首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pancreatic duct epithelial cells (PDEC) mediate the exocrine secretion of fluid and electrolytes. We previously reported that ATP and UTP interact with P2Y(2) receptors on nontransformed canine PDEC to increase intracellular free Ca2+ concentration ([Ca2+](i)) and stimulate Ca2+-activated Cl- and K+ channels. We now report that ATP interacts with additional purinergic receptors to increase cAMP and activate Cl- channels. ATP, 2-methylthio-ATP, and ATP-gamma-S stimulated a 4- to 10-fold cAMP increase with EC(50) of 10-100 microM. Neither UTP nor adenosine stimulated a cAMP increase, excluding a role for P2Y(2) or P1 receptors. Although UTP stimulated an (125)I(-) efflux that was fully inhibited by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester (BAPTA-AM), ATP stimulated a partially resistant efflux, suggesting activation of additional Cl- conductances through P2Y(2)-independent and Ca2+-independent pathways. In Ussing chambers, increased cAMP stimulated a much larger short-circuit current (I(sc)) increase from basolaterally permeabilized PDEC monolayers than increased [Ca2+](i). Luminal ATP and UTP and serosal UTP stimulated a small Ca2+-type I(sc) increase, whereas serosal ATP stimulated a large cAMP-type I(sc) response. Serosal ATP effect was inhibited by P2 receptor blockers and unaffected by BAPTA-AM, supporting ATP activation of Cl- conductances through P2 receptors and a Ca2+-independent pathway. RT-PCR confirmed the presence of P2Y(11) receptor mRNA, the only P2Y receptor acting via cAMP.  相似文献   

2.
Purinergic inhibition of Na-K-Cl cotransport has been noted in various renal epithelial cells derived from the collecting tubule, including Madin-Darby canine kidney (MDCK) cells. In recent studies, we have observed purinergic inhibition of Na-K-Cl cotransport in C11-MDCK subclones (alpha-intercalated-like cells). Interestingly, Na-K-Cl cotransport activity was also detected in C7-MDCK subclones (principal-like cells) but was not affected by ATP. In this investigation, we have transfected the human Na-K-Cl cotransporter (huNKCC1) in both C11 and C7 cells to determine whether these differences in NKCC regulation by ATP were due to cell-specific purinoceptor signaling pathways or to cell-specific isoforms/splice variants of the transporter. In both cell lines, we found that endogenous as well as huNKCC1-derived cotransport activity was restricted to the basolateral side. In addition, we were able to show that extracellular application of 100 microM ATP or 100 microM UTP abolished NKCC activity in both mock- and huNKCC1-transfected C11 cells but not in mock- and huNKCC1-transfected C7 cells; in C11 cells, intriguingly, this inhibition was not affected by inhibitors of RNA and protein synthesis and occurred even though expression levels of UTP-sensitive P2Y2-, P2Y4-, and P2Y6-purinoceptors were not different from those observed in C7 cells. These results suggest that C11 cells express an undetermined type of UTP-sensitive P2-purinoceptors or a unique P2Y-purinoceptor-triggered signaling cascade that leads to inhibition of NKCC1.  相似文献   

3.
Nishi H  Hori S  Niitsu A  Kawamura M 《Life sciences》2004,74(9):1181-1190
The study was aimed to investigate the existence of at least two kinds of P2Y receptors linked to steroidogenesis in bovine adrenocortical fasciculata cells (BAFCs). Extracellular nucleotides facilitated steroidogenesis in BAFCs. The potency order was UTP > adenosine 5'-(gamma-thio) triphosphate (ATPgammaS) > ATP > 2-methylthio ATP (2MeSATP) > adenosine 5'-(beta-thio) diphosphate (ADPbetaS) > alpha,beta-methylene ATP (alpha,beta-me-ATP), beta,gamma-methylene ATP (beta,gamma -me-ATP). ATPgammaS (10-100 microM) remarkably stimulated both total inositol phosphates (IPs) production and cyclic AMP (cAMP) accumulation. Competitive displacement experiments by using [35S]ATPgammaS as a radioactive ligand in BAFCs showed that the potency under these unlabelled ligands was ATPgammaS > ATP > ADPbetaS > 2MeSATP > UTP > alpha,beta-me-ATP, beta,gamma-me-ATP. These suggest that two different binding sites of [35S]ATPgammaS, namely P2Y receptors, exist in BAFCs, and that these receptors are linked to steroidogenesis via distinct second messenger systems in the cells.  相似文献   

4.
We previously demonstrated that extracellular ATP stimulated macrophage death and mycobacterial killing within Mycobacterium bovis Bacille Calmette-Guérin (BCG)-infected human macrophages. ATP increases the cytosolic Ca(2+) concentration in macrophages by mobilizing intracellular Ca(2+) via G protein-coupled P2Y receptors, or promoting the influx of extracellular Ca(2+) via P2X purinoceptors. The relative contribution of these receptors and Ca(2+) sources to ATP-stimulated macrophage death and mycobacterial killing was investigated. We demonstrate that 1) ATP mobilizes Ca(2+) in UTP-desensitized macrophages (in Ca(2+)-free medium) and 2) UTP but not ATP fails to deplete the intracellular Ca(2+) store, suggesting that the pharmacological properties of ATP and UTP differ, and that a Ca(2+)-mobilizing P2Y purinoceptor in addition to the P2Y(2) subtype is expressed on human macrophages. ATP and the Ca(2+) ionophore, ionomycin, promoted macrophage death and BCG killing, but ionomycin-mediated macrophage death was inhibited whereas BCG killing was largely retained in Ca(2+)-free medium. Pretreatment of cells with thapsigargin (which depletes inositol (1,4,5)-trisphosphate-mobilizable intracellular stores) or 1,2-bis-(2-aminophenoxy)ethane-N, N, N',N'-tetraacetic acid acetoxymethyl ester (an intracellular Ca(2+) chelator) failed to inhibit ATP-stimulated macrophage death but blocked mycobacterial killing. Using the acidotropic molecular probe, 3-(2,4-dinitroanilino)-3'-amino-N-methyl dipropylamine, it was revealed that ATP stimulation promoted the acidification of BCG-containing phagosomes within human macrophages, and this effect was similarly dependent upon Ca(2+) mobilization from intracellular stores. We conclude that the cytotoxic and bactericidal effects of ATP can be uncoupled and that BCG killing is not the inevitable consequence of death of the host macrophage.  相似文献   

5.
Increasing evidence suggests that P2 receptors (P2Rs) in airway epithelial cells perform critical functions in auto- or paracrine regulation of fluid and mucus secretion. In the present study, we characterized the effects of P2R stimulation on Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity in normal human nasal epithelial (NHNE) cells. [Ca(2+)](i) and pH(i) were measured in primary cultures of NHNE cells using a double perfusion chamber, which enabled us to analyze membrane-specific transporter activities. NKCC activities were estimated by the pH(i) reduction due to Na(+)-dependent and bumetanide-sensitive intracellular uptake of NH(4)(+). NKCC activities were observed in the basolateral membrane, but not in the luminal membrane, of NHNE cells. Interestingly, P2Rs were expressed in both membranes, and the stimulation of either luminal or basolateral P2R increased NKCC activity. Blockades of luminal Cl(-) channels, basolateral K(+) channels, or protein kinase C did not affect the activation of NKCC by basolateral P2R stimulation. The effects of luminal P2R stimulation were partially reduced by Cl(-) channel blockers. However, chelation of intracellular Ca(2+) by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) treatment completely blocked the stimulatory effects of luminal and basolateral P2Rs on NKCC. In addition, increasing [Ca(2+)](i) by treatment with ionomycin-stimulated NKCC activity. These results provide evidence that stimulation of P2Rs directly activates basolateral NKCC by Ca(2+)-dependent pathways in NHNE cells, which is an important aspect of the purinergic regulation of ion and fluid secretions in human airway epithelia under physiologic and pathologic conditions.  相似文献   

6.
alpha7 Nicotinic receptors are calcium permeant and provide neuroprotection against many insults. We investigated the roles of intracellular calcium ions and downstream calcium channels in this protection. The alpha7 agonist GTS-21 prevented pheochromocytoma cell death induced by nerve growth factor + serum deprivation over a 3-day interval. This effect was blocked by the intracellular calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid in a manner that did not appear to involve changes in receptor density. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid blocked GTS-21-induced protein kinase C activation, a necessary process for protection. The insositol triphosphate calcium-channel blocker xestospongin C and the phospholipases C inhibitor U-73122 blocked protection, ryanodine partially attenuated protection, but the L-type channel antagonist nifedipine had no effect. ERK1/2 but not JNK and p38 were activated by GTS-21, and the ERK phosphorylation inhibitors PD98059 and U0126 blocked protection.  相似文献   

7.
8.
In endothelial cells, the AMP-activated protein kinase (AMPK) is stimulated by sheer stress or growth factors that stimulate release of nitric oxide (NO). We hypothesized that NO might act as an endogenous activator of AMPK in endothelial cells. Exposure of human umbilical vein endothelial cells (HUVECs) to NO donors caused an increase in phosphorylation of both Thr-172 of AMPK and Ser-1177 of endothelial nitric oxide synthase, a downstream enzyme of AMPK. NO-induced activation of AMPK was not affected by inhibition of LKB1, an AMPK kinase. In contrast, inhibition of calcium calmodulin-dependent protein kinase kinase abolished the effect of NO in HUVECs. NO-induced AMPK activation in HeLa S3 cells was abolished by either 1H-(1,2,4)-oxadiazole[4,3-a]quinoxalon-1-one, a potent inhibitor for guanylyl cyclase, or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), an intracellular Ca(2+) chelator, indicating that NO-induced AMPK activation is guanylyl cyclase-mediated and calcium-dependent. Exposure of HUVECs or isolated mice aortas to either calcium ionophore A23187 or bradykinin significantly increased AMPK Thr-172 phosphorylation, which was abolished by N-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase. Finally, A23187- or bradykinin-enhanced AMPK activation was significantly greater in aortas from wild type mice than those in the aortas of endothelial nitric oxide synthase knock-out mice. Taken together, we conclude that NO might act as an endogenous AMPK activator.  相似文献   

9.
Post-transplantation thrombosis may occur in donor segments of iliac arteries and livers following surgical removal and storage in University of Wisconsin (UW) solution for transplantation. We have previously suggested that purine receptors are vulnerable to denaturation after UW storage. The aims of the present study were to determine what particular subtypes of purine P2Y receptors in rabbit thoracic aorta deteriorate after 8 days of UW storage by studying vascular reactivity to acetylcholine, ATP, 2MeSATP and UTP. Ring segments of aortae from male New Zealand White rabbits were mounted upon fine-wire myographs and vasodilatation to the above agents tested on fresh tissue, and after 8 days of UW storage. Vasodilatation to ATP was attenuated by 100 microM L-NAME in fresh tissue suggesting that the relaxant response was, in part, due to nitric oxide (NO). P2Y-mediated relaxation to ATP was significantly attenuated by UW storage and cholinergic responses were not. This attenuated relaxation to ATP was not further attenuated by L-NAME, suggesting a loss of the NO-dependent mechanism. De-endothelialisation indicated that UTP-mediated vasorelaxation, via P2Y(2) receptors, was endothelium-dependent. Any residual endothelium-independent relaxation to UTP was abolished by UW storage and endothelium-dependent UTP relaxation was reduced to the same level as that seen in fresh, de-endothelialised tissue. In contrast responses to 2MeSATP, via P2Y(1) receptors, were predominantly endothelium-independent and were only partially attenuated by UW storage. Responses to pyridoxalphosphate-6-azophenyl-2('),4(')-disulphonic acid (PPADS) and L-NAME suggested that vasorelaxation to 2MeSATP and UTP was mediated by P2Y(1) and P2Y(2) receptors, respectively. It is therefore concluded that UW storage predominantly decreases P2Y(2) receptor-mediated vascular reactivity.  相似文献   

10.
The effects of purinergic agonists on insulin release are controversial in the literature. In our studies (mainly using INS-1 cells, but also using rat pancreatic islets), ATP had a dual effect on insulin release depending on the ATP concentration: increasing insulin release (EC50 approximately/= 0.0032 microM) and inhibiting insulin release (EC50 approximately/= 0.32 microM) at both 5.6 and 8.3 mM glucose. This is compatible with the view that either two different receptors are involved, or the cells desensitize and (or) the effect of an inhibitory degradation product such as adenosine (ectonucleotidase effect) emerges. The same dual effects of ATP on insulin release were obtained using rat pancreatic islets instead of INS-1 cells. ADPbetaS, which is less degradable than ATP and rather specific for P2Y1 receptors, had a dual effect on insulin release at 8.3 mM glucose: stimulatory (EC50 approximately/= 0.02 microM) and inhibitory (EC50 approximately/= 0.32 microM). The effectiveness of this compound indicates the possible involvement of a P2Y1 receptor. 2-Methylthio-ATP exhibited an insulinotropic effect at very high concentrations (EC50 approximately/= 15 microM at 8.3 mM glucose). This indicated that distinct P2X or the P2Y1 receptor may be involved in these insulin-secreting cells. UTP increased insulin release (EC50 approximately/= 2 microM) very weakly, indicating that a P2U receptor (P2X3 or possibly a P2Y2 or P2Y4) are not likely to be involved. Suramin (50 microM) antagonized the insulinotropic effect of ATP (0.01 microM) and UTP (0.32 microM). Since suramin is not selective, the data indicated that various P2X and P2Y receptors may be involved. PPADS (100 microM), a P2X and P2Y1,4,6 receptor antagonist, was ineffective using either low or high concentrations of ATP and ADPbetaS, which combined with the suramin data hints at a P2Y receptor effect of the compounds. Adenosine inhibited insulin release in a concentration-dependent manner. DPCPX (100 microM), an adenosine (A1) receptor antagonist, inhibited the inhibitory effects of both adenosine and of high concentrations of ATP. Adenosine deaminase (1 U/mL) abolished the inhibitory effect of high ATP concentrations, indicating the involvement of the degradation product adenosine. Repetitive addition of ATP did not desensitize the stimulatory effect of ATP. U-73122 (2 microM), a PLC inhibitor, abolished the ATP effect at low concentrations. The data indicate that ATP at low concentrations is effective via P2Y receptors and the PLC-system and not via P2X receptors; it inhibits insulin release at high concentrations by being metabolized to adenosine.  相似文献   

11.
Calcium influx through voltage-activated Ca(2+) channels (VACCs) plays a critical role in neurotransmission. Capsaicin application inhibits VACCs and desensitizes nociceptors. In this study, we determined the signaling mechanisms of the inhibitory effect of capsaicin on VACCs in primary sensory neurons. Whole-cell voltage clamp recordings were performed in acutely isolated rat dorsal root ganglion neurons. Capsaicin caused a profound decrease in the Ca(2+) current (I(Ca)) density in capsaicin-sensitive, but not -insensitive, dorsal root ganglion neurons. At 1 mum, capsaicin suppressed about 60% of N-, P/Q-, L-, and R-type I(Ca) density. Pretreatment with iodoresiniferatoxin, a specific transient receptor potential vanilloid type 1 (TRPV1) antagonist, or intracellular application of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid blocked the inhibitory effect of capsaicin on I(ca). However, neither W-7, a calmodulin blocker, nor KN-93, a CaMKII inhibitor, attenuated the inhibitory effect of capsaicin on I(Ca). Furthermore, intracellular dialysis of deltamethrin or cyclosporin A, the specific calcineurin (protein phosphatase 2B) inhibitors, but not okadaic acid (a selective protein phosphatase 1/protein phosphatase 2A inhibitor), abolished the effect of capsaicin on I(Ca). Interestingly, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, deltamethrin, cyclosporin A, and okadaic acid each alone significantly increased the I(Ca) density and caused a depolarizing shift in the voltage dependence of activation. Immunofluorescence labeling revealed that capsaicin induced a rapid internalization of Ca(V)2.2 channels on the membrane. Thus, this study provides novel information that VACCs are tonically modulated by the intracellular Ca(2+) level and endogenous phosphatases in sensory neurons. Stimulation of TRPV1 by capsaicin down-regulates VACCs by dephosphorylation through Ca(2+)-dependent activation of calcineurin.  相似文献   

12.
We investigated the effect of altered extracellular pH, mitochondrial function, and ATP content on development of apoptosis in human pulmonary artery endothelial cells after treatment with staurosporine (STS). STS produced a concentration- and time-dependent increase in caspase-3 activity in pH 7.4 medium that reached a peak at 6 h. The increase in caspase activity was associated with significant DNA fragmentation. Fluorescent imaging of treated monolayers in pH 7.4 medium with Hoechst-33342-propidium iodide demonstrated a large percentage of apoptotic cells ( approximately 40%) with no evidence of necrosis. Caspase activity, DNA fragmentation, and percentage of apoptotic cells were reduced after STS treatment in acidic media (pH 7.0 and 6.6). The Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM inhibited STS-induced apoptosis, whereas the rise in intracellular Ca2+concentration in STS-treated cells in pH 7.4 medium was reduced in pH 7.0 medium. These results suggest that one mechanism for inhibitory effects of acidosis may be a pH-induced alteration in Ca2+ signaling. Treatment with STS in the presence of oligomycin (10 microM), an inhibitor of the mitochondrial F(0)F(1)-ATPase, in glucose-free media abolished caspase activation and DNA fragmentation in association with severe ATP depletion ( approximately 2% of control cells). Imaging demonstrated a change in the mode of cell death from apoptosis to necrosis under these conditions. This change was linked to the level of ATP depletion, because STS treatment in the absence of glucose or the presence of oligomycin in media with glucose still leads to apoptosis in the presence of only moderate ATP depletion. These results demonstrate that pH, mitochondrial function, and ATP supply are important variables that regulate STS-induced apoptosis in human pulmonary artery endothelial cells.  相似文献   

13.
The possible involvement of Ca2+ as a second messenger in snapdragon (Antirrhinum majus L.) shoot gravitropism, as well as the role of ethylene in this bending response, were analyzed in terms of stem curvature and gravity-induced asymmetric ethylene production rates, ethylene-related metabolites, and invertase activity across the stem. Application of Ca2+ chelators (ethylenediaminetetraacetic acid, trans-1,2-cyclohexane dinitro-N,N,N',N'-tetraacetic acid, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N',-tetraacetic acid) or a Ca2+ antagonist (LaCl3) to the spikes caused a significant loss of their gravitropic response following horizontal placement. Conversely, the Ca2+ ionophore A23187 or the agonist Bay K-8644 increased gravibending. Longitudinally halved stem sections had significantly higher amounts of ethylene, 1-aminocyclopropane-1-carboxylic acid, and 1-(malonylamino) cyclopropane-1-carboxylic acid compared with vertical controls, with the extra production arising exclusively from the lower half of the stem. trans-1,2-cyclohexane dinitro-N,N,N',N'-tetraacetic acid pretreatment completely abolished the gravity-induced ethylene gradient across the stem, thereby leading to a significant reduction of the curvature. Similarly, reduction of the ethylene produced in the gravistimulated with CoCl2 or inhibition of its action by silver thiosulfate or 2,5-norbornadiene significantly inhibited the subsequent gravibending. Silver thiosulfate and CoCl2 also abolished the gravity-induced gradient of invertase activity across the stem, which is associated with the asymmetric stem elongation. These results suggest that cytosolic Ca2+ may regulate auxin action in snapdragon spikes, manifested as increased ethylene production, which is, in turn, intimately correlated with stem bending. Therefore, both hormones seem to play significant roles in induction and progress of the gravibending of snapdragon spikes.  相似文献   

14.
Calcium cations play a critical role in regulating vesicular transport between different intracellular membrane-bound compartments. The role of calcium in transport between the Golgi cisternae, however, remains unclear. Using a well characterized cell-free intra-Golgi transport assay, we now show that changes in free Ca(2+) concentration in the physiological range regulate this transport process. The calcium-chelating agent 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid blocked transport with an IC(50) of approximately 0.8 mm. The effect of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid was reversible by addition of fresh cytosol and was irreversible when performed in the presence of a Ca(2+) ionophore that depletes calcium from lumenal stores. We demonstrate here that intra-Golgi transport is stimulated by low Ca(2+) concentrations (20-100 nm) but is inhibited by higher concentrations (above 100 nm). Further, we show that calmodulin antagonists specifically block intra-Golgi transport, implying a role for calmodulin in mediating the effect of calcium. Our results suggest that Ca(2+) efflux from intracellular pools may play an essential role in regulating intra-Golgi transport.  相似文献   

15.
Extracellular ATP and ADP have been shown to exhibit potent angiogenic effects on pulmonary artery adventitial vasa vasorum endothelial cells (VVEC). However, the molecular signaling mechanisms of extracellular nucleotide-mediated angiogenesis remain not fully elucidated. Since elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is required for cell proliferation and occurs in response to extracellular nucleotides, this study was undertaken to delineate the purinergic receptor subtypes involved in Ca(2+) signaling and extracellular nucleotide-mediated mitogenic responses in VVEC. Our data indicate that stimulation of VVEC with extracellular ATP resulted in the elevation of [Ca(2+)](i) via Ca(2+) influx through plasma membrane channels as well as Ca(2+) mobilization from intracellular stores. Moreover, extracellular ATP induced simultaneous Ca(2+) responses in both cytosolic and nuclear compartments. An increase in [Ca(2+)](i) was observed in response to a wide range of purinergic receptor agonists, including ATP, ADP, ATPγS, ADPβS, UTP, UDP, 2-methylthio-ATP (MeSATP), 2-methylthio-ADP (MeSADP), and BzATP, but not adenosine, AMP, diadenosine tetraphosphate, αβMeATP, and βγMeATP. Using RT-PCR, we identified mRNA for the P2Y1, P2Y2, P2Y4, P2Y13, P2Y14, P2X2, P2X5, P2X7, A1, A2b, and A3 purinergic receptors in VVEC. Preincubation of VVEC with the P2Y1 selective antagonist MRS2179 and the P2Y13 selective antagonist MRS2211, as well as with pertussis toxin, attenuated at varying degrees agonist-induced intracellular Ca(2+) responses and activation of ERK1/2, Akt, and S6 ribosomal protein, indicating that P2Y1 and P2Y13 receptors play a major role in VVEC growth responses. Considering the broad physiological implications of purinergic signaling in the regulation of angiogenesis and vascular homeostasis, our findings suggest that P2Y1 and P2Y13 receptors may represent novel and specific targets for treatment of pathological vascular remodeling involving vasa vasorum expansion.  相似文献   

16.
17.
Jeong HJ  Han NR  Moon PD  Kim MH  Kim HM 《Cytokine》2011,53(2):153-157
Interleukin (IL)-32 has been associated with inflammation, apoptosis, and chemokine induction. The intracellular Ca(2+) concentration of mammalian endolymph in the inner ear is required for normal hearing and balance. Here, we document for the first time that IL-32 highly increased intracellular calcium level and IL-1β expression in an auditory cell line, HEI-OC1 cells. Treatment with 1, 2-bis (2-aminophenoxy) ethane-N, N, N', N'-tetraacetic acid acetoxymethyl ester, a chelator of intracellular calcium, inhibited IL-32-induced IL-1 β production and caspase-1 activation. Thus, IL-32 may contribute to modulation of the inflammatory reaction through the regulation of intracellular Ca(2+) in the inner ear.  相似文献   

18.
This study examines the action of agonists and antagonists of P2 receptors on mouse mesenteric artery contractions and the possible involvement of these signaling pathways in myogenic tone (MT) evoked by elevated intraluminal pressure. Both ATP and its non-hydrolyzed analog α,β-ATP triggered transient contractions that were sharply decreased in the presence of NF023, a potent antagonist of P2X1 receptors. In contrast, UTP and UDP elicited sustained contractions which were suppressed by MRS2567, a selective antagonist of P2Y6 receptors. Inhibition of Na+, K+, 2Cl cotransport (NKCC) with bumetanide led to attenuation of contractions in UTP- but not ATP-treated arteries. Both UTP-induced contractions and MT were suppressed by MRS2567 and bumetanide but were insensitive to NF023. These data implicate a P2Y6-mediated, NKCC-dependent mechanism in MT of mesenteric arteries. The action of heightened intraluminal pressure on UTP release from mesenteric arteries and its role in the triggering of P2Y6-mediated signaling should be examined further.  相似文献   

19.
We have investigated the role of secretion and intracellular signalling events in aggregation induced by the glycoprotein (GP)VI-selective snake venom toxin convulxin and by collagen. We demonstrate that aggregation induced by threshold concentrations of convulxin undergoes synergy with ADP acting via the P2Y12 receptor whereas there is no synergy via the P2Y1 receptor or with thromboxanes. On the other hand, apyrase, the P2Y12 receptor antagonist, AR-C67085, and indomethacin only marginally inhibit aggregation induced by convulxin. In comparison, these inhibitors severely attenuate the response to collagen. In order to investigate whether the weak inhibitory action against convulxin is due to release of agonists other than ADP from dense granules, experiments were performed on murine platelets deficient in this organelle (pearl mice platelets). A slightly greater reduction in aggregation induced by convulxin was observed in pearl platelets than in the presence of inhibitors of ADP, but a maximal response was still attained. Importantly, inhibition of protein kinase C further reduced the response to convulxin in pearl platelets demonstrating a direct role for the kinase in aggregation. Chelation of intracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N,N',N'-tetraacetic acid (acetoxymethyl)ester (BAPTA-AM) abolished aggregation induced by convulxin under all conditions. Activation of phospholipase C by convulxin was potentiated by ADP acting through the P2Y12 receptor. In conclusion, we show that Ca2+ and protein kinase C, but not release of the secondary agonists ADP and thromboxane A2, are required for full aggregation induced by convulxin, whereas the response induced by collagen shows a much greater dependence on secretion of secondary agonists.  相似文献   

20.
The role of ATP on regulation of the Na(+)/K(+)-ATPase activity in the human cancerous HeLa cells was investigated. HeLa cells stimulated with increasing ATP concentrations showed a dose-dependent inhibition of the Na(+)/K(+)-ATPase activity. These effects were also obtained by UTP. ATP and UTP provoked a rise in intracellular calcium concentration ([Ca(2+)](i)) persisting for at least 4 min. The inhibitor of phospholipase C, U73122, blocked the elevation of [Ca(2+)](i) provoked by ATP/UTP. The expression of mRNA for P2Y2 and P2Y6 receptors was demonstrated by RT-PCR. ATP/UTP activated PKC-alpha, -betaI and -epsilon isoforms, but not PKC-delta and -zeta. The inhibition of the Na(+)/K(+)-ATPase activity by ATP/UTP was blocked by G?6976, a specific inhibitor of the calcium-dependent PKCs. In conclusion, our results suggest that ATP/UTP modulate Na(+)/K(+)-ATPase activity in HeLa cells through the P2Y2 purinoceptor via calcium mobilisation and activation of calcium-dependent PKCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号