首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Septin-based ring complexes maintain the sperm annulus. Defective annular structures are observed in the sperm of Sept12- and Sept4-null mice. In addition, sperm capacitation, a process required for proper fertilization, is inhibited in Sept4-null mice, implying that the sperm annulus might play a role in controlling sperm capacitation. Hence, we analyzed sperm capacitation of sperm obtained from SEPT12 Ser196 phosphomimetic (S196E), phosphorylation-deficient (S196A), and SEPT4-depleted mutant mice. Capacitation was reduced in the sperm of both the Sept12 S196E- and Sept12 S196A-knock-in mice. The protein levels of septins, namely, SEPT4 and SEPT12, were upregulated, and these proteins were concentrated in the sperm annulus during capacitation. Importantly, the expression of soluble adenylyl cyclase (sAC), a key enzyme that initiates capacitation, was upregulated, and sAC was recruited to the sperm annulus following capacitation stimulation. We further found that SEPT12, SEPT4, and sAC formed a complex and colocalized to the sperm annulus. Additionally, sAC expression was reduced and disappeared in the annulus of the SEPT12 S196E- and S196A-mutant mouse sperm. In the sperm of the SEPT4-knockout mice, sAC did not localize to the annulus. Thus, our data demonstrate that SEPT12 phosphorylation status and SEPT4 activity jointly regulate sAC protein levels and annular localization to induce sperm capacitation.  相似文献   

2.
Septins are polymerizing GTP binding proteins required for cortical organization during cytokinesis and other cellular processes. A mammalian septin gene Sept4 is expressed mainly in postmitotic neural cells and postmeiotic male germ cells. In mouse and human spermatozoa, SEPT4 and other septins are found in the annulus, a cortical ring which separates the middle and principal pieces. Sept4-/- male mice are sterile due to defective morphology and motility of the sperm flagellum. In Sept4 null spermatozoa, the annulus is replaced by a fragile segment lacking cortical material, beneath which kinesin-mediated intraflagellar transport stalls. The sterility is rescued by injection of sperm into oocytes, demonstrating that each Sept4 null spermatozoon carries an intact haploid genome. The annulus/septin ring is also disorganized in spermatozoa from a subset of human patients with asthenospermia syndrome. Thus, cortical organization based on circular assembly of the septin cytoskeleton is essential for the structural and mechanical integrity of mammalian spermatozoa.  相似文献   

3.
COMMD {COMM [copper metabolism Murr1 (mouse U2af1-rs1 region 1)] domain-containing} proteins participate in several cellular processes, ranging from NF-kappaB (nuclear factor kappaB) regulation, copper homoeostasis, sodium transport and adaptation to hypoxia. The best-studied member of this family is COMMD1, but relatively little is known about its regulation, except that XIAP [X-linked IAP (inhibitor of apoptosis)] functions as its ubiquitin ligase. In the present study, we identified that the COMM domain of COMMD1 is required for its interaction with XIAP, and other COMMD proteins can similarly interact with IAPs. Two conserved leucine repeats within the COMM domain were found to be critically required for XIAP binding. A COMMD1 mutant which was unable to bind to XIAP demonstrated a complete loss of basal ubiquitination and great stabilization of the protein. Underscoring the importance of IAP-mediated ubiquitination, we found that long-term expression of wild-type COMMD1 results in nearly physiological protein levels as a result of increased ubiquitination, but this regulatory event is circumvented when a mutant form that cannot bind XIAP is expressed. In summary, our findings indicate that COMMD1 expression is controlled primarily by protein ubiquitination, and its interaction with IAP proteins plays an essential role.  相似文献   

4.
Evasion from apoptosis is one of the hallmarks of cancer. X-linked inhibitor of apoptosis protein (XIAP) is known to modulate apoptosis by inhibiting caspases and ubiquitinating target proteins. XIAP is mainly found at the cytoplasm, but recent data link nuclear XIAP to poor prognosis in breast cancer. Here, we generated a mutant form of XIAP with a nuclear localization signal (XIAPNLS-C-term) and investigated the oncogenic mechanisms associated with nuclear XIAP in breast cancer. Our results show that cells overexpressing XIAPΔRING (RING deletion) and XIAPNLS-C-term exhibited XIAP nuclear localization more abundantly than XIAPwild-type. Remarkably, overexpression of XIAPNLS-C-term, but not XIAPΔRING, conferred resistance to doxorubicin and increased cellular proliferative capacity. Interestingly, Survivin and c-IAP1 expression were not associated with XIAP oncogenic effects. However, NFκB expression and ubiquitination of K63, but not K48 chains, were increased following XIAPNLS-C-term overexpression, pointing to nuclear signaling transduction. Consistently, multivariate analysis revealed nuclear, but not cytoplasmic XIAP, as an independent prognostic factor in hormone receptor-negative breast cancer patients. Altogether, our findings suggest that nuclear XIAP confers poor outcome and RING-associated breast cancer growth and chemoresistance.  相似文献   

5.

Background  

The sperm annulus is a septin-based fibrous ring structure connecting the midpiece and the principal piece of the mammalian sperm flagellum. Although ultrastructural abnormalities and functional importance of the annulus have been addressed in Sept4-null mutant mice and a subset of human patients with asthenospermia syndrome, little is known about how the structure is assembled and positioned to the midpiece-principal piece junction during mammalian sperm flagellum development.  相似文献   

6.
The genome from Neurospora crassa presented three open reading frames homologous to the genes coding for human AIF and AMID proteins, which are flavoproteins with oxidoreductase activities implicated in caspase-independent apoptosis. To investigate the role of these proteins, namely within the mitochondrial respiratory chain, we studied their cellular localization and characterized the respective null mutant strains. Efficiency of the respiratory chain was analyzed by oxygen consumption studies and supramolecular organization of the OXPHOS system was assessed through BN-PAGE analysis in the respective null mutant strains. The results demonstrate that, unlike in mammalian systems, disruption of AIF in Neurospora does not affect either complex I assembly or function. Furthermore, the mitochondrial respiratory chain complexes of the mutant strains display a similar supramolecular organization to that observed in the wild type strain. Further characterization revealed that N. crassa AIF appears localized to both the mitochondria and the cytoplasm, whereas AMID was found exclusively in the cytoplasm. AMID2 was detected in both mitochondria and cytoplasm of the amid mutant strain, but was barely discernible in wild type extracts, suggesting overlapping functions for the two proteins.  相似文献   

7.
X-linked inhibitor of apoptosis protein (XIAP) is a potent suppressor of apoptotic cell death, which functions by directly inhibiting caspases, the principal effectors of apoptosis. Here we report that XIAP can also function as a cofactor in the regulation of gene expression by transforming growth factor-beta (TGF-beta). XIAP, but not the related proteins c-IAP1 or c-IAP2, associated with several members of the type I class of the TGF-beta receptor superfamily and potentiated TGF-beta-induced signaling. Although XIAP-mediated activation of c-Jun N-terminal kinase and nuclear factor kappa B was found to require the TGF-beta signaling intermediate Smad4, the ability of XIAP to suppress apoptosis was found to be Smad4-independent. These data implicate a role for XIAP in TGF-beta-mediated signaling that is distinct from its anti-apoptotic functions.  相似文献   

8.
ARTS (Sept4_i2), is a pro-apoptotic protein localized at the mitochondria of living cells. In response to apoptotic signals, ARTS rapidly translocates to the cytosol where it binds and antagonizes XIAP to promote caspase activation. However, the mechanism of interaction between these two proteins and how it is regulated remained to be explored. In this study, we show that ARTS and XIAP bind directly to each other, as recombinant ARTS and XIAP proteins co-immunoprecipitate together. We also show that over expression of ARTS alone is sufficient to induce a strong down-regulation of XIAP protein levels and that this reduction occurs through the ubiquitin proteasome system (UPS). Using various deletion and mutation constructs of XIAP we show that ARTS specifically binds to the BIR3 domain in XIAP. Moreover, we found that ARTS binds to different sequences in BIR3 than other IAP antagonists such as SMAC/Diablo. Computational analysis comparing the location of the putative ARTS interface in BIR3 with the known interfaces of SMAC/Diablo and caspase 9 support our results indicating that ARTS interacts with residues in BIR3 that are different from those involved in binding SMAC/Diablo and caspase 9. We therefore suggest that ARTS binds and antagonizes XIAP in a way which is distinct from other IAP-antagonists to promote apoptosis.  相似文献   

9.
Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet–Biedl/Meckel–Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to regulate cell polarity and directional cell migration.  相似文献   

10.
Sperm with abnormalities in the position and shape of the head were obtained from the azh/azh mutant and injected into the cytoplasm of mature mouse oocytes to determine whether sperm from the offspring display both head (club shape) and tail (looping, folding, and fusion) abnormalities observed in the mutant donor. Although quantitative differences were observed among the three examined offspring, we found that abnormalities in sperm head shape were less frequent than in the donor mutant, but that tail malformations predominated. In addition, we found that the frequency of tail abnormalities increased during sperm epididymal transit. A typical defect was the multiple folding of the sperm tail and eventual fusion of closely apposed plasma membranes. As a consequence, sperm forward motility and natural fertility were compromised. Results of this study indicate that the azh/azh mutant and offspring generated by intracytoplasmic sperm injection provide a valuable model for determining the role of the manchette and keratin-containing outer dense fibers and fibrous sheath during spermiogenesis. Furthermore, our findings stress the risk of enhancing a phenotypic abnormality caused by mutant male genotypes introduced through bypassing the biologic mechanisms of natural sperm selection during fertilization.  相似文献   

11.
The IAP (inhibitor of apoptosis) family of anti-apoptotic proteins regulates programmed cell death. Of the six known human IAP-related proteins, XIAP is the most potent inhibitor. To study the mechanistic effects of XIAP on DNA damage-induced apoptosis, we prepared U-937 cells that stably overexpress XIAP. The results demonstrate that XIAP inhibits apoptosis induced by 1-[beta-d-arabinofuranosyl]cytosine (ara-C) and other genotoxic agents. XIAP had no detectable effect on ara-C-induced release of mitochondrial cytochrome c and attenuated cleavage of procaspase-9. In addition, we show that ara-C induces the association of XIAP with the cleaved fragments of caspase-9 and thereby inhibition of caspase-9 activity. The results also demonstrate that ara-C induces cleavage of procaspase-3 by a caspase-8-dependent mechanism and that XIAP inhibits caspase-3 activity. These results demonstrate that XIAP functions downstream of procaspase-9 cleavage as an inhibitor of both proteolytically processed caspase-9 and -3 in the cellular response to genotoxic stress.  相似文献   

12.
Serially sectioned embryo sacs of Nicotiana tabacum were examined during fertilization events using transmission electron microscopy. After pollen tube discharge, the outer membrane of the sperm pair is removed, the two sperm cells are deposited in the degenerate synergid and the sperm cells migrate to the chalazal edge of the synergid where gametic fusion occurs. During fertilization, the male cytoplasm, including heritable organelles, is transmitted into the female reproductive cells as shown by: (1) the cytoplasmic confluence of one sperm and the central cell during cellular fusion, (2) the occurrence of sperm mitochondria (distinguished by ultrastructural differences) in the zygote cytoplasm and adjacent to the sperm nucleus, (3) the presence of darkly stained aggregates which are found exclusively in mature sperm cells within the cytoplasm of both female cells soon after cell fusion, and (4) the absence of any large enucleated cytoplasmic bodies containing recognizable organelles outside the zygote or endosperm cells. The infrequent occurrence of plastids in the sperm and the transmission of sperm cytoplasm into the egg during double fertilization provide the cytological basis for occasional biparental plastid inheritance as reported previously in tobacco. Although sperm mitochondria are transmitted into the egg/zygote, their inheritance has not been detected genetically. In one abnormal embryo sac, a pair of sperm cells was released into the cytoplasm of the presumptive zygote. Although pollen tube discharge usually removes the inner pollen-tube plasma membrane containing the two sperm cells, this did not occur in this case. When sperm cells are deposited in a degenerating synergid or outside of a cell, this outer membrane is removed, as it apparently is for fertilization.  相似文献   

13.
In Parkinson disease (PD), alpha-synuclein aggregates called Lewy bodies often involve and sequester Septin4 (Sept4), a polymerizing scaffold protein. However, the pathophysiological significance of this phenomenon is unclear. Here, we show the physiological association of Sept4 with alpha-synuclein, the dopamine transporter, and other presynaptic proteins in dopaminergic neurons; mice lacking Sept4 exhibit diminished dopaminergic neurotransmission due to scarcity of these presynaptic proteins. These data demonstrate an important role for septin scaffolds in the brain. In transgenic mice that express human alpha-synuclein(A53T) (a mutant protein responsible for familial PD), loss of Sept4 significantly enhances neuropathology and locomotor deterioration. In this PD model, insoluble deposits of Ser129-phosphorylated alpha-synuclein(A53T) are negatively correlated with the dosage of Sept4. In vitro, direct association with Sept4 protects alpha-synuclein against self-aggregation and Ser129 phosphorylation. Taken together, these data show that Sept4 may be involved in PD as a dual susceptibility factor, as its insufficiency can diminish dopaminergic neurotransmission and enhance alpha-synuclein neurotoxicity.  相似文献   

14.
Enteropathogenic Escherichia coli (EPEC) destroys intestinal microvilli and suppresses phagocytosis by injecting effectors into infected cells through a type III secretion system (TTSS). EspB, a component of the TTSS, is also injected into the cytoplasm of host cells. However, the physiological functions of EspB within the host cell cytoplasm remain unclear. We show that EspB binds to myosins, which are a superfamily of proteins that interact with actin filaments and mediate essential cellular processes, including microvillus formation and phagocytosis. EspB inhibits the interaction of myosins with actin, and an EspB mutant that lacks the myosin-binding region maintained its TTSS function but could not induce microvillus effacing or suppress phagocytosis. Moreover, the myosin-binding region of EspB is essential for Citrobacter rodentium, an EPEC-related murine pathogen, to efficiently infect mice. These results suggest that EspB inhibits myosin functions and thereby facilitates efficient infection by EPEC.  相似文献   

15.
Mammalian spermatogenesis is a highly coordinated process that requires cooperation between specific proteins to coordinate diverse biological functions. For example, mouse Parkin coregulated gene (PACRG) recruits meiosis-expressed gene 1 (MEIG1) to the manchette during normal spermiogenesis. Here we mutated Y68 of MEIG1 using the CRISPR/cas9 system and examined the biological and physiological consequences in mice. All homozygous mutant males examined were completely infertile, and sperm count was dramatically reduced. The few developed sperm were immotile and displayed multiple abnormalities. Histological staining showed impaired spermiogenesis in these mutant mice. Immunofluorescent staining further revealed that this mutant MEIG1 was still present in the cell body of spermatocytes, but also that more MEIG1 accumulated in the acrosome region of round spermatids. The mutant MEIG1 and a cargo protein of the MEIG1/PACRG complex, sperm-associated antigen 16L (SPAG16L), were no longer found to be present in the manchette; however, localization of the PACRG component was not changed in the mutants. These findings demonstrate that Y68 of MEIG1 is a key amino acid required for PACRG to recruit MEIG1 to the manchette to transport cargo proteins during sperm flagella formation. Given that MEIG1 and PACRG are conserved in humans, small molecules that block MEIG1/PACRG interaction are likely ideal targets for the development of male contraconception drugs.  相似文献   

16.
Upstream regulatory role for XIAP in receptor-mediated apoptosis   总被引:4,自引:0,他引:4       下载免费PDF全文
X-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of cell death that functions by suppressing caspases 3, 7, and 9. Here we describe the establishment of Jurkat-derived cell lines stably overexpressing either full-length XIAP or a truncation mutant of XIAP that can only inhibit caspase 9. Characterization of these cell lines revealed that following CD95 activation full-length XIAP supported both short- and long-term survival as well as proliferative capacity, in contrast to the truncation mutant but similar to Bcl-x(L). Full-length XIAP was also able to inhibit CD95-mediated caspase 3 processing and activation, the mitochondrial release of cytochrome c and Smac/DIABLO, and the loss of mitochondrial membrane potential, whereas the XIAP truncation mutant failed to prevent any of these cell death events. Finally, suppression of XIAP levels by RNA interference sensitized Bcl-x(L)-overexpressing cells to death receptor-induced apoptosis. These data demonstrate for the first time that full-length XIAP inhibits caspase activation required for mitochondrial amplification of death receptor signals and that, by acting upstream of mitochondrial activation, XIAP supports the long-term proliferative capacity of cells following CD95 stimulation.  相似文献   

17.
Milk is used as a medium for sperm preservation. Caseins, the major proteins of milk, appear to be responsible for the protective effect of milk on sperm. Recently, we have shown that egg yolk, which is also widely used to preserve semen, protects sperm functions by preventing the binding to sperm of the major proteins of bull seminal plasma (BSP proteins), thereby preventing BSP protein-mediated stimulation of lipid loss from the sperm membrane. In the present study, we investigated whether milk caseins protect sperm in the same manner as egg yolk. Bovine ejaculates were diluted with skimmed milk permeate (skimmed milk devoid of caseins) or permeate that was supplemented with caseins and stored at 4 degrees C for 4 h. In the semen diluted with permeate, sperm viability and motility decreased in a time-dependent manner. However, in semen diluted with milk or permeate supplemented with caseins, sperm functions were maintained. In addition, lower amounts of the BSP proteins were associated with sperm in semen diluted with milk or permeate supplemented with caseins, as compared to semen diluted with permeate. No milk proteins were detected in the sperm protein extracts. Furthermore, sperm diluted with milk or permeate supplemented with caseins showed 3-fold lower losses of cholesterol and choline phospholipids than sperm diluted with permeate during storage. Thus, milk caseins decreased the binding of BSP proteins to sperm and reduced sperm lipid loss, while maintaining sperm motility and viability during storage. These results support our view that milk caseins prevent the detrimental effects of BSP proteins on the sperm membrane during sperm preservation.  相似文献   

18.
Visualization of organelles in living cells is a powerful method for studying their dynamic behavior. Here we attempted to visualize mitochondria in angiosperm male gametophyte (pollen grain from Arabidopsis thaliana) that are composed of one vegetative cell (VC) and two sperm cells (SCs). Combination of mitochondria-targeted fluorescent proteins with VC- or SC-specific expression allowed us to observe the precise number and dynamic behavior of mitochondria in the respective cell types. Furthermore, live imaging of SC mitochondria during double fertilization confirmed previous observations, demonstrated by electron microscopy in other species, that sperm mitochondria enter into the egg and central cells. We also attempted to visualize mutant mitochondria that were elongated due to a defect in mitochondrial division. This mutant phenotype was indeed detectable in VC mitochondria of a heterozygous F(1) plant, suggesting active mitochondrial division in male gametophyte. Finally, we performed mutant screening and isolated a putative mitochondrial protein transport mutant whose phenotype was detectable only in haploid cells. The transgenic materials presented in this work are useful not only for live imaging but also for studying mitochondrial functions by mutant analysis.  相似文献   

19.
Proteolysis of ubiquitinated sperm and oocyte proteins by the 26S proteasome is necessary for the success of mammalian fertilization, including but not limited to acrosomal exocytosis and sperm-zona pellucida (ZP) penetration. The present study examined the role of PSMD4, an essential non-ATPase subunit of the proteasomal 19S regulatory complex responsible for proteasome-substrate recognition, in sperm-ZP penetration during porcine fertilization in vitro (IVF). Porcine sperm-ZP penetration, but not sperm-ZP binding, was blocked in the presence of a monoclonal anti-PSMD4 antibody during IVF. Inclusion in the fertilization medium of mutant ubiquitins (Ub+1 and Ub5+1), which are refractory to processing by the 19S regulatory complex and associated with Alzheimer’s disease, also inhibited fertilization. This observation suggested that subunit PSMD4 is exposed on the sperm acrosomal surface, a notion that was further supported by the binding of non-cell permeant, biotinylated proteasomal inhibitor ZL3VS to the sperm acrosome. Immunofluorescence localized PSMD4 in the sperm acrosome. Immunoprecipitation and proteomic analysis revealed that PSMD4 co-precipitated with porcine sperm-associated acrosin inhibitor (AI). Ubiquitinated species of AI were isolated from boar sperm extracts by affinity purification of ubiquitinated proteins using the recombinant UBA domain of p62 protein. Some proteasomes appeared to be anchored to the sperm head inner acrosomal membrane, as documented by co-fractionation studies. In conclusion, the 19S regulatory complex subunit PSMD4 is involved in the sperm-ZP penetration during fertilization. The recognition of substrates on the ZP by the 19S proteasomal regulatory complex is essential for the success of porcine/mammalian fertilization in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号