首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Colonization of urogenital tissues by the human pathogen Neisseria gonorrhoeae is characteristically associated with purulent exudates of polymorphonuclear phagocytes (PMNs) containing apparently viable bacteria. Distinct variant forms of the phase-variable opacity-associated (Opa) outer membrane proteins mediate the non-opsonized binding and internalization of N. gonorrhoeae by human PMNs. Using overlay assays and an affinity isolation technique, we demonstrate the direct interaction between Opa52-expressing gonococci and members of the human carcinoembryonic antigen (CEA) family which express the CD66 epitope. Gonococci and recombinant Escherichia coli strains synthesizing Opa52 showed specific binding and internalization by transfected HeLa cell lines expressing the CD66 family members BGP (CD66a), NCA (CD66c), CGM1 (CD66d) and CEA (CD66e), but not that expressing CGM6 (CD66b). Bacterial strains expressing either no opacity protein or the epithelial cell invasion-associated Opa50 do not bind these CEA family members. Consistent with their different receptor specificities, Opa52-mediated interactions could be inhibited by polyclonal anti-CEA sera, while Opa50 binding was instead inhibited by heparin. Using confocal laser scanning microscopy, we observed a marked recruitment of CD66 antigen by Opa52-expressing gonococci on both the transfected cell lines and infected PMNs. These data indicate that members of the CEA family constitute the cellular receptors for the interaction with, and internalization of, N. gonorrhoeae.  相似文献   

2.
The interaction with human phagocytes is a hallmark of symptomatic Neisseria gonorrhoeae infections. Gonococcal outer membrane proteins of the Opa family induce the opsonin-independent uptake of the bacteria that relies on CEACAM receptors and an active signaling machinery of the phagocyte. Here, we show that CEACAM receptor-mediated phagocytosis of Opa(52)-expressing N. gonorrhoeae into human cells results in a rapid activation of the acid sphingomyelinase. Inhibition of this enzyme by imipramine or SR33557 abolishes opsonin-independent internalization without affecting bacterial adherence. Reconstitution of ceramide, the product of acid sphingomyelinase activity, in imipramine- or SR33557-treated cells restores internalization of the bacteria. Furthermore, we demonstrate that CEACAM receptor-initiated stimulation of other signalling molecules, in particular Src-like tyrosine kinases and Jun N-terminal kinases, requires acid sphingomyelinase. These studies provide evidence for a crucial role of the acid sphingomyelinase for CEACAM receptor-initiated signalling events and internalization of Opa(52)-expressing N. gonorrhoeae into human neutrophils.  相似文献   

3.
Neisseria gonorrhoeae (gonococci, GC) are phagocytosed by neutrophils through the interaction between opacity proteins (Opa) and the CEA (CD66) family of antigens. In order to study this interaction, we used the human myeloid leukemia HL60 cell line, which differentiates into granulocyte-like cells upon treatment with dimethylsulfoxide (DMSO) or retinoic acid (RA). We found that RA-, but not DMSO- or untreated-HL60 cells, can phagocytose OpaI-expressing gonococci as well as Escherichia coli. The interaction of OpaI E. coli with RA-treated HL60 cells was inhibited by antibodies against CEACAM1. Phagocytosis of OpaI E. coli was found to be a result of the expression of CEACAM1 in RA-treated HL60 cells. Our results indicate that the level of expression of CEACAM1 in HL60 cells can be regulated by treatment with RA in a differentiation-dependent manner, and that this is important for phagocytosis of OpaI-expressing gonococci or E. coli.  相似文献   

4.
The ability of all 11 variable opacity (Opa) proteins encoded by Neisseria gonorrhoeae MS11 to interact directly with the five CD66 antigens was determined. Transfected HeLa cell lines expressing individual CD66 antigens were infected with recombinant N. gonorrhoeae and Escherichia coli strains expressing defined Opas. Based upon the ability of these bacteria to bind and invade and to isolate specifically CD66 antigens from detergent-soluble extracts of the corresponding cell lines, distinct specificity groups of Opa interaction with CD66 were seen. Defining these specificity groups allowed us to assign a specific function for CD66a in the Opa-mediated interaction of gonococci with two different target cell types, which are both known to co-express multiple CD66 antigens. The competence of individual Opas to interact with CD66a was strictly correlated with their ability to induce an oxidative response by polymorphonuclear neutrophils. The same Opa specificity was observed for the level of gonococcal binding to primary endothelial cells after stimulation with TNFα, which was shown to increase the expression of CD66a rather than CD66e. As CD66e alone is expressed on other target tissues of gonococcal pathogenicity, Opa variation probably contributes to the cell tropism displayed by gonococci.  相似文献   

5.
6.
Using COS (African green monkey kidney) cells transfected with cDNAs encoding human cell surface molecules, we have identified human cellular receptors for meningococcal virulence-associated Opa proteins, which are expressed by the majority of disease and carrier isolates. These receptors belong to the immunoglobulin superfamily of adhesion molecules and are expressed on epithelial, endothelial and phagocytic cells. Using soluble chimeric receptor molecules, we have demonstrated that meningococcal Opa proteins bind to the N-terminal domain of biliary glycoproteins (classified as BGP or CD66a) that belong to the CEA (CD66) family. Moreover, the Opa proteins of the related pathogen Neisseria gonorrhoeae , responsible for urogenital infections, also interact with this receptor, making CD66a a common target for pathogenic neisseriae. Over 95% of Opa-expressing clinical and mucosal isolates of meningococci and gonococci were shown to bind to the CD66 N-domain, demonstrating the presence of a conserved receptor-binding function in the majority of neisserial Opa proteins.  相似文献   

7.
8.
The human pathogens Neisseria meningitidis and Neisseria gonorrhoeae express a family of variable outer membrane opacity-associated (Opa) proteins that recognize multiple human cell surface receptors. Most Opa proteins target the highly conserved N-terminal domain of the CD66 family of adhesion molecules, although a few also interact with heparan sulphate proteoglycans. In this study, we observed that at least two Opa proteins of a N. meningitidis strain C751 have the dual capacity to interact with both receptors. In addition, all three Opa proteins of C751 bind equally well to HeLa cells transfected with cDNA encoding the carcinoembryonic antigen [CEA (CD66e)] subgroup of the CD66 family, but show distinct tropism for CGM1- (CD66d) and NCA (CD66c)-expressing cells. Because the C751 Opa proteins make up distinct structures via the surface-exposed hypervariable domains (HV-1 and HV-2), these combinations appear to be involved in tropism for the distinct CD66 subgroups. To define the determinants of receptor recognition, we used mutant proteins of biliary glycoprotein [BGP (CD66a)] carrying substitutions at several predicted exposed sites in the N-domain and compared their interactions with several Opa proteins of both N. meningitidis and N. gonorrhoeae. The observations applied to the molecular model of the BGP N-domain that we constructed show that the binding of all Opa proteins tested occurs at the non-glycosylated (CFG) face of the molecule and, in general, appears to require Tyr-34 and Ile-91. Further, efficient interaction of distinct Opa proteins depends on different non-adjacent amino acids. In the three-dimensional model, these residues lie in close proximity to Tyr-34 and Ile-91 at the CFG face, making continuous binding domains (adhesiotopes). The epitope of the monoclonal antibody YTH71.3 that inhibits Opa/CD66 interactions was also identified within the Opa adhesiotopes on the N-domain. These studies define the molecular basis that directs the Opa specificity for the CD66 family and the rationale for tropism of the Opa proteins for the CD66 subgroups.  相似文献   

9.
Opacity proteins (Opa) of Neisseria gonorrhoeae, a family of variant outer membrane proteins implicated in pathogenesis, are subject to phase variation. In strain MS11, 11 different opa gene alleles have been identified, the expression of which can be turned on and off independently. Using a reverse genetic approach, we demonstrate that a single Opa protein variant of strain MS11, Opa50, enables gonococci to invade epithelial cells. The remaining variant Opa proteins show no, or very little, specificity for epithelial cells but instead confer interaction with human polymorphonuclear neutrophils (PMNs). Thus, depending on the opa allele expressed, gonococci are capable of invading epithelial cells or of interacting with human leukocytes. The respective properties of Opa proteins are maintained independent of the gonococcal strain; thus, the specificity for epithelial cells or leukocytes is intrinsic to Opa proteins. Significant homology exists in the surface exposed variable regions of two invasion supporting Opa proteins from independent strains. Efficient epithelial cell invasion is favoured by high level Opa production, however, a 10-fold reduction still allows significant invasion by gonococci. In contrast, recombinant Escherichia coli expressing Opa proteins adhered or invaded poorly under similar experimental conditions, thus indicating that additional factors besides Opa are required in the Opa-mediated interaction with human cells.  相似文献   

10.
Human neutrophil response to recombinant neisserial Opa proteins   总被引:13,自引:0,他引:13  
Interactions of human neutrophils with recombinant Escherichia coli expressing gonococcal outer membrane Opa proteins were examined using chemiluminescent and biological assays. Seven opa loci from Neisseria gonorrhoeae MS11 4.8 were expressed as beta-lactamase-Opa fusion proteins that contained all but the mature N-terminal amino acid of the full-length Opa protein fused to three N-terminal amino acids derived from the mature beta-lactamase. The Opa fusion proteins were exported and assembled in the outer membrane of E. coli in a manner similar to that of Opa in N. gonorrhoeae, as evaluated by antibody binding and in situ proteolytic cleavage. All fusion proteins exhibited the characteristic heat-modifiable migration in SDS-polyacrylamide gel electrophoresis that typifies Opa proteins of neisseriae. Opa fusion proteins conferred on E. coli the ability to stimulate a chemiluminescent response from human neutrophils in the absence of antibody or complement. The nature of the response in terms of chemiluminescence, phagocytosis, and killing was in all cases analogous to that seen using N. gonorrhoeae expressing the equivalent Opa protein. Neither E. coli nor gonococci expressing OpaA elicited a response from neutrophils. Use of E. coli expressing Opa fusions should be useful in defining their biological activities and pathogenic roles.  相似文献   

11.
Opacity-associated (Opa) proteins are outer membrane proteins which play a critical role in the adhesion of pathogenic Neisseria spp. to epithelial and endothelial cells and polymorphonuclear neutrophils. The adherence is mainly mediated by the CD66-epitope-containing members of the carcinoembryonic-antigen family of human cell-adhesion molecules (CEACAM). For the analysis of the specific interactions of individual Opa proteins with their receptors, pure protein is needed in its native conformation. In this study, we describe the isolation and structural analysis of opacity proteins OpaJ129 and OpaB128 derived from Neisseria meningitidis strain H44/76. When the Opa proteins were produced with the phoE signal sequence in Escherichia coli, they were localized at the cell surface and the recombinant bacteria were found to specifically interact with CEACAM1. For refolding and purification, the proteins were overproduced without their signal sequences in E. coli, resulting in its cytoplasmic accumulation in the form of inclusion bodies. After solubilization of the inclusion bodies in urea, the proteins could be folded efficiently in vitro, under alkaline conditions by dilution in ethanolamine and the detergent n-dodecyl-N,N-dimethyl-1-ammonio-3-propanesulfonate (SB12). The structure of the refolded and purified proteins, determined by circular dichroism, indicated a high content of beta-sheet conformation, which is consistent with previously proposed topology models for Opa proteins. A clear difference was found between the binding of refolded vs. denatured OpaJ protein to the N-A1 domain of CEACAM1. Almost no binding was found with the denatured Opa protein, showing that the Opa-receptor interaction is conformation-dependent.  相似文献   

12.
Neisseria gonorrhoeae is a facultative intracellular bacterium capable of penetrating into certain human epithelial cell types. In order to identify gonococcal factors essential for invading Chang human conjunctiva cells, a gentamicin selection assay for the quantification of viable intracellular bacteria was used in conjunction with microscopy. The results demonstrate a correlation between the invasive behaviour of gonococci and the expression of Opa proteins, a family of variable outer membrane proteins present in all pathogenic Neisseria species. However, only particular Opa proteins supported invasion into Chang cells as indicated by the use of two unrelated gonococcal strains. Invasion was sensitive to cytochalasin D, and strong adherence mediated by the Opa proteins appeared to be essential for the internalization of gonococci. In contrast pili, which also conferred binding to Chang conjunctiva cells, did not support cellular invasion but rather were inhibitory.  相似文献   

13.
The pathogenicNeisseria species constitute a multi-faceted infection model of a highly adapted pathogen-host relationship. Several bacterial and host-cell factors involved in the cellular cross-talk have been recently unraveled. UsingNeisseria gonorrhoeae as a prototype, several structurally variable surface proteins, including pili and Opa proteins, have been revealed as adhesins recognizing distinct host-cell receptors. The Opa proteins, in particular, are important in facilitating interaction with heparan sulfate proteoglycan receptors and members of the CD66 and integrin receptor families. These interactions not only enable the pathogens' anchoring, and penetration into, the human mucosa but also stimulate cellular signaling cascades involving the phosphatidylcholinedependent phospholipase C, acidic sphingomyelinase and protein kinase C in epithelial cells, and Src-related kinases, Rac1, p21-activated kinase and Jun N-terminal kinase in phagocytic cells. Activation of these pathways is essential for the entry and intracellular accommodation of the pathogens but also leads to an early induction of cytokine release, thus priming the immune response. It is believed that detailed knowledge of cellular signaling cascades activated by infection will aid us in applying known and novel interfering drugs, in addition to classical antibiotic therapy, to the therapeutic and prophylactic treatment of persistent or otherwise difficult-to-treat bacterial infections. Presented at the1st International Minisymposium on Cellular Microbiology: Cell Biology and Signalization in Host-Pathogen Interactions, Prague, October 6, 1997.  相似文献   

14.
Infection of the endometrium by Neisseria gonorrhoeae is a pivotal stage in the development of pelvic inflammatory disease in women. An ex vivo model of cultures of primary human endometrial cells was developed to study gonococcal-host cell interactions. To facilitate these studies, gonococci were transformed with a hybrid shuttle vector containing the gfp gene from Aequoria victoria, encoding the green fluorescent protein (GFP), to produce intrinsically fluorescent bacteria. The model demonstrated that both pili and Opa proteins were important for both mediating gonococcal interactions with endometrial cells and inducing the secretion of pro-inflammatory cytokines and chemokines. Pil+ gonococci showed high levels of adherence and invasion, regardless of Opa expression, which was associated with increased secretion of IL-8 chemokine and reduced secretion of IL-6 cytokine. Gonococcal challenge also caused increased secretion of TNF-alpha cytokine, but this did not correlate with expression of pili or Opa, suggesting that release of components from non-adherent bacteria may be involved in TNF-alpha induction. Thus, the use of cultured primary endometrial cells, together with gonococci expressing green fluorescent protein, has the potential to extend significantly our knowledge, at the molecular level, of the role of this important human pathogen in the immunobiology of pelvic inflammatory disease.  相似文献   

15.
Infection with Neisseria gonorrhoeae (N. gonorrhoeae) can trigger an intense local inflammatory response at the site of infection, yet there is little specific immune response or development of immune memory. Gonococcal surface epitopes are known to undergo antigenic variation; however, this is unlikely to explain the weak immune response to infection since individuals can be re-infected by the same serotype. Previous studies have demonstrated that the colony opacity-associated (Opa) proteins on the N. gonorrhoeae surface can bind human carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) on CD4+ T cells to suppress T cell activation and proliferation. Interesting in this regard, N. gonorrhoeae infection is associated with impaired HIV-1 (human immunodeficiency virus type 1)-specific cytotoxic T-lymphocyte (CTL) responses and with transient increases in plasma viremia in HIV-1-infected patients, suggesting that N. gonorrhoeae may also subvert immune responses to co-pathogens. Since dendritic cells (DCs) are professional antigen presenting cells (APCs) that play a key role in the induction of an adaptive immune response, we investigated the effects of N. gonorrhoeae Opa proteins on human DC activation and function. While morphological changes reminiscent of DC maturation were evident upon N. gonorrhoeae infection, we observed a marked downregulation of DC maturation marker CD83 when the gonococci expressing CEACAM1-specific OpaCEA, but not other Opa variants. Consistent with a gonococcal-induced defect in maturation, OpaCEA binding to CEACAM1 reduced the DCs’ capacity to stimulate an allogeneic T cell proliferative response. Moreover, OpaCEA-expressing N. gonorrhoeae showed the potential to impair DC-dependent development of specific adaptive immunity, since infection with OpaCEA-positive gonococci suppressed the ability of DCs to stimulate HIV-1-specific memory CTL responses. These results reveal a novel mechanism to explain why infection of N. gonorrhoeae fails to trigger an effective specific immune response or develop immune memory, and may affect the potent synergy between gonorrhea and HIV-1 infection.  相似文献   

16.
Several species of commensal Neisseriae (Cn) may colonize the human nasopharynx, but little is known about their adhesion mechanisms. We have investigated structural and functional similarities between adhesins of Cn and of Neisseria meningitidis (Nm), also a frequent colonizer of the nasopharynx. In this study, we demonstrate the expression of Opa-like proteins in nine strains of Cn. Phylogenetic analysis segregated the majority of the Cn Opa in a cluster separated from the pathogenic cluster with a few exceptions. One Opa, which located within the pathogenic cluster, was strikingly similar (74%) to an Opa of a Neisseria gonorrhoeae (Ng) strain and, like Ng, it lacked the extra Y11 or the 136DKF138 triplet insert, which are conserved among many N. meningitidis Opa proteins. Most importantly, the majority of the Cn Opa proteins were able to interact with human CEACAM1 (CD66a) molecules, previously identified as receptors for pathogenic Opa proteins. By the use of CEACAM1 N-domain mutants, we demonstrate that Cn Opa target the same region of the N-domain of the receptor as that used by Nm. Furthermore, Cn strains bound to cell-expressed human CEACAM1. In competition assays, adherent Cn strain C450, exhibiting high affinity for CEACAM1, was not displaced by a Nm isolate and vice versa . But in simultaneous incubation, Nm out-competed the Cn strain. This is the first study to demonstrate the expression of adhesins in Cn that are structurally and functionally closely related to pathogenic adhesins. The studies imply that some Cn have the potential to occupy and thus compete with the pathogens for receptors on human mucosa, their common and exclusive niche.  相似文献   

17.
The pathogenic Neisseriae Neisseria meningitidis and Neisseria gonorrhoeae, initiate colonization by attaching to host cells using type IV pili. Subsequent adhesive interactions are mediated through the binding of other bacterial adhesins, in particular the Opa family of outer membrane proteins. Here, we have shown that pilus-mediated adhesion to host cells by either meningococci or gonococci triggers the rapid, localized formation of dramatic cortical plaques in host epithelial cells. Cortical plaques are enriched in both components of the cortical cytoskeleton and a subset of integral membrane proteins. These include: CD44v3, a heparan sulphate proteoglycan that may serve as an Opa receptor; EGFR, a receptor tyrosine kinase; CD44 and ICAM-1, adhesion molecules known to mediate inflammatory responses; f-actin; and ezrin, a component that tethers membrane components to the actin cytoskeleton. Genetic analyses reveal that cortical plaque formation is highly adhesin specific. Both pilE and pilC null mutants fail to induce cortical plaques, indicating that neisserial type IV pili are required for cortical plaque induction. Mutations in pilT, a gene required for pilus-mediated twitching motility, confer a partial defect in cortical plaque formation. In contrast to type IV pili, many other neisserial surface structures are not involved in cortical plaque induction, including Opa, Opc, glycolipid GgO4-binding adhesins, polysialic acid capsule or a particular lipooligosaccharide variant. Furthermore, it is shown that type IV pili allow gonococci to overcome the inhibitory effect of heparin, a soluble receptor analogue, on gonococcal invasion of Chang and A431 epithelial cells. These and other observations strongly suggest that type IV pili play an active role in initiating neisserial infection of the mucosal surface in vivo. The functions of type IV pili and other neisserial adhesins are discussed in the specific context of the mucosal microenvironment, and a multistep model for neisserial colonization of mucosal epithelia is proposed.  相似文献   

18.
Opa protein-expressing pathogenic neisseriae interact with CD66a-transfected COS (African green monkey kidney) and CHO (Chinese hamster ovary) cells. CD66a (BGP) is a member of carcinoembryonic antigen (CEA, CD66) family. The interactions occur at the N-terminal domain of CD66a, a region that is highly conserved between members of the CEA subgroup of the CD66 family. In this study, we have investigated the roles of CD66 expressed on human epithelial cells and polymorphonuclear phagocytes (PMNs) in adhesion mediated via Opa proteins. Using human colonic (HT29) and lung (A549) epithelial cell lines known to express CD66 molecules, we show that these receptors are used by meningococci. A monoclonal antibody, YTH71.3, against the N-terminal domain of CD66, but not 3B10 directed against domains, A1/B1, inhibited meningococcal adhesion to host cells. When acapsulate bacteria expressing Opa proteins were used, large numbers of bacteria adhered to HT29 and A549 cells. In addition, both CD66a-transfected CHO cells and human epithelial cells were invaded by Opa-expressing meningococci, suggesting that epithelial cell invasion may occur via Opa–CD66 interactions. In previous studies we have shown that serogroup A strain C751 expresses three Opa proteins, all of which mediate non-opsonic interactions with neutrophils. We have examined the mechanisms of these interactions using antibodies and soluble chimeric receptors. The results indicate that the nature of their interactions with purified CD66a molecules and with CD66 on neutrophils is alike and that these interactions occur at the N-terminal domain of CD66. Thus, the Opa family of neisserial ligands may interact with several members of the CD66 family via their largely conserved N-terminal domains.  相似文献   

19.
Neisseria gonorrhoeae has a repertoire of up to 11 opacity-associated (Opa) proteins that are adhesins. Most Opa proteins adhere to CEACAM antigens and when CEACAM molecules are present on the surface of transfected epithelial cells their binding by Opa is thought to induce invasion of these cells by gonococci. In this study, we investigated whether several malignant epithelial cell lines, normal cervical and fallopian tube epithelial cell cultures, as well as normal fallopian tube tissue express several of the CEACAM molecules, and whether gonococci use these molecules for adherence and invasion of these female genital epithelial cells. A primary cervical cell culture and metastatic cervical cell line ME180 both expressed CEACAM as shown by whole cell ELISA and flow cytometry, and increased the surface expression of total CEACAM during incubation with Opa+ gonococci. Opa+ gonococci both adhered to and invaded these cells; CEACAM-specific monoclonal antibody (MAb) partially abolished this interaction. Two primary fallopian epithelial tube cell cultures, a primary cervical cell culture and two malignant cell lines, HEC-1-B and HeLa, did not express CEACAM nor was CEACAM mRNA present. No evidence of either intracellular or secreted extracellular CEACAM was found with HEC-1-B and HeLa cells. Opa+ gonococci both adhered to and invaded CEACAM non-expressing cells; however, Opa+ gonococcal association with these non-expressing cell lines could not be inhibited with CEACAM-specific MAb. These data show that CEACAM is not always expressed on female genital epithelial cells and is not essential for gonococcal adherence and invasion. However, when CEACAM is expressed, Opa+ gonococci exploit it for the adherence to and invasion of these cells.  相似文献   

20.
Neisseria gonorrhoeae is naturally competent for DNA transformation. Under most conditions encountered in vivo, gonococci express one or more opacity (Opa) proteins on their surfaces. Recently, it was shown that DNA preferentially binds to the surfaces of Opa-expressing organisms compared to those of isogenic Opa-negative strains, presumably due to the numerous cationic residues in the predicted surface-exposed loops of the Opa protein. This study examined whether Opa-DNA interactions actually influence DNA transformation of the gonococcus. The data show that Opa-expressing gonococci are more efficient recipients of DNA for transformation and are more susceptible to exogenous DNase I treatment at early stages during the DNA transformation process than non-Opa expressors. Furthermore, inhibition of the transformation process was demonstrable for Opa(+) populations when either nonspecific DNA or the polyanion heparin was used. Overall, the data suggest that Opa expression, with its presumptive positive surface charge contribution, promotes DNA transformation by causing a more prolonged sequestration of donor DNA at the cell surface, which translates into more efficient transformation over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号