首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palynological characters of 18 species belonging to seven genera of the traditional subfamily Alsinoideae including Arenaria, Cerastium, Eremogone, Lepyrodiclis, Minuartia, Sabulina and Stellaria were studied in detail using light and scanning electron microscopy. Pollen grains of subfamily Alsinoideae are subspheroidal or prolate, pantoporate and 20.04 to 51.4 µm in size, prominent and sunken apertures uniformly distributed on the pollen surface. Two types of pollen grain ornamentation were observed, i.e. microechinate-punctate or microechinate-perforate. Echini are present on the surface of the pollen of all investigated species with medium, dense, or sparse echinodensity. These species exhibit variation in polar view, equatorial diameter, number of apertures, exine thickness, diameter of pore, appendages per pore, pore ornamentation, echini arrangement, echinidensity and shape of pollen. Based on qualitative characters, a dichotomous key has been developed for quick and easy identification. The present investigation contributes to the systematic approach using palynological characteristics and correct identification of species for members of subfamily Alsinoideae (Caryophyllaceae).  相似文献   

2.
The pollen of three closely related genera, Aëtoxylon, Amyxa, and Gonystylus is compared in SEM and TEM with that of Thymelaeaceae, s. s. The Thymelaeaceae have spherical, pantoporate grains with a crotonoid tectum in which the basic subunit is triangular in shape and forms a continuous triangular array. Thin section (TEM) and fractures (SEM) revealed that these subunits are attached to a ringlike network of horizontal rods. Within the Thymelaeaceae, the triangular subunits vary in the number of subdivisions and degree of fusion and form a morphological continuum. Aëtoxylon, Amyxa, and Gonystylus also have spherical, pantoporate pollen but with a tectum in which almost all of the distinction of the subunits appears to have been lost. The structure of the exine in Aëtoxylon, Amyxa, and Gonystylus, however, is unique thus far within the angiosperms. Thin section revealed a thick tectum with a layer of short or even granular columellae, then a thin, discontinuous layer from which larger columellae appear to hang. There is no evidence of an endexine even in the region of the apertures. The distinctive exine structure would support the treatment of Aëtoxylon, Amyxa, and Gonystylus as a separate family, Gonystylaceae, allied to the Thymelaeaceae.  相似文献   

3.
A survey of pollen morphology of 40 species representing eight genera of the primarily North American subtribe Microseridinae reveals seven of the eight genera to have caveate, echinolophate, tricolporate grains, Picrosia being the only taxon with echinate pollen. Sectioned grains reveal the exine to consist of an ektexine and endexine. The ektexine, composed of spines, columellae, and foot layer appears to be of two basic types, one with six or seven levels of horizontally anastomosing columellae which are reduced to a single columellar layer under the paraporal lacunae and the second, a bistratified ektexine not reduced to a single layer below the paraporal lacunae. Sectioned exines of Pyrrhopappus are unusual, having very large columellae fused to the foot layer below ridges and highly reduced columellae under lacunae. Endexine organization is similar in most of the genera. Exceptions to this are Pyrrhopappus and some species of Agoseris, which have an “endexine 2” layer. Subtribe Microseridinae is essentially stenopalynous. The pollen data support most of the relationships suggested by Stebbins in his classification. The genera Agoseris, Microseris, Nothocalais, and Phalacroseris seem to form a natural group while Krigia and Pyrrhopappus form another cohesive series. The position of Picrosia, as an advanced offshoot of Pyrrhopappus, is not supported by the pollen data.  相似文献   

4.
Pollen of 110 species from 18 genera in thePortulacaceae has been examined by light and scanning electron microscopy, and a representative number by transmission electron microscopy. Three basic pollen types were found: 3-colpate with thick tectum and foot layer with prominent unbranched columellae and an extremely thin endexine; pantoporate with thick tectum and foot layer with branched columellae enclosing pores and an endexine that is one to two layers thick; pantocolpate with thin tectum and foot layer with broad, short unbranched columellae and an inconspicuous endexine. All pollen types, however, have a spinulose and tubuliferous/punctate ektexine. Also, all the genera except three,Calandrinia H.B.K.,Montia L. andTalinum Adanson are stenopalynous. There is, however, no absolute correlation between pollen morphology and geographical distribution, although both the major centre of palynological diversity and the majority of all species with tricolpate grains occur in South America.  相似文献   

5.
As part of an extensive study of pollen of Euphorbiaceae that combines transmission electron microscopy with scanning electron microscopy, distinctive exines are reported and documented for certain Acalyphoideae. Cheilosa and Neoscortechinia, which comprise the tribe Cheiloseae, are the only Acalyphoideae with an echinate tectum, but their apertures and exine structure do not support a relationship to Oldfieldioideae. In Ditaxis, one of the three mesocolpia is much smaller than the other two and the pollen can be easily distinguished from all other Euphorbiaceae. In SEM, the tectum of Pycnocoma appears almost complete, but in TEM the exine consists of irregular, mostly discrete tectal elements that narrow to points (=columellae) at the interface with the threadlike footlayer. The operculate grains of Alchornea and Boquillonia have exines with a poorly differentiated double layer of columellae in the mesocolpium, but nearer the endoaperture the lower tier becomes greatly elongated and appears to rest directly on the endexine. Plukenetia polyadenia has a complete tectum and a thick exine with a predominant infratectum of large, occasionally branched columellae that nearer the tectum are combined with densely spaced granules. Plukenetia penninervia has a reticulate tectum of crenate muri and short, sparse columellae. The pollen diversity in Acalyphoideae suggests that the subfamily, many tribes and even genera may not be monophyletic.  相似文献   

6.
The pollen morphology of six species ofKeiskea and three representative taxa ofCollinsonia was studied in detail using LM, SEM, and TEM. In both genera, pollen grains are monad, hexa-colpate, and mostly medium in size [P = 28.0 to 37.0 μm, E = 24.3 to 30.7 μm (Keiskea); P = 30.0 to 45.0 μm, E = 26.0 to 39.0 μm (Collinsonia)]. Polar outlines are of circular or ellipsoid form. Shapes range from primarily oblate-spheroidal to prolate-spheroidal to subprolate, and rarely prolate in the equatorial view. Their exine, including the inline characters, are clearly distinct from each other:Keiskea, well-developed bi-reticulate, often forming large lumina by supratectal ridges, unbranched columellae, one-third to one-half of the total exine thickness; versusCollinsonia, mostly perforate without supratectal ridges or a faint/very weak bi-reticulate appearance without supratectal ridges, seemingly branched columellae, ca. two-thirds of the total exine thickness. As demonstrated by these current data, the pollen morphology of the two genera is well distinguished, easily supporting the separation ofKeiskea fromCollinsonia.  相似文献   

7.
Fossil pollen grains with morphological features unique in the subtribe Nassauviinae (tribe Mutisieae, Asteraceae) occur in Miocene marine deposits of eastern Patagonia, southern South America. A new morphogenus and two morphospecies are proposed to assemble fossil pollen grains characterized by having a complex bilayered exine structure with delicate columellae, separated by an internal tectum. Subprolate specimens with Trixis exine type (ectosexine thinner than endosexine, straight internal tectum) are referred to Huanilipollis cabrerae. This species is similar to pollen of recent Holocheilus, Jungia, and Proustia. Suboblate specimens with Oxyphyllum exine type (ectosexine and endosexine equally thick, zigzag internal tectum) are referred to Huanilipollis criscii. This species is similar to pollen of recent Triptilion. The spore/pollen sequences in which Nassauviinae pollen types occur suggest a wide range of vegetation types varying from forest dominated during the Early Miocene (Chenque Formation) to virtually xerophytic ones during the Late Miocene (Puerto Madryn Formation). The subtribe Nassauviinae comprises 25 genera and ca. 320 species of vines, shrubs and low trees endemic to America with a wide range of ecological preferences; the nearest living relatives of the fossil types being mostly confined to humid landscapes. The unusual occurrence of these groups during the arid characterized Late Miocene time could be attributed to the complex interplay of the mountain uplift and global circulation patterns. These forcing factors would have created a mosaic of different habitats with both patches of forest and dry-adapted species developing in relatively small regions. This is the first fossil record of Nassauviinae and confirms that this subtribe of Asteraceae was already differentiated in the Miocene.  相似文献   

8.
The neotropical subtribe Cuspariinae (Rutaceae) comprises as many as 26 genera and over 125 species. Pollen grains from 111 collections representing 71 species and 24 genera were examined by LM, SEM, and TEM. The pollen morphology of this subtribe is very diverse. Grains are mostly 3–6-aperturate and colporate, rarely porate (Spiranthera) or pantocolporate (Almeidea). Exine sculpturing is most commonly reticulate, sometimes perforate, foveolate-perforate, foveolate, foveolate-reticulate, reticulate, striate-reticulate, echinate, clavate, or baculate. The exine structure is columellate and tectate-perforate, columellate and semitectate, or intectate and is stratified into ektexine and endexine. The exine ofLeptothyrsa is distinctive in that the ektexine of the mesocolpium is longitudinally deeply ridged. The pollen ofHortia, characterized by a psilate exine with rare perforations, a very thick foot-layer, and reduced columellae, is unlike that of any member of the Cuspariinae and offers no support for the transfer of this genus from the Toddalioideae. The pollen data correlate with macromorphological characters and are taxonomically useful.  相似文献   

9.
The pollen of 30 taxa (27 species, one subspecies and two varieties) in two genera, viz Polygonum s. str. and Polygonella was investigated with LM and SEM, and some selected taxa with TEM. In all genera investigated the pollen is prolate to spheroidal, and the aperture is mostly tricolporate, rarely panto-hexacolporate (especially Polygonum section Polygonum). The exine sculpturing pattern is the most variable feature. Three types of exine can be recognized. Type 1 (Avicularia-Type, sensu Hedberg) - All species of section Polygonum and section Tephis share the smooth tectate exine with spinules, sometimes the surface is more or less rough (Polygonum afromontanum in section Tephis). Type 2 (Pseudomollia-Type, sensu Hong) - Pollen of Polygonum molliaeforme (section Pseudomollia) has the exine, which is verrucose on both poles and nearby the mesocolpium, and mostly psilate around the ectoaperture. Type 3 (Duravia-Type, sensu Hedberg) - Pollen grains of Polygonum section Duravia and Polygonella have the exine which is semitectate-reticulate at the mesocolpium and the poles, and rugulate/reticulate or sometimes foveolate with microspinules around the ectoapertures. The pollen grains in four taxa (viz Polygonum section Pseudomollia, P. section Duravia and genus Polygonella) have a well-marked dimorphism of the ektexine, which is considered to be a synapomorphic condition. The differences of pollen grain between the genus Polygonella and Polygonum section Duravia are almost non existent and clearly interrelated. It is therefore postulated that the similarity in pollen of both taxa is not the result of convergency, but is interpreted as a homology. It is noteworthy that the pollen of Polygonum molliaeforme (section Pseudomollia) appears as intermediate between the Avicularia-type and the Duravia-type, and is well supported the value of separated section for its own. Additionally, in TEM, some exine ultrastructures (e.g. columellae, foot layer, endexine) appear to be valuable characters for comparison between/among taxa. The systematic potentialities of the pollen data of the studied taxa at various systematic levels are also discussed.  相似文献   

10.
11.
中国蓼属植物花粉形态的研究   总被引:8,自引:0,他引:8  
本文用光学显微镜和扫描电镜对国产44种2变种蓼属植物的花粉形态进行了观察。除了前人报道的31种外,其中15种为首次报道。本属花粉形态多类型,有球形、近球形、近扁球形、近长球形及长球形;从萌发孔来看,有三沟型、三孔沟型、散沟型及散孔形:外壁纹饰有颗粒-穿孔、微刺-穿孔、微刺-凹穴、细网状、皱块状及粗网状。根据这些特征将花粉划分为10种类型,其中西伯利亚蓼型(Sibir-icum-type)为本文首次提出。文中对本属的分类问题进行了探讨,不支持Steward(1930)将本属划分为8个组的意见,而认为应将本属划分为11个组。  相似文献   

12.
Pollen morphology of 14 species of Collomia (Polemoniaceae) was examined by light microscopy, and by both scanning and transmission electron microscopy. Four distinct pollen types were observed which are based principally upon 1) shape, number and distribution of apertures, and 2) surface sculpturing: Type 1—zonocolporate with striate ridges; Type 2—zonocolporate with striato-reticulate ridges; Type 3—pantoporate with radiate ridges; Type 4—pantoporate with irregularly reticulate ridges. Evaluation of pollen morphology reveals considerable discrepancy with respect to presently accepted sectional classification. Collomia grandiflora of sect. Collomia has a pollen type similar to that of members of sect. Collomiastrum and is now interpreted as representing an independent evolutionary line derived from the latter section. Collomia diversifolia of sect. Courtoisia has a pollen morphology similar to that of sect. Collomia. whereas C. heterophylla of the same section possesses pollen unique within the genus. This last pollen type shows close similarity to the pollen of members of Polemonium, Gilia, Leptodactylon, and Ipomopsis. Pollen of C. tinctoria and C. tracyi of sect. Collomia are anomalous within Polemoniaceae. No significant difference in exine stratification was discernible among the four pollen types.  相似文献   

13.
The pollen morphology and ultrastructure of 20 species, representing eight genera of the Magnoliaceae are described based on observations with light, scanning and transmission electron microscopy. The family represents a homogeneous group from a pollen morphological point of view. The pollen grains are boat-shaped with a single elongate aperture on the distal face. The tectum is usually microperforate, rarely slightly or coarsely rugulose. Columellae are often irregular, but well-developed columellae do occur in some taxa. The endexine is distinct in 14 species, but difficult to discern in the genera Parakmeria, Kmeria and Tsoongiodendron. Within the aperture zone the exine elements are reduced to a thin foot layer. The intine has three layers with many vesicular-fibrillar components and tubular extensions in intine 1. The symmetry of the pollen grains, shape, type of aperture and ultrastructure of the intine show a remarkable uniformity in the family. Nevertheless there is variety in pollen size, ornamentation and the ultrastructure of the exine. The pollen of Magnoliaceae is an example of an early trend of specialization, and supports the view that Magnoliaceae are not one of the earliest lines in the phylogeny of flowering plants.  相似文献   

14.
Of all species comprising the two genera of the Cabombaceae, only Brasenia schreberi J. F. Gmel. and Cabomba caroliniana Gray have been critically investigated with regard to their pollination biology. Brasenia schreberi has been shown to be anemophilous, while C. caroliniana has an entomophilous (myophilous) pollination syndrome. In the present paper, a number of pollen and pollen-related characters, including pollen size, shape, quantity, terminal settling velocity, pollen-ovule ratios, and overall exine architecture of B. schreberi and C. caroliniana are evaluated. Pollen from both species is elliptic, monosulcate, and has a tectate-columellate sporoderm with supratectal surface ornamentation. Grains of B. schreberi are small, produced in copious amounts, and settle relatively slowly. Flowers of this species have large pollen-ovule ratios. The exine of B. schreberi pollen is scabrate, relatively thin, has a uniformly thick sexine composed of a two-zoned (homogeneous/granular) tectum and distinct columellae, and a homogeneous nexine. Pollen of C. caroliniana is relatively large, produced in small quantities, and has a rapid terminal settling velocity. Flowers exhibit small pollen-ovule ratios. Exine organization of C. caroliniana pollen is typically two times thicker than that of B. schreberi; ornamentation is striate. Nonapertural sexine regions have a thick tectum and well-defined columellae, with both sexine components traversed by a dense system of channels. The nexine is relatively thin. All of the palynological characters examined correlate well with the anemophilous and entomophilous syndromes of B. schreberi and C. caroliniana, respectively. Moreover, several other parameters of exine ultrastructure from each species exhibit positive correlations with the respective pollination mechanisms, including: tectum thickness, columellae diameter, tectum-nexine ratios, and the consistency, distribution, and total amount of pollenkitt present. Overall exine ultrastructure is also discussed from a historical perspective as well as with respect to its phylogenetic significance.  相似文献   

15.
泽泻科的花粉形态研究   总被引:5,自引:0,他引:5  
本文对泽泻科11属27种代表植物的花粉进行了光学显微镜、扫描电镜和透射电镜观察。在系统描述了该科及各属植物花粉形态的基础上,将泽泻科植物的花粉划分为3种类型,即少果泽苔草型、慈菇型和泽泻型。根据花粉形态特征的比较,并依据泽泻科植物祖先类群的花粉具有船形、具单沟萌发孔、花粉外壁具明显的刺状纹饰、覆盖层完整无通道等特征,作者认为泽泻科植物花粉形态的如下演化趋势是明显的:由船形演化为卵球形、球形和多面体球形;由单沟萌发孔经过一无孔的中间类型演化为散孔类型;孔膜由光滑演化为具颗粒和小刺;萌发孔不内陷进化到内陷;花粉粒外壁的刺状纹饰逐渐过渡为颗粒状纹饰或者消失,以及覆盖层由无通道到具细通道和通道。  相似文献   

16.
Tribe Merremieae, as currently circumscribed, comprise c. 120 species classified in seven genera, the largest of which (Merremia) is morphologically heterogeneous. Previous studies, with limited sampling, have suggested that neither Merremieae nor Merremia are monophyletic. In the present study, the monophyly of Merremia and its allied genera was re‐assessed, sampling 57 species of Merremieae for the plastid matK, trnL–trnF and rps16 regions and the nuclear internal transcribed spacer (ITS) region. All genera of Merremieae and all major morphotypes in Merremia were represented. Phylogenetic analyses resolve Merremieae in a clade with Ipomoeae, Convolvuleae and Daustinia montana. Merremia is confirmed as polyphyletic and a number of well‐supported and morphologically distinct clades in Merremieae are recognized which accommodate most of the species in the tribe. These provide a framework for a generic revision of the assemblage. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015.  相似文献   

17.
The pollen morphology of subtribe Menthinae sensu Harley et al. [In: The families and genera of vascular plants VII. Flowering plants·dicotyledons: Lamiales (except Acanthaceae including Avicenniaceae). Springer, Berlin, pp 167–275, 2004] and two genera of uncertain subtribal affinities (Heterolamium and Melissa) are documented in order to complete our palynological overview of the tribe Mentheae. Menthinae pollen is small to medium in size (13–43 μm), oblate to prolate in shape and mostly hexacolpate (sometimes pentacolpate). Perforate, microreticulate or bireticulate exine ornamentation types were observed. The exine ornamentation of Menthinae is systematically highly informative particularly at generic level. The exine stratification in all taxa studied is characterized by unbranched columellae. Orbicules are consistently absent in Menthinae. Our palynological data are interpreted in a phylogenetic context at tribal level in order to assess the systematic value of pollen characters and to evaluate the existing molecular phylogenies for this group. Pollen morphology suggests Heterolamium as a close relative of subtribe Nepetinae and supports the molecular affinity of Melissa to subtribe Salviinae.  相似文献   

18.
The pollen morphology of eight species of Nigella (Ranunculaceae) was examined by scanning and transmission electron microscopy. The exomorphology of all species was identical: 3-colpate, spinulose, and punctate, but thin sections revealed two structural patterns. The ektexine structure of Nigella integrifolia, consisting of thickened foot layer, columellae, and thin tectum, is typical for the family as well as the order Ranunculales in general. In contrast, the remaining seven species, N. arvensis, N. damascena, N. elata, N. hispanica, N. sativa, N. segetalis, and N. stellaris, have an ektexine with an additional unit, a horizontal layer with shorter columellae, placed between the foot layer and tectum. Of all genera examined in the Ranunculaceae, only Nigella had this unusual stratification. This difference in the exine structure would add support to the treatment of N. integrifolia as a monotypic genus, Komaroffia integrifolia (Regel) Lemos Pereira.  相似文献   

19.
20.
Eva Luegmayr 《Grana》2013,52(4-5):221-232
Pollen of 108 species out of 18 genera (from all tribes of the Old World Gesneriaceae [subf. Cyrtandroideae]) was examined using light, scanning and transmission electron microscopy. The pollen grains are small sized, isopolar and 3-colpate or 3-colporate. In equatorial view they are mostly spheroidal (rarely suboblate or oblate), in polar view circular or subangular. The most variable character is the exine structure and -sculpture. The tectum is perforate, microreticulate, coarsely reticulate or rugulate. Further important characters of the tectum are (a) the presence or absence of conical supratectate sculptural elements, and (b) the width of lumina being either equal or exhibiting different at the apo- and mesocolpium. Ten exine types are distinguished. Some genera and species can be well referred to a special exine type, e.g., Aeschynanthus, Epithema, Stauranthera grandiflora; in other genera several exine types occur, e.g., in the large and heterogeneous genus Didymocarpus. The pollen morphology of the two large subfamilies Cyrtandroideae and Gesnerioideae is compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号