首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Studies of ascorbate-dependent, iron-catalyzed lipid peroxidation   总被引:5,自引:0,他引:5  
We have previously observed that both Fe(II) and Fe(III) are required for lipid peroxidation to occur, with maximal rates of lipid peroxidation observed when the ratio of Fe(II) to Fe(III) is approximately one (J. R. Bucher et al. (1983) Biochem. Biophys. Res. Commun. 111, 777-784; G. Minotti and S. D. Aust (1987) J. Biol. Chem. 262, 1098-1104). Consistent with the requirement for both Fe(II) and Fe(III), ascorbate, by reducing Fe(III) to Fe(II), stimulated iron-catalyzed lipid peroxidation but when the ascorbate concentration was sufficient to reduce all of the Fe(III) to Fe(II), ascorbate inhibited lipid peroxidation. The rates of lipid peroxidation were unaffected by the addition of catalase, superoxide dismutase, or hydroxyl radical scavengers. Exogenously added H2O2 also either stimulated or inhibited ascorbate-dependent, iron-catalyzed lipid peroxidation apparently by altering the ratio of Fe(II) to Fe(III). Thus, it appears that the prooxidant effect of ascorbate is related to the ability of ascorbate to promote the formation of a proposed Fe(II):Fe(III) complex and not due to oxygen radical production. The antioxidant effect of ascorbate on iron-catalyzed lipid peroxidation may be due to complete reduction of iron.  相似文献   

2.
Comparison of iron-catalyzed DNA and lipid oxidation   总被引:4,自引:0,他引:4  
Lipid and DNA oxidation catalyzed by iron(II) were compared in HEPES and phosphate buffers. Lipid peroxidation was examined in a sensitive liposome system constructed with a fluorescent probe that allowed us to examine the effects of both low and high iron concentrations. With liposomes made from synthetic 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine or from rat liver microsomal lipid, lipid peroxidation increased with iron concentration up to the range of 10--20 microM iron(II), but then rates decreased with further increases in iron concentration. This may be due to the limited amount of lipid peroxides available in liposomes for oxidation of iron(II) to generate equimolar iron(III), which is thought to be important for the initation of lipid peroxidation. Addition of hydrogen peroxide to incubations with 1--10 microM iron(II) decreased rates of lipid peroxidation, whereas addition of hydrogen peroxide to incubations with higher iron concentrations increased rates of lipid peroxidation. Thus, in this liposome system, sufficient peroxide from either within the lipid or from exogenous sources must be present to generate equimolar iron(II) and iron(III). With iron-catalyzed DNA oxidation, hydrogen peroxide always stimulated product formation. Phosphate buffer, which chelates iron but still allows for generation of hydroxyl radicals, inhibited lipid peroxidation but not DNA oxidation. HEPES buffer, which scavenges hydroxyl radicals, inhibited DNA oxidation, whereas lipid peroxidation was unaffected since presumably iron(II) and iron(III) were still available for reaction with liposomes in HEPES buffer.  相似文献   

3.
《Free radical research》2013,47(1):153-159
Ceruloplasmin (CP) effectively inhibited superoxide and ferritin-dependent peroxidation of phospholipid liposomes, using xanthine oxidase or gamma irradiation of water as sources of superoxide. In addition, CP inhibited superoxide-dependent mobilization of iron from ferritin. suggesting that CP inhibited lipid peroxidation by decreasing the availability of iron from ferritin. CP also exhibited some superoxide scavenging activity as evidenced by its inhibition of superoxide-dependent cytochrome c reduction. However, superoxide scavenging by CP did not quantitatively account for its inhibitory effects on iron release. The effects of CP on iron-catalyzed lipid peroxidation in systems containing exogenously added ferrous iron was also investigated. CP exhibited prooxidant and antioxidant effects; CP stimulated at lower concentrations, reached a maximum. and inhibited at higher concentrations. However. the addition of apoferritin inhibited CP and Fe(II)-catalyzed lipid peroxidation at all concentrations of CP. In addition, CP catalyzed the incorporation of Fe(II) into apoferritin. Collectively these data suggest that CP inhibits superoxide and ferritin-dependent lipid peroxidation via its ability to incorporate reductively-mobilized iron into ferritin.  相似文献   

4.
A certain iron chelate, ferric nitrilotriacetate (Fe3+-NTA) is nephrotoxic and also carcinogenic to the kidney in mice and rats, a distinguishing feature not shared by other iron chelates tested so far. Iron-promoted lipid peroxidation is thought to be responsible for the initial events. We examined its ability to initiate lipid peroxidation in vitro in comparison with that of other ferric chelates. Chelation of Fe2+ by nitrilotriacetate (NTA) enhanced the autoxidation of Fe2+. In the presence of Fe2+-NTA, lipid peroxidation occurred as measured by the formation of conjugated diene in detergent-dispersed linoleate micelles, and by the formation of thiobarbituric acid-reactive substances in the liposomes of rat liver microsomal lipids. Addition of ascorbic acid to Fe3+-NTA solution promoted dose-dependent consumption of dissolved oxygen, which indicates temporary reduction of iron. On reduction, Fe3+-NTA initiated lipid peroxidation both in the linoleate micelles and in the liposomes. Fe3+-NTA also initiated NADPH-dependent lipid peroxidation in rat liver microsomes. Although other chelators used (deferoxamine, EDTA, diethylenetriaminepentaacetic acid, ADP) enhanced autoxidation, reduction by ascorbic acid, or in vitro lipid peroxidation of linoleate micelles or liposomal lipids, NTA was the sole chelator that enhanced all the reactions.  相似文献   

5.
Summary The role of various iron chelators on the multiplication of mouse hybridoma cells in an albumin-free, transferrin-deficient defined medium was investigated. Fe(III)-dihydroxyethylglycine, Fe(III)-glycylglycine, Fe(III)-ethylenediamine-N,N′-dipropionic acid, or Fe(III)-iminodiacetic acid supported the excellent growth of the cells. In addition, the growth of the iron-starved cells, which had been preincubated in a protein-, iron- and chelator-free defined medium, restored rapidly when the medium was supplemented with holotransfeerrin, ferric iron, and chelator compared to that when supplemented with holotransferin, but without iron and chelator. The results suggest that such chelators modulate a progression of transferrn cycle in the presence of transferin and ferric iron. An alternative explantation is that there is a decrease in generation of iron-catalyzed free radicals.  相似文献   

6.
In this report we studied DNA damage and lipid peroxidation in rat liver nuclei incubated with iron ions for up to 2 hrs in order to examine whether nuclear DNA damage was dependent on membrane lipid peroxidation. Lipid peroxidation was measured as thio-barbituric acid-reactive substances (TBARS) and DNA damage was measured as 8-OH-deoxyguanosine (8-OH-dG). We showed that Fe(II) induced nuclear lipid peroxidation dose-dependently but only the highest concentration (1.0 mM) used induced appreciable 8-OH-dG. Fe(II1) up to 1 mM induced minimal lipid peroxidation and negligible amounts of 8-OH-dG. Ascorbic acid enhanced Fe(II)-induced lipid peroxidation at a ratio to Fe(II) of 1:l but strongly inhibited peroxidation at ratios of 2.5:l and 5:l. By contrast, ascorbate markedly enhanced DNA damage at all ratios tested and in a concentration-dependent manner. The nuclear DNA damage induced by 1 niM FeSO4/5 mM ascorbic acid was largely inhibited by iron chelators and by dimethylsulphoxide and manni-tol, indicating the involvement of OH. Hydrogen peroxide and superoxide anions were also involved, as DNA damage was partially inhibited by catalase and, to a lesser extent, by superoxide dismutase. The chain-breaking antioxidants butylated hydroxytoluene and diphenylamine (an alkoxyl radical scavenger) did not inhibit DNA damage. Hence, this study demonstrated that ascorbic acid enhanced Fe(II)-induced DNA base modification which was not dependent on lipid peroxidation in rat liver nuclei.  相似文献   

7.
The ability of chelators and ascorbic acid to mobilize iron from crocidolite, amosite, medium- and short-fiber chrysotile, and tremolite was investigated. Ferrozine, a strong Fe(II) chelator, mobilized Fe(II) from crocidolite (6.6 nmol/mg asbestos/h) and amosite (0.4 nmol/mg/h) in 50 mM NaCl, pH 7.5. Inclusion of ascorbate increased these rates to 11.4 and 4.9 nmol/mg/h, respectively. Ferrozine mobilized Fe(II) from medium-fiber chrysotile (0.6 nmol/mg/h) only in the presence of ascorbate. Citrate and ADP mobilized iron (ferrous and/or ferric) from crocidolite at rates of 4.2 and 0.3 nmol/mg/h, respectively, which increased to 4.8 and 1.0 nmol/mg/h in the presence of ascorbate. Since ascorbate alone mobilized iron from crocidolite (0.5 nmol/mg/h), the increase appeared to result from additional chelation by ascorbate. Citrate also mobilized iron from amosite (1.4 nmol/mg/h) and medium-fiber chrysotile (1.6 nmol/mg/h). Mobilization of iron from asbestos appeared to be a function not only of the chelator, but also of the surface area, crystalline structure, and iron content of the asbestos. These results suggest that iron can be mobilized from asbestos in the cell by low-molecular-weight chelators. If this occurs, it may have deleterious effects since this could result in deregulation of normal iron metabolism by proteins within the cell resulting in iron-catalyzed oxidation of biomolecules.  相似文献   

8.
Reduction of iron is important in promoting xenobiotic-enhanced, microsomal lipid peroxidation, yet there is little evidence that Fe3+ chelates that promote lipid peroxidation can be reduced by the microsomal system. We have shown that rat liver microsomes catalyse NADPH-dependent reduction of Fe3+ without chelator, as well as Fe3+(ADP), Fe3+(ATP), Fe3+(citrate), Fe3+(EDTA), and ferrioxamine in N2. The NADPH oxidation that accompanied Fe3+ reduction was inhibited by CO for all chelates, except Fe3+ (EDTA). This implies that, except for Fe3+ (EDTA), cytochrome P450 was involved in reduction of the complexes. Adriamycin, paraquat, and anthraquinone 2-sulfonate (AQS) enhanced reduction of all the Fe3+ chelates, whereas menadione enhanced reduction only of Fe3+(ADP) and Fe3+(citrate). All the compounds enhanced oxidation of NADPH in the presence or absence of iron. This was not inhibited by CO, and the results are compatible with Fe3+ reduction occurring via the xenobiotic radicals produced by cytochrome P450 reductase. Microsomal reduction of the xenobiotics, except menadione, enabled the reduction and release of iron from ferritin. Fe3+ chelate reduction, both with and without xenobiotic, was inhibited by O2, although it still proceeded in air at 10-20% of the rate in N2. Iron-dependent lipid peroxidation was promoted by ADP and ATP, inhibited 50% by citrate, and completely inhibited by EDTA and desferrioxamine. Of the xenobiotics, only Adriamycin enhanced microsomal lipid peroxidation. These results indicate that the effects of chelators and xenobiotics on Fe3+ reduction do not correlate with lipid peroxidation and, although reduction is necessary, there must be other factors involved.  相似文献   

9.
In this report we study the effect of Fe(III) on lipid peroxidation induced by Fe(II)citrate in mitochondrial membranes, as assessed by the production of thiobarbituric acid-reactive substances and antimycin A-insensitive oxygen uptake. The presence of Fe(III) stimulates initiation of lipid peroxidation when low citrate:Fe(II) ratios are used ( 4:1). For a citrate:total iron ratio of 1:1 the maximal stimulation of lipid peroxidation by Fe(III) was observed when the Fe(II):Fe(III) ratio was in the range of 1:1 to 1:2. The lag phase that accompanies oxygen uptake was greatly diminished by increasing concentrations of Fe(III) when the citrate:total iron ratio was 1:1, but not when this ratio was higher. It is concluded that the increase of lipid peroxidation by Fe(III) is observed only when low citrate:Fe(II) ratios were used. Similar results were obtained using ATP as a ligand of iron. Monitoring the rate of spontaneous Fe(II) oxidation by measuring oxygen uptake in buffered medium, in the absence of mitochondria, Fe(III)-stimulated oxygen consumption was observed only when a low citrate:Fe(II) ratio was used. This result suggests that Fe(III) may facilitate the initiation and/or propagation of lipid peroxidation by increasing the rate of Fe(II)citrate-generated reactive oxygen species.  相似文献   

10.
Aluminium salts do not themselves stimulate peroxidation of ox-brain phospholipid liposomes, but they greatly accelerate the peroxidation induced by iron(II) salts at acidic pH values. This effect of Al(III) is not seen at pH 7.4, perhaps because Al(III) salts form insoluble complexes at this pH in aqueous solution. Peroxidation of liposomes in the presence of Al(III) and Fe(II) salts is inhibited by the chelating agent desferrioxamine, and by EDTA and diethylenetriaminepentaacetic acid at concentrations greater than those of Fe(II) salt. Aluminium salts slightly stimulate the peroxidation of peroxide-depleted linolenic acid micelles, but they do not accelerate the peroxidation induced by addition of iron(II) salts to the micelles at acidic pH. Aluminium salts accelerate the peroxidation observed when human erythrocytes are treated with hydrogen peroxide at pH 7.4. Desferrioxamine decreases the peroxidation. We suggest that Al(III) ions produce an alteration in membrane structure that facilitates lipid peroxidation, and that the increased formation of fluorescent age pigments in the nervous system of patients exposed to toxic amounts of Al(III) may be related to this phenomenon. The ability of desferal to bind both iron (III) and aluminium(III) salts and to inhibit lipid peroxidation makes it an especially useful chelating agent in the treatment of 'aluminium overload'.  相似文献   

11.
Fe(II)- and Fe(III)-induced lipid peroxidation of rabbit small intestinal microvillus membrane vesicles was studied. Ferrous ammonium sulphate, ferrous ascorbate at a molar ratio of 10:1, and ferric citrate, at molar ratios of 1:1 and 1:20, did not stimulate lipid peroxidation. Ferrous ascorbate, 1:1, induced low stimulation, while ferrous ascorbate, 1:20 gave higher stimulation of lipid peroxidation. These results show that in our experimental system, ascorbate is a promotor rather than an inhibitor of lipid peroxidation. Ferric nitrilotriacetate (at molar ratios of 1:2 and 1:10), at an iron concentration of 200 microM, was by far the most effective in inducing lipid peroxidation. Superoxide dismutase, mannitol and glutathione had no effect, while catalase, thiourea and vitamin E markedly decreased ferrous ascorbate 1:20-induced lipid peroxidation. Ferric nitrilotriacetate-induced lipid peroxidation was slightly reduced by catalase and mannitol, significantly reduced by superoxide dismutase, and completely inhibited by thiourea. Glutathione caused a 100% increase in the ferric nitrilotriacetate-induced lipid peroxidation. These results suggest that Fe(II) in the presence of trace amounts of Fe(III), or an oxidizing agent and Fe(III) in the presence of Fe(II) or a reducing agent, are potent stimulators of lipid peroxidation of microvillus membrane vesicles. Addition of deferoxamine completely inhibited both ferrous ascorbate, 1:20 and ferric nitrilotriacetate-induced lipid peroxidation, demonstrating the requirement for iron for its stimulation. Iron-induced peroxidation of microvillus membrane may have physiological significance because it could already be demonstrated at 2 microM iron concentration.  相似文献   

12.
Ceruloplasmin (CP) was found to inhibit xanthine oxidase and ferritin-dependent peroxidation of phospholipid liposomes, as evidenced by decreased malondialdehyde formation. Ceruloplasmin was also shown to inhibit superoxide-mediated mobilization of iron from ferritin, in a concentration-dependent manner, as measured spectrophotometrically using the iron(II) chelator bathophenanthroline sulfonate. Ceruloplasmin failed to function as a peroxyl radical-scavenging antioxidant as evidenced by its inability to inhibit free radical-initiated peroxidation of linoleic acid, suggesting that CP inhibited lipid peroxidation by affecting the availability of ferritin-derived iron. In addition, CP scavenged xanthine oxidase-derived superoxide as measured spectrophotometrically via its effect on cytochrome c reduction. However, the extent of the superoxide scavenging of CP did not quantitatively account for its effects on iron release, suggesting that CP inhibits superoxide-dependent mobilization of ferritin iron independently of its ability to scavenge superoxide. The effects of CP and apoferritin on iron-catalyzed lipid peroxidation in systems containing exogenously added ferrous iron was also investigated. In the absence of apoferritin, CP exhibited a concentration-dependent prooxidant effect. However, CP-dependent, iron-catalyzed lipid peroxidation was inhibited by the addition of apoferritin. Apoferritin did not function as a peroxyl radical-scavenging antioxidant but was shown to incorporate iron in the presence of CP. These data suggest that CP inhibits superoxide and ferritin-dependent lipid peroxidation largely via its ability to reincorporate reductively mobilized iron back into ferritin.  相似文献   

13.
The role of iron and iron chelators in the initiation of microsomal lipid peroxidation has been investigated. It is shown that an Fe3+ chelate in order to be able to initiate enzymically induced lipid peroxidation in rat liver microsomes has to fulfill three criteria: (a) reducibility by NADPH; (b) reactivity of the Fe2+ chelate with rat liver microsomes has to fulfill three criteria: (a) reducibility by NADPH; (b) reactivity of the Fe2+ chelate with O2; and (c) formation of a relatively stable perferryl radical. NADH can support lipid peroxidation in the presence of ADP-Fe3+ or oxalate-Fe3+ at rates comparable to those obtained with NADPH but requires 10 to 15 times higher concentrations of the Fe3+ chelates for maximal activity. The results are discussed in relation to earlier proposed mechanisms of microsomal lipid peroxidation.  相似文献   

14.
To achieve cellular iron deprivation by chelation, it is important to develop chelators with selective metal-binding properties. Selectivity for iron has long been the province of certain oxygen-donor chelators such as desferrioxamine, which target Fe(III) and exploit the strength of a relatively ionic Fe(III)-O interaction. We have been studying novel chelators that possess mechanisms to selectively chelate +2 biometals, particularly tachpyr [N,N',N"-tris(2-pyridylmethyl)-1,3,5-cis,cis-triaminocyclohexane] and derivatives from N,N',N"-trialkylation and pyridine ring alkylation. Metal-exchange and metal-binding competition reactions have been conducted at pH 7.4, 37 degrees C and time periods until no further change was observed (generally 24-48 h). Under anaerobic conditions, tachpyr is strongly selective for iron, binding 95+/-5% Fe(II) versus 5+/-5% Zn(II) in the forms [Fe(tachpyr)](2+) and [Zn(tachpyr)](2+) respectively. Under aerobic conditions, tachpyr complexes Fe(II) more effectively than Fe(III), forming iminopyridyl complexes [Fe(tachpyr-ox-n)](2+) (n=2, 4) by O(2)-induced and iron-mediated oxidative dehydrogenation. Complexes [Fe(tachpyr-ox-n)](2+) are also strongly bound forms of iron that are unaffected by an excess of Zn(II) (75 mol zinc:1 mol iron complex). The preference of tachpyr for iron over zinc under aerobic conditions appears to be hindered by oxidation of Fe(II) to Fe(III), such that the proportions bound are 44+/-10% Fe(II) versus 56+/-10% Zn(II), in the respective forms [Fe(tachpyr-ox-n)](2+) and [Zn(tachpyr)](2+). However, upon addition of the reducing agent Na(2)S(2)O(4) that converts Fe(III) to Fe(II), the binding proportions shift to 76+/-10% Fe(II) versus 24+/-10% Zn(II), demonstrating a clear preference of tachpyr for Fe(II) over Zn(II). Iron(II) is in the low-spin state in [Fe(tachpyr)](2+) and [Fe(tachpyr-ox-n)](2+) (n=2, 4), which is a likely cause of the observed selectivity. N-methylation of tachpyr [giving (N-methyl)(3)tachpyr] results in the loss of selectivity for Fe(II), which is attributed to the steric effect of the methyl groups and a resulting high-spin state of Fe(II) in [Fe(N-methyl)(3)tachpyr)](2+). The relationship of chelator selectivity to cytotoxicity in the tach family will be discussed.  相似文献   

15.
Iron acquired by cells is delivered to mitochondria for metabolic processing via pathways comprising undefined chemical forms. In order to assess cytosolic factors that affect those iron delivery pathways, we relied on microscopy and flow-cytometry for monitoring iron traffic in: (a) K562 erythroleukemia cells labeled with fluorescent metal-sensors targeted to either cytosol or mitochondria and responsive to changes in labile iron and (b) permeabilized cells that retained metabolically active mitochondria accessible to test substrates. Iron supplied to intact cells as transferrin-Fe(III) or Fe(II)-salts evoked concurrent metal ingress to cytosol and mitochondria. With either supplementation modality, iron ingress into cytosol was mostly absorbed by preloaded chelators, but ingress into mitochondria was fully inhibited only by some chelators, indicating different cytosol-to-mitochondria delivery mechanisms. Iron ingress into cytosol or mitochondria were essentially unaffected by depletion of cytosolic iron ligands like glutathione or the hypothesized 2,5 dihydroxybenzoate (2,5-DHBA) siderophore/chaperone. These ligands also failed to affect mitochondrial iron ingress in permeabilized K562 cells suspended in cytosol-simulating medium. In such medium, mitochondrial iron uptake was >6-eightfold higher for Fe(II) versus Fe(III), showed saturable properties and submicromolar K(1/2) corresponding to cytosolic labile iron levels. When measured in iron(II)-containing media, ligands like AMP, ADP or ATP, did not affect mitochondrial iron uptake whereas in iron(III)-containing media ADP and ATP reduced it and AMP stimulated it. Thus, cytosolic iron forms demonstrably contribute to mitochondrial iron delivery, are apparently not associated with DHBA analogs or glutathione but rather with resident components of the cytosolic labile iron pool.  相似文献   

16.
Ferritin molecules contain 24 polypeptide chains folded as four-helix bundles and arranged as a hollow shell capable of storing up to 4500 Fe(III) atoms. H chains contain ferroxidase centres which lie within the bundle, about 12?Å (1.2?nm) from the outside surface and 8?Å from the inner surface of the protein shell. Catalysis of Fe(II) oxidation precedes storage of Fe(III) as ferrihydrite, with the formation of μ-oxo-bridged Fe(III) dimers as intermediates. Factors influencing the movement of μ-oxo-bridged Fe(III) from the ferroxidase centre to the ferritin cavity are uncertain. Assistance by small chelators is one possibility. The aim of this investigation was to determine whether iron at the dinuclear centres of three ferritins (human H chain homopolymer, HuHF, the non-haem ferritin of Escherichia coli, EcFTN, and horse spleen ferritin, HoSF) is accessible to chelators. Forty-eight Fe(II) atoms/molecule were added to the apoferritins followed, 2?min later, by the addition of chelator (1,10-phenanthroline, 2,2-bipyridine, desferrioxamine or 3,4-dihydroxybenzaldehyde). Iron species were analysed by Mössbauer spectroscopy or visible absorbance. Competition between chelators and apoferritin for Fe(II) was also investigated. The main conclusions of the study are that: (1) dinuclear iron and iron in small iron-cores in HuHF and EcFTN is mobilisable by all four chelators; (2) the chelators penetrate the shell; (3) 3,4-dihydroxybenzaldehyde is the most efficient in mobilising Fe(III) but the least successful in competing for Fe(II); (4) Fe(III) is more readily released from EcFTN than from HuHF; (5) 2,2′-bipyridine aids the movement of Fe(III) from ferroxidase centre to core.  相似文献   

17.
Enhanced oxalate binding (150-180% of control) was observed in kidney, liver, brain and heart, after subjecting them to lipid peroxidation in presence of iron. Kidney mitochondrial oxalate binding was stimulated by different promoters, and the order of stimulation was Fe2+ greater than t-BH greater than ascorbic acid greater than Fe3+ greater than H2O2. Oxalate binding was maximum when iron concentration was between 1-2 mM. The iron-induced oxalate binding was inhibited by reduced glutathione, beta-mercaptoethanol, alpha-tocopherol and hydroxyl ion scavengers, histidine and mannitol. Catalase inhibited both Fe(2+)-H2O2 induced oxalate binding and lipid peroxidation reactions, suggesting that the induced oxalate binding in mitochondria was mediated through the hydroxyl radical reaction mechanism.  相似文献   

18.
An NADPH-driven enzymatic reduction of an Fe(III)ADP complex by rat liver microsomes has been demonstrated directly for the first time during the initial phase of lipid peroxidation by using two different analytical methods. The reduction rate increased upon increasing the ratio of ADP to ferric iron. Fe(III)ADP reducing activity of both detergent-solubilized microsomes and purified NADPH:cytochrome-P-450 (cytochrome-c) reductase decreased to about 20% compared to that of the native microsomes. Superoxide dismutase and KCN did not inhibit the reduction.  相似文献   

19.
On the limited ability of superoxide to release iron from ferritin   总被引:3,自引:0,他引:3  
Reductive release of iron from ferritin may catalyze cytotoxic radical reactions like the Haber-Weiss reaction. The ability of .O2- to mobilize Fe(II) from ferritin was studied by using the xanthine/xanthine oxidase reaction, with and without superoxide dismutase, and with bathophenanthroline sulphonate as the chelator. Not more than one or two Fe(II)/ferritin molecules could be released by an .O2(-)-dependent mechanism, even after repeated exposures of ferritin to bursts of .O2-. The amount of releaseable iron depended on the size and the age of the iron core, but not on the iron content of the protein shell of ferritin which was manipulated by chelators and addition of FeCl3. The kinetic characteristics of the .O2(-)-mediated iron release indicated the presence of a small pool of readily available iron at the surface of the core. The very limited .O2(-)-dependent release of iron from ferritin is compatible with a protective role of ferritin against toxic iron-catalyzed reactions.  相似文献   

20.
To determine whether iron toxicity is caused by iron-catalyzed radical production, the in vivo effect of ferric citrate was studied in paraquat-intoxicated mice. Intraperitoneally injected Fe3+-citrate complex was distributed mainly in the liver and kidney, and promoted lipid peroxidation, as measured by expiratory ethane in both normal and paraquat-intoxicated mice. Plasma glutamic-oxaloacetic transaminase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1) activity increased significantly only in paraquat and Fe3+-citrate-injected mice (PFe group). The rate of ethane production increased prior to the elevation of plasma glutamic-oxaloacetic transaminase levels, and was greater in the PFe group than in the mice, that were injected Fe3+-citrate alone. Pretreatment of animals with desferrioxamine mesylate inhibited both ethane production and elevation of plasma glutamic-oxaloacetic transaminase levels in the PFe group. Administration of 100% oxygen or glucose, which is expected to increase cellular NADPH, to the PFe group further elevated the plasma glutamic-oxaloacetic transaminase level, but had little effect on ethane production, indicating that tissue injury occurs independently of lipid peroxidation. These results suggest that iron toxicity is due to radical production and that, although iron stimulated lipid peroxidation, it might not be the only cause of tissue injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号