首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is often assumed that there is a positive relationship between egg size and offspring fitness. However, recent studies have suggested that egg size has a greater effect on offspring fitness in low‐quality environments than in high‐quality environments. Such observations suggest that mothers may compensate for poor posthatching environments by increasing egg size. In this paper we test whether there is a limit on the extent to which increased egg size can compensate for the removal of posthatching parental care in the burying beetle, Nicrophorus vespilloides. Previous experiments with N. vespilloides suggest that an increased egg size can compensate for a relatively poor environment after hatching. Here, we phenotypically engineered female N. vespilloides to produce large or small eggs by varying the amount of time they were allowed to feed on the carcass as larvae. We then tested whether differences between these groups in egg size translated into differences in larval performance in a harsh postnatal environment that excluded parental care. We found that females engineered to produce large eggs did not have higher breeding success, and nor did they produce larger larvae than females engineered to produce small eggs. These results suggest that there is a limit on the extent to which increased maternal investment in egg size can compensate for a poor posthatching environment. We discuss the implication of our results for a recent study showing that experimental N. vespilloides populations can adapt rapidly to the absence of posthatching parental care.  相似文献   

2.
Life‐history theory predicts that females who experienced stressful conditions, such as larval competition or malnutrition, should increase their investment in individual offspring to increase offspring fitness (the adaptive parental hypothesis). In contrast, it has been shown that when females were reared under stressful conditions, they become smaller, which consequently decreases egg size (the parental stress hypothesis). To test whether females adjust their egg volume depending on larval competition, independent of maternal body mass constraint, we used a pest species of stored adzuki beans, Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae: Bruchinae). The eggs of females reared with competitors were smaller than those of females reared alone, supporting the parental stress hypothesis; however, correcting for female body size, females reared with competitors produced larger eggs than those reared in the absence of competition, supporting the adaptive parental hypothesis, as predicted. The phenotypic plasticity in females' investment in each offspring in stressful environments counteracts the constraint of body size on egg size.  相似文献   

3.
Bet hedging at reproduction is expected to evolve when mothers are exposed to unpredictable cues for future environmental conditions, whereas transgenerational plasticity (TGP) should be favoured when cues reliably predict the environment offspring will experience. Since climate predictions forecast an increase in both temperature and climate variability, both TGP and bet hedging are likely to become important strategies to mediate climate change effects. Here, the potential to produce variably sized offspring in both warming and unpredictable environments was tested by investigating whether stickleback (Gasterosteus aculeatus) mothers adjusted mean offspring size and within‐clutch variation in offspring size in response to experimental manipulation of maternal thermal environment and predictability (alternating between ambient and elevated water temperatures). Reproductive output traits of F1 females were influenced by both temperature and environmental predictability. Mothers that developed at ambient temperature (17 °C) produced larger, but fewer eggs than mothers that developed at elevated temperature (21 °C), implying selection for different‐sized offspring in different environments. Mothers in unpredictable environments had smaller mean egg sizes and tended to have greater within‐female egg size variability, especially at 21 °C, suggesting that mothers may have dynamically modified the variance in offspring size to spread the risk of incorrectly predicting future environmental conditions. Both TGP and diversification influenced F2 offspring body size. F2 offspring reared at 21 °C had larger mean body sizes if their mother developed at 21 °C, but this TGP benefit was not present for offspring of 17 °C mothers reared at 17 °C, indicating that maternal TGP will be highly relevant for ocean warming scenarios in this system. Offspring of variable environment mothers were smaller but more variable in size than offspring from constant environment mothers, particularly at 21 °C. In summary, stickleback mothers may have used both TGP and diversified bet‐hedging strategies to cope with the dual stress of ocean warming and environmental uncertainty.  相似文献   

4.
1.?Maternal reproductive investment is thought to reflect a trade-off between offspring size and fecundity, and models generally predict that mothers inhabiting adverse environments will produce fewer, larger offspring. More recently, the importance of environmental unpredictability in influencing maternal investment has been considered, with some models predicting that mothers should adopt a diversified bet-hedging strategy whilst others a conservative bet-hedging strategy. 2.?We explore spatial egg size and fecundity patterns in the freshwater fish southern pygmy perch (Nannoperca australis) that inhabits a diversity of streams along gradients of environmental quality, variability and predictability. 3.?Contrary to some predictions, N.?australis populations inhabiting increasingly harsh streams produced more numerous and smaller eggs. Furthermore, within-female egg size variability increased as environments became more unpredictable. 4.?We argue that in harsh environments or those prone to physical disturbance, sources of mortality are size independent with offspring size having only a minor influence on offspring fitness. Instead, maternal fitness is maximized by producing many small eggs, increasing the likelihood that some offspring will disperse to permanent water. We also provide empirical support for diversified bet-hedging as an adaptive strategy when future environmental quality is uncertain and suggest egg size may be a more appropriate fitness measure in stable environments characterized by size-dependent fitness. These results likely reflect spatial patterns of adaptive plasticity and bet-hedging in response to both predictable and unpredictable environmental variance and highlight the importance of considering both trait averages and variance. 5.?Reproductive life-history traits can vary predictably along environmental gradients. Human activity, such as the hydrological modification of natural flow regimes, alters the form and magnitude of these gradients, and this can have both ecological and evolutionary implications for biota adapted to now non-existent natural environmental heterogeneity.  相似文献   

5.
Animals exist in dynamic environments that may affect both their own fitness and that of their offspring. Maternal effects might allow mothers to prepare their offspring for the environment in which they will be born via several mechanisms, not all of which are well understood. Resource scarcity and forced resource allocation are two scenarios that could affect maternal investment by altering the amount and type of resources available for investment in offspring, albeit in potentially different ways. We tested the hypothesis that maternal dietary restriction and sprint training have different consequences for the offspring phenotype in an oviparous lizard (Anolis carolinensis). To do this, we collected and reared eggs from adult diet-manipulated females (low-diet [LD] or high-diet [HD]) and sprint-trained females (sprint trained [ST] or untrained [UT]) and measured both egg characteristics and hatchling morphology. ST and LD mothers laid both the fewest and heaviest eggs, and ST, UT, and LD eggs also had significantly longer incubation periods than the HD group. Hatchlings from the diet experiment (LD and HD offspring) were the heaviest overall. Furthermore, both body mass of the mother at oviposition and change in maternal body mass over the course of the experiment had significant and sometimes different effects on egg and offspring phenotypes, highlighting the importance of maternal energetic state to the allocation of maternal resources.  相似文献   

6.
Life‐history traits such as fecundity and offspring size are shaped by investment trade‐offs faced by mothers and mediated by environmental conditions. We use a 21‐year time series for three populations of wild sockeye salmon (Oncorhynchus nerka) to test predictions for such trade‐offs and responses to conditions faced by females during migration, and offspring during incubation. In years when their 1100 km upstream migration was challenged by high water discharges, females that reached spawning streams had invested less in gonads by producing smaller but not fewer eggs. These smaller eggs produced lighter juveniles, and this effect was further amplified in years when the incubation water was warm. This latter result suggests that there should be selection for larger eggs to compensate in populations that consistently experience warm incubation temperatures. A comparison among 16 populations, with matching migration and rearing environments but different incubation environments (i.e., separate spawning streams), confirmed this prediction; smaller females produced larger eggs for their size in warmer creeks. Taken together, these results reveal how maternal phenotype and environmental conditions can shape patterns of reproductive investment and consequently juvenile fitness‐related traits within and among populations.  相似文献   

7.
Life history theory predicts that mothers should trade off current and future reproductive attempts to maximize lifetime fitness. When breeding conditions are favourable, mothers may either increase investment in the eggs to improve the quality of the offspring or save resources for future reproduction as the good raising environment is likely to compensate for a 'bad start'. In cooperatively breeding birds, the presence of helpers improves breeding conditions so that mothers may vary the number, size and quality of the eggs in response to the composition of the group. Here, we show that in cooperatively breeding carrion crows Corvus corone corone, where nonbreeding males are more philopatric and more helpful at the nest than females, breeding females decreased egg size as the number of subordinate males in the group increased. However, despite the smaller investment in egg size, fledglings' weight increased in groups with more male subordinates, improving post-fledging survival and indicating that helpers fully compensated for the initial 'bad start'. These results highlight a 'hidden effect' of helpers that bears profound implications for understanding the ultimate function of helping.  相似文献   

8.
How females allocate resources to each offspring and how they allocate the sex of their offspring are two powerful potential avenues by which mothers can affect offspring fitness. Previous research has focussed extensively on mean offspring size, with much less attention given to variance in offspring size. Here we focussed on variation in offspring size in black ratsnakes, Elaphe obsoleta . We collected and hatched 105 clutches (1283 eggs) over 9 years. We predicted that females should lay larger eggs, or more variable eggs, when the environment is less predictable. We also predicted that females laying early or laying larger eggs should produce mostly sons because adult males are larger than adult female ratsnakes. The largest hatchling was more than twice the length and almost four times the mass of the smallest hatchling. Variation in offspring size was itself highly variable, with CVs in offspring mass among clutches ranging from 1% to 25%. With one exception, the variables we expected should influence variation in offspring size had little effect. We found that clutch size increased with maternal size and that egg size decreased with clutch size, but we found no evidence that variance in egg size among clutches increased as the season progressed or that females increased the mean size of their offspring the later in the season they laid their eggs. Females in better condition after they finish laying their eggs did produce larger eggs. There was no relationship between within-clutch variation in egg size and laying date or mean egg size. Finally, sex ratio did not vary with mean egg size or hatching date. Given evidence that offspring size in snakes affects survival, selection should reduce variation in offspring size unless that variance enhances maternal fitness and yet we found little support for hypothesized advantages of varying offspring size.  相似文献   

9.
Reproductive environments are variable and the resources available for reproduction are finite. If reliable cues about the environment exist, mothers can alter offspring phenotype in a way that increases both offspring and maternal fitness (‘anticipatory maternal effects’—AMEs). Strategic use of AMEs is likely to be important in chemically defended species, where the risk of offspring predation may be modulated by maternal investment in offspring toxin level, albeit at some cost to mothers. Whether mothers adjust offspring toxin levels in response to variation in predation risk is, however, unknown, but is likely to be important when assessing the response of chemically defended species to the recent and pervasive changes in the global predator landscape, driven by the spread of invasive species. Using the chemically defended two-spot ladybird, Adalia bipunctata, we investigated reproductive investment, including egg toxin level, under conditions that varied in the degree of simulated offspring predation risk from larval harlequin ladybirds, Harmonia axyridis. H. axyridis is a highly voracious alien invasive species in the UK and a significant intraguild predator of A. bipunctata. Females laid fewer, larger egg clusters, under conditions of simulated predation risk (P+) than when predator cues were absent (P-), but there was no difference in toxin level between the two treatments. Among P- females, when mean cluster size increased there were concomitant increases in both the mass and toxin concentration of eggs, however when P+ females increased cluster size there was no corresponding increase in egg toxin level. We conclude that, in the face of offspring predation risk, females either withheld toxins or were physiologically constrained, leading to a trade-off between cluster size and egg toxin level. Our results provide the first demonstration that the risk of offspring predation by a novel invasive predator can influence maternal investment in toxins within their offspring.  相似文献   

10.
The classic model of Smith and Fretwell predicts that the optimal egg size will vary according to the shape of the relationship between offspring size and offspring fitness, which may vary among environments. Adaptive significance of intrapopulation egg size variation was examined using Ayu (Plecoglossus altivelis). The species has an annual and migratory life history. Fish under controlled rearing conditions become sexually mature with a trend that smaller females produced larger eggs later in the season. Observed egg size variation was explained by the maternal specific growth rate, which was composed of maternal body size and growing period. Hatchlings from larger eggs had a larger notochord length, larger yolk-sac and grew faster. Such offspring traits provide general advantages of increased larval size, which confer competitive ability for assuring early survivorship. In conclusion, egg size plasticity in Ayu suggests higher offspring fitness through enhancement of their accessibility to food.  相似文献   

11.
Reproducing females can allocate energy between the production of eggs or offspring of different size or number, both of which can strongly influence fitness. The physical capacity to store developing offspring imposes constraints on maximum clutch volume, but individual females and populations can trade off whether more or fewer eggs or offspring are produced, and their relative sizes. Harsh environments are likely to select for larger egg or offspring size, and many vertebrate populations compensate for this reproductive investment through an increase in female body size. We report a different trade‐off in a frog endemic to the Tibetan Plateau, Rana kukunoris. Females living at higher altitudes (n = 11 populations, 2000–3500 m) produce larger eggs, but without a concomitant increase in female body size or clutch size. The reduced diel and seasonal activity at high altitudes may impose constraints on the maximum body size of adult frogs, by limiting the opportunity for energy accumulation. Simultaneously, producing larger eggs likely helps to increase the rate of embryonic development, causing tadpoles to hatch earlier. The gelatinous matrix surrounding eggs, more of which is produced by large females, may help buffer developing embryos from temperature fluctuations or offer protection from ultraviolet radiation. High‐altitude frogs on the Tibetan Plateau employ a reproductive strategy that favours large egg size independent of body size, which is unusual in amphibians. The harsh and unpredictable environmental conditions at high altitudes can thus impose strong and opposing selection pressures on adult and embryonic life stages, both of which can simultaneously influence fitness.  相似文献   

12.
Maternal effects can mold progeny phenotypes in various ways and may constitute ecological adaptations. By examining the effect of oviposition sequence on progeny produced by different size classes of female ladybird beetles (produced by controlling larval access to food), we show that maternal signals can change through adult life and alter the developmental programs of progeny, ostensibly to synchronize their life histories with predictable resource dynamics, thus maximizing maternal fitness. We also show that female body size, as determined by larval food supply, interacts with female age to influence progeny fitness. When fed ad libitum as adults, small females reared with limited food access laid fewer, smaller eggs than large females reared with ad libitum food access. Maternal body size interacted with oviposition sequence to influence progeny development, but the latter had greater impact. Eggs laid later by medium and large females hatched faster than those laid earlier, larvae fed longer in the fourth instar, their pupation period was shorter, total developmental time was reduced, and adults emerged with greater mass, most notably daughters. Oviposition sequence effects on progeny from small mothers were non‐significant for total developmental time and progeny mass. Only large mothers increased egg size over time and egg mass was not consistently correlated with developmental parameters, indicating that progeny phenotype was impacted by other, more cryptic, maternal signals. Such signals appear costly, as food limitation during development constrained not only fecundity and egg size but also maternal ability to manipulate progeny phenotype. The production of faster‐developing offspring that mature to larger sizes late in the oviposition cycle may be adaptive for exploitation of ephemeral aphid outbreaks with predictable dynamics of prey abundance and competition.  相似文献   

13.
The adaptive function of trophic egg-laying is generally regarded as extended parental investment to the offspring. However, the evolutionary factors promoting trophic egg-laying are still unclear, because the amount of maternal investment per offspring should be ideally equal between smaller offspring with trophic eggs and larger offspring without any additional investment. Several authors have suggested that trophic egg-laying should evolve only when egg size is constrained, but this hypothesis has not been evaluated. We investigated the evolutionary mechanisms of trophic egg-laying by two different approaches. First, we evaluated morphological constraints on egg size in two sibling ladybird species, Harmonia axyridis, which is known to produce trophic eggs, and H. yedoensis. Second, we theoretically predicted the optimal proportion of trophic eggs to total eggs and egg size in relation to environmental heterogeneity, predictability of environmental quality, and investment efficiency of trophic egg consumption. The intra- and interspecific morphological comparisons suggest that morphological constraints on the evolutionary determination of egg size are weak at best in the two ladybird species. Moreover, we theoretically showed that small egg size and trophic egg-laying are favoured in heterogeneous environments when mothers cannot adjust egg size plastically. We also showed that even a small reduction in investment efficiency makes a trophic egg strategy unlikely, despite relatively high environmental predictability. We conclude that trophic egg provisioning may be a flexible maternal adaptation to a highly heterogeneous environment rather than a response to a morphological constraint on egg size.  相似文献   

14.
Sex allocation theory predicts that females should bias their reproductive investment towards the sex generating the greatest fitness returns. The fitness of male offspring is often more dependent upon maternal investment, and therefore, high‐quality mothers should invest in sons. However, the local resource competition hypothesis postulates that when offspring quality is determined by maternal quality or when nest site and maternal quality are related, high‐quality females should invest in the philopatric sex. Waterfowl – showing male‐biased size dimorphism but female‐biased philopatry – are ideal for differentiating between these alternatives. We utilized molecular sexing methods and high‐resolution maternity tests to study the occurrence and fitness consequences of facultative sex allocation in Barrow's goldeneyes (Bucephala islandica). We determined how female structural size, body condition, nest‐site safety and timing of reproduction affected sex allocation and offspring survival. We found that the overall sex ratio was unbiased, but in line with the local resource competition hypothesis, larger females produced female‐biased broods and their broods survived better than those of smaller females. This bias occurred despite male offspring being larger and tending to have lower post‐hatching survival. The species shows strong female breeding territoriality, so the benefit of inheriting maternal quality by philopatric daughters may exceed the potential mating benefit for sons of high‐quality females.  相似文献   

15.
Maternally inherited bacterial endosymbionts can kill male embryos of their arthropod hosts to enhance the transmission efficiency of the endosymbionts. The resources from killed male eggs can be reallocated to infected female hatchlings as additional maternal investment. As a result, the number of offspring per patch and the maternal investment per offspring are expected to differ from the original optimal values for the host mother. Thus, in response to infection, these trait values should be adjusted to maximize the lifetime reproductive success of host females and the fitness of inherited endosymbionts as well. Here, we examined clutch size, egg size, and the proportion of trophic eggs (i.e., production of unhatched eggs, a maternal phenotype) per clutch of host mothers infected with male-killing bacteria. First, we developed a mathematical model to predict the optimal clutch size and trophic egg proportion in uninfected and infected females. Next, we experimentally compared these life-history traits in a ladybird, Harmonia yedoensis, between females infected or uninfected with male-killing Spiroplasma bacteria. Consistent with our predictions, clutch size was larger, egg size was smaller, and trophic egg proportion was lower in infected H. yedoensis females, compared with uninfected females. To our knowledge, this is the first empirical demonstration of variation in these life-history traits depending on infection with bacterial endosymbionts.  相似文献   

16.
Environmental unpredictability can influence strategies of maternal investment among eggs within a clutch. Models predict that breeding females should adopt a diversified bet-hedging strategy in unpredictable environments, but empirical field evidence from Asia is scarce. Here we tested this hypothesis by exploring spatial patterns in egg size along an altitudinal gradient in a frog species(Rana kukunoris) inhabiting the Tibetan Plateau. Within-clutch variability in egg size increased as the environment became variable(e.g., lower mean monthly temperature and mean monthly rainfall at higher altitudes), and populations in environments with more unpredictable rainfall produced eggs that were smaller and more variable in size. We provide support for a diversified bet-hedging strategy in high-altitude environments, which experience dynamic weather patterns and therefore are of unpredictable environmental quality. This strategy may be an adaptive response to lower environmental quality and higher unpredictable environmental variance. Such a strategy should increase the likelihood of breeding success and maximize maternal lifetime fitness by producing offspring that are adapted to current environmental conditions. We speculate that in high-altitude environments prone to physical disturbance, breeding females are unable to consistently produce the optimal egg size due to physiological constraints imposed by environmental conditions(e.g., duration of the active season, food availability). Species and populations whose breeding strategies are adapted to cope with uncertain environmental conditions by adjusting offspring size and therefore quality show a remarkable degree of ability to cope with future climatic changes.  相似文献   

17.
1. Maternal adult diet and body size influence the fecundity of a female and possibly the quality and the performance of her offspring via egg size or egg quality. In laboratory experiments, negative effects in the offspring generation have often been obscured by optimal rearing conditions.
2. To estimate these effects in the Yellow Dung Fly, Scathophaga stercoraria , how maternal body size and adult nutritional status affected her fecundity, longevity and egg size were first investigated.
3. Second, it was investigated how female age and adult nutritional experience, mediated through the effects of egg size or egg quality, influenced the performance of offspring at different larval densities.
4. Maternal size was less important than maternal adult feeding in increasing reproductive output. Without food restriction, large females had larger clutch sizes and higher oviposition rates, whereas under food restriction this advantage was reversed in favour of small females.
5. Offspring from mothers reared under nutritional stress experienced reduced fitness in terms of egg mortality and survival to adult emergence. If the offspring from low-quality eggs survived, the transmitted maternal food deficiency only affected adult male body size under stressful larval environments.
6. Smaller egg sizes due to maternal age only slightly affected the performance of the offspring under all larval conditions.  相似文献   

18.
Crespi EJ  Lessig H 《Oecologia》2004,138(2):306-311
In the terrestrial salamander (Plethodon cinereus), previous work has shown that mothers body size is positively correlated to offspring size at the time of hatching even after controlling for the effects of egg size. This study was designed to determine whether maternal body size affects offspring size via pre-oviposition factors (e.g., yolk quality, jelly coat composition, or maternal genes) or post-oviposition factors (e.g., parental care behaviors, parental modification of environment). Gravid females were captured and induced to lay eggs in experimental chambers in which the environment was standardized. Fifteen clutches were exchanged, or cross-fostered, between female pairs differing in body size. Ten females whose eggs were taken away and then returned served as controls for the crossing treatment. Foster mothers did not significantly differ from control mothers in the time spent with eggs, body position, or number of egg movements during brooding. Average egg mass measured midway through development was not significantly correlated to the body size of either the genetic or foster mother, but was correlated to pre-oviposition oocyte size. At hatching, offspring body length was positively correlated to egg size and the foster mothers body size. This correlation suggests that in P. cinereus post-oviposition maternal effects have a greater impact on offspring size than other maternal factors incorporated into the egg prior to oviposition. While our study showed that larger mothers moved their eggs less often and tended to spend more time in contact with their eggs, further work needs to be done to identify the specific mechanisms through which larger mothers influence the body size of their offspring. This is the first experimental demonstration of post-oviposition maternal effects for any amphibian with parental care.  相似文献   

19.
Females of some cooperative‐breeding species can decrease their egg investment without costs for their offspring because helpers‐at‐the‐nest compensate for this reduction either by feeding more or by better protecting offspring from predation. We used the southern lapwing (Vanellus chilensis) to evaluate the effects of the presence of helpers on maternal investment. Southern lapwings are cooperative (some breeding pairs are aided by helpers), chick development is precocial, thus adults do not feed the chicks, and adults offer protection from predators through mobbing behaviors. We tested whether southern lapwing females reduced their reproductive investment (i.e. load‐lightening [LL] hypothesis) or increased their investment (i.e. differential allocation hypothesis) when breeding in groups when compared with females that bred in pairs. We found that increased group size was associated with lower egg volume. A significant negative association between the combined egg nutritional investment (yolk, protein, and lipid mass) and group size was observed. Chicks that hatched from eggs laid in nests of groups were also smaller than chicks hatched in nests of pairs. However, there was no relationship between the body mass index of chicks, or clutch size and group size, which suggests that such eggs are, simply, proportionally smaller. Our results support the LL hypothesis even in a situation where adults do not feed the chicks, allowing females to reduce investment in eggs without incurring a cost to their offspring.  相似文献   

20.
Organisms frequently encounter stressful ecological conditions. In vertebrates, a major mechanism of physiological response to stress is mediated by the hypothalamic-pituitary-adrenal axis and results in increased secretion of glucocorticosteroids, which can have adverse consequences on diverse phenotypic traits affecting fitness. Maternal stress may thus have carry-over effects on progeny if it influences pre-natal offspring environment in terms of glucocorticosteroid concentration, although this hypothesis has never been tested in any species under field conditions. We manipulated stress experienced by female barn swallows Hirundo rustica, by exposing them to a predator during laying and measured egg corticosterone concentration. Stressed females laid eggs with greater corticosterone concentration than controls exposed to a herbivore. In another experiment, we injected physiological doses of corticosterone in the egg albumen and compared the phenotype of offspring originating from these eggs with their control siblings originating from either sham-inoculated or unmanipulated eggs and reared in the same nest. Eggs injected with corticosterone had lower hatchability and produced fledglings with smaller body size and slower plumage development than did control eggs. Nestling body size in our study population predicts long-term survival. Thus, maternal stress impaired offspring phenotype and viability by increasing transmission of glucocorticosteroids to the eggs. This study identifies a novel mechanism mediating early maternal effects whereby maternal stress affects offspring quality. These results are relevant to biological conservation because they disclose a mechanism that can link environmental conditions to population productivity and viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号