRs are important components of the innate immune response. The role of the TLR signaling pathway in host defense against a natural viral infection has been largely unexplored. We found that mice lacking MyD88, an essential adaptor protein in TLR signaling pathway, were extremely sensitive to intranasal infection with vesicular stomatitis virus, and this susceptibility was dose dependent. We demonstrated that this increased susceptibility correlates with the impaired production of IFN-alpha and defective induction and maintenance of neutralizing Ab. These studies outline the important role of the TLR signaling pathway in nasal mucosae-respiratory tracts-neuroepithelium environment in the protection against microbial pathogen infections. We believe that these results explain how the route of infection, probably by virtue of activating different cell populations, can lead to entirely different outcomes of infection based on the underlying genetics of the host.  相似文献   

13.
Hyaluronan (HA) is a glycosaminoglycan polymer found in the extracellular matrix of virtually all mammalian tissues. Recent work has suggested a role for small, fragmented HA polymers in initiating innate defense responses in immune cells, endothelium, and epidermis through interaction with innate molecular pattern recognition receptors, such as TLR4. Despite these advances, little is known regarding the effect of fragmented HA at the intestinal epithelium, where numerous pattern recognition receptors act as sentinels of an innate defense response that maintains epithelial barrier integrity in the presence of abundant and diverse microbial challenges. Here we report that HA fragments promote expression of the innate antimicrobial peptide human β-defensin 2 (HβD2) in intestinal epithelial cells. Treatment of HT-29 colonic epithelial cells with HA fragment preparations resulted in time- and dose-dependent up-regulated expression of HβD2 protein in a fragment size-specific manner, with 35-kDa HA fragment preparations emerging as the most potent inducers of intracellular HβD2. Furthermore, oral administration of specific-sized HA fragments promotes the expression of an HβD2 ortholog in the colonic epithelium of both wild-type and CD44-deficient mice but not in TLR4-deficient mice. Together, our observations suggest that a highly size-specific, TLR4-dependent, innate defense response to fragmented HA contributes to intestinal epithelium barrier defense through the induction of intracellular HβD2 protein.  相似文献   

14.
The innate immune response is essential for host defense against microbial pathogen infections and is mediated by pattern recognition molecules recognizing pathogen-associated molecular patterns. Our previous work has demonstrated that the extracellular matrix protein mindin functions as a pattern recognition molecule for bacterial pathogens. In this study, we examined the role of mindin in influenza virus infection. We found that intranasal infection of mindin-deficient mice by influenza virus resulted in dramatically increased virus titers in the lung and intranasal cavity of mutant mice. In contrast, lungs from intratracheally infected mindin-deficient mice contained similar influenza virus titers. We showed that mindin interacted with influenza virus particles directly and that mindin-deficient macrophages exhibited impaired activation after influenza virus infection in vitro. Furthermore, intranasal administration of recombinant mindin significantly enhanced the clearance of influenza virus in wild-type mice. Together, these results demonstrate that mindin plays an essential role in the host innate immune response to influenza virus infection and suggest that mindin may be used as an immune-enhancing agent in influenza infection.  相似文献   

15.
Herpes simplex virus 1 (HSV-1) causes a spectrum of disease, including herpes labialis, herpes keratitis, and herpes encephalitis, which can be lethal. Viral recognition by pattern recognition receptors plays a central role in cytokine production and in the generation of antiviral immunity. The relative contributions of different Toll-like receptors (TLRs) in the innate immune response during central nervous system infection with HSV-1 have not been fully characterized. In this study, we investigate the roles of TLR2, TLR9, UNC93B1, and the type I interferon (IFN) receptor in a murine model of HSV-1 encephalitis. TLR2 is responsible for detrimental inflammatory cytokine production following intracranial infection with HSV-1, and the absence of TLR2 expression leads to increased survival in mice. We prove that inflammatory cytokine production by microglial cells, astrocytes, neutrophils, and monocytes is mediated predominantly by TLR2. We also demonstrate that type I IFNs are absolutely required for survival following intracranial HSV-1 infection, as mice lacking the type I IFN receptor succumb rapidly following infection and have high levels of HSV in the brain. However, the absence of TLR9 does not impact survival, type I IFN levels, or viral replication in the brain following infection. The absence of UNC93B1 leads to a survival disadvantage but does not impact viral replication or type I IFN levels in the brain in HSV-1-infected mice. These results illustrate the complex but important roles that innate immune receptors play in host responses to HSV-1 during infection of the central nervous system.  相似文献   

16.
Toll-like receptors are key participants in innate immune responses   总被引:5,自引:0,他引:5  
During an infection, one of the principal challenges for the host is to detect the pathogen and activate a rapid defensive response. The Toll-like family of receptors (TLRs), among other pattern recognition receptors (PRR), performs this detection process in vertebrate and invertebrate organisms. These type I transmembrane receptors identify microbial conserved structures or pathogen-associated molecular patterns (PAMPs). Recognition of microbial components by TLRs initiates signaling transduction pathways that induce gene expression. These gene products regulate innate immune responses and further develop an antigen-specific acquired immunity. TLR signaling pathways are regulated by intracellular adaptor molecules, such as MyD88, TIRAP/Mal, between others that provide specificity of individual TLR- mediated signaling pathways. TLR-mediated activation of innate immunity is involved not only in host defense against pathogens but also in immune disorders. The involvement of TLR-mediated pathways in auto-immune and inflammatory diseases is described in this review article.  相似文献   

17.
Innate immune recognition is the first line of host defense against invading microorganisms. It is a based on the detection, by pattern recognition receptors (PRRs), of invariant molecular signatures that are unique to microorganisms. TLR2 is a PRR that plays a major role in the detection of Gram-positive bacteria by recognizing cell envelope lipid-linked polymers, also called macroamphiphiles, such as lipoproteins, lipoteichoic acids and mycobacterial lipoglycans. These microbe-associated molecular patterns (MAMPs) display a structure based on a lipid anchor, being either an acylated cysteine, a glycosylated diacylglycerol or a mannosyl-phosphatidylinositol respectively, and having in common a diacylglyceryl moiety. A fourth class of macroamphiphile, namely lipoglycans, whose lipid anchor is made, as for lipoteichoic acids, of a glycosylated diacylglycerol unit rather than a mannosyl-phosphatidylinositol, is found in Gram-positive bacteria and produced by certain Actinobacteria, including Micrococcus luteus, Stomatococcus mucilaginosus and Corynebacterium glutamicum. We report here that these alternative lipoglycans are also recognized by TLR2 and that they stimulate TLR2-dependant cytokine production, including IL-8, TNF-α and IL-6, and cell surface co-stimulatory molecule CD40 expression by a human macrophage cell line. However, they differ by their co-receptor requirement and the magnitude of the innate immune response they elicit. M. luteus and S. mucilaginosus lipoglycans require TLR1 for recognition by TLR2 and induce stronger responses than C. glutamicum lipoglycan, sensing of which by TLR2 is dependent on TLR6. These results expand the repertoire of MAMPs recognized by TLR2 to lipoglycans based on a glycosylated diacylglycerol lipid anchor and reinforce the paradigm that macroamphiphiles based on such an anchor, including lipoteichoic acids and alternative lipoglycans, induce TLR2-dependant innate immune responses.  相似文献   

18.
Innate immune system is the first line of host defense against invading microorganisms. It relies on a limited number of germline-encoded pattern recognition receptors that recognize conserved molecular structures of microbes, referred to as pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs). Bacterial cell wall macroamphiphiles, namely Gram-negative bacteria lipopolysaccharide (LPS), Gram-positive bacteria lipoteichoic acid (LTA), lipoproteins and mycobacterial lipoglycans, are important molecules for the physiology of bacteria and evidently meet PAMP/MAMP criteria. They are well suited to innate immune recognition and constitute non-self signatures detected by the innate immune system to signal the presence of an infective agent. They are notably recognized via their lipid anchor by Toll-like receptors (TLRs) 4 or 2. Here, we review our current knowledge of the molecular bases of macroamphiphile recognition by TLRs, with a special emphasis on mycobacterial lipoglycan detection by TLR2.  相似文献   

19.
The recognition of invading microbes followed by the induction of effective innate immune response is crucial for host survival. Human surface epithelial cells are situated at host-environment boundaries and thus act as the first line of host defense against invading microbes. They recognize the microbial ligands via Toll-like receptors (TLRs) expressed on the surface of epithelial cells. TLR2 has gained importance as a major receptor for a variety of microbial ligands. In contrast to its high expression in lymphoid tissues, TLR2 is expressed at low level in epithelial cells. Thus, it remains unclear whether the low amount of TLR2 expressed in epithelial cells is sufficient for mediating bacteria-induced host defense and immune response and whether TLR2 expression can be up-regulated by bacteria during infection. Here, we show that TLR2, although expressed at very low level in unstimulated human epithelial cells, is greatly up-regulated by nontypeable Hemophilus influenzae (NTHi), an important human bacterial pathogen causing otitis media and chronic obstructive pulmonary diseases. Activation of an IKKbeta-IkappaBalpha-dependent NF-kappaB pathway is required for TLR2 induction, whereas inhibition of the MKK3/6-p38alpha/beta pathway leads to enhancement of NTHi-induced TLR2 up-regulation. Surprisingly, glucocorticoids, well known potent anti-inflammatory agents, synergistically enhance NTHi-induced TLR2 up-regulation likely via a negative cross-talk with the p38 MAP kinase pathway. These studies may bring new insights into the role of bacteria and glucocorticoids in regulating host defense and immune response and lead to novel therapeutic strategies for modulating innate immune and inflammatory responses for otitis media and chronic obstructive pulmonary diseases.  相似文献   

20.
Toll-like receptors (TLRs) play an important role in the induction of innate and adaptive immune response against influenza A virus (IAV) infection; however, the role of Toll-like receptor 7 (TLR7) during the innate immune response to IAV infection and the cell types affected by the absence of TLR7 are not clearly understood. In this study, we show that myeloid derived suppressor cells (MDSC) accumulate in the lungs of TLR7 deficient mice more so than in wild-type C57Bl/6 mice, and display increased cytokine expression. Furthermore, there is an increase in production of Th2 cytokines by TLR7(-/-) compared with wildtype CD4+ T-cells in vivo, leading to a Th2 polarized humoral response. Our findings indicate that TLR7 modulates the accumulation of MDSCs during an IAV infection in mice, and that lack of TLR7 signaling leads to a Th2-biased response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号