首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of sea urchin ‘barrens’ on shallow temperate rocky reefs is well documented. However there has been much conjecture about the underlying mechanisms leading to sea urchin barrens, and relatively little experimentation to test these ideas critically. We conducted a series of manipulative experiments to determine whether predation mortality is an important mechanism structuring populations of the sea urchin Heliocidaris erythrogramma in Tasmania. Tethered juvenile and adult sea urchins experienced much higher rates of mortality inside no-take marine reserves where sea urchin predators were abundant compared to adjacent fished areas where predators were fewer. Mortality of tagged (but not tethered) sea urchins was also notably higher in marine reserves than in adjacent areas open to fishing. When a range of sizes of sea urchins was exposed to three sizes of rock lobsters in a caging experiment, juvenile sea urchins were eaten more frequently than larger sea urchins by all sizes of rock lobster, but only the largest rock lobsters (> 120 mm CL) were able to consume large adult sea urchins. Tagging (but not tethering) juvenile and adult sea urchins in two separate marine reserves indicated that adult sea urchins experience higher predation mortality than juveniles, probably because juveniles can shelter in cryptic microhabitat more effectively. In a field experiment in which exposure of sea urchins to rock lobster (Jasus edwardsii) and demersal reef fish predators was manipulated, rock lobsters were shown to be more important than fish as predators of adult sea urchins in a marine reserve. We conclude that predators, and particularly rock lobsters, exert significant predation mortality on H. erythrogramma in Tasmanian marine reserves, and that adult sea urchins are more vulnerable than smaller cryptic individuals. Fishing of rock lobsters is likely to reduce an important component of mortality in H. erythrogramma populations.  相似文献   

2.
Fishing can trigger trophic cascades that alter community structure and dynamics and thus modify ecosystem attributes. We combined ecological data of sea urchin and macroalgal abundance with fishery data of spiny lobster (Panulirus interruptus) landings to evaluate whether: (1) patterns in the abundance and biomass among lobster (predator), sea urchins (grazer), and macroalgae (primary producer) in giant kelp forest communities indicated the presence of top-down control on urchins and macroalgae, and (2) lobster fishing triggers a trophic cascade leading to increased sea urchin densities and decreased macroalgal biomass. Eight years of data from eight rocky subtidal reefs known to support giant kelp forests near Santa Barbara, CA, USA, were analyzed in three-tiered least-squares regression models to evaluate the relationships between: (1) lobster abundance and sea urchin density, and (2) sea urchin density and macroalgal biomass. The models included reef physical structure and water depth. Results revealed a trend towards decreasing urchin density with increasing lobster abundance but little evidence that urchins control the biomass of macroalgae. Urchin density was highly correlated with habitat structure, although not water depth. To evaluate whether fishing triggered a trophic cascade we pooled data across all treatments to examine the extent to which sea urchin density and macroalgal biomass were related to the intensity of lobster fishing (as indicated by the density of traps pulled). We found that, with one exception, sea urchins remained more abundant at heavily fished sites, supporting the idea that fishing for lobsters releases top-down control on urchin grazers. Macroalgal biomass, however, was positively correlated with lobster fishing intensity, which contradicts the trophic cascade model. Collectively, our results suggest that factors other than urchin grazing play a major role in controlling macroalgal biomass in southern California kelp forests, and that lobster fishing does not always catalyze a top-down trophic cascade.  相似文献   

3.
Herbivore outbreaks often trigger catastrophic overgrazing events in marine macrophyte ecosystems. The sea urchin Paracentrotus lividus, the dominant herbivore of shallow Mediterranean seascapes, is capable of precipitating shifts to barrens when its populations explode. Paracentrotus lividus is found ubiquitously in rocky macroalgal communities and in sandy seagrass meadows of Posidonia oceanica, two of the most important subtidal habitats in the Mediterranean. We explored if habitat‐specific regulation across the principal stages of the urchin life cycle could help explain the persistence of these populations in connected mosaics. We measured each of three relevant ecological processes (i.e. settlement, post‐settlement survival and predation) across a wide stretch of the Mediterranean coast (ca 600 km). Our results show that habitat‐specific regulation is critical in determining urchin populations: each habitat limited urchin sub‐populations at different life stages. Settlement was never limiting; urchins settled at similar rates in both habitats across the coast. Post‐settlement survival was a clear bottleneck, particularly in seagrass meadows where no juvenile urchins were recorded. Despite this bottleneck in seagrasses, adult urchin populations were very similar in both seagrass and macroalgal habitats indicating that other processes (potentially migration) could be key in determining adult distributions across the mosaic. The fact that population regulation is clearly habitat‐specific suggests that sea urchin populations may be significantly buffered from bottlenecks in mixed seascapes where both habitats co‐occur. Sea urchin populations can therefore persist across the seascape despite strong habitat‐specific regulation either by maintaining reproductive output in one habitat or by migrating between them. By affording these regulatory escapes to habitat‐modifying species, patchy mosaics may be much more prone to herbivore outbreaks and a host of cascading effects that come in their wake.  相似文献   

4.
Ling SD 《Oecologia》2008,156(4):883-894
Global climate change is predicted to have major negative impacts on biodiversity, particularly if important habitat-modifying species undergo range shifts. The sea urchin Centrostephanus rodgersii (Diadematidae) has recently undergone poleward range expansion to relatively cool, macroalgal dominated rocky reefs of eastern Tasmania (southeast Australia). As in its historic environment, C. rodgersii in the extended range is now found in association with a simplified 'barrens' habitat grazed free of macroalgae. The new and important role of this habitat-modifier on reef structure and associated biodiversity was clearly demonstrated by completely removing C. rodgersii from incipient barrens patches at an eastern Tasmanian site and monitoring the macroalgal response relative to unmanipulated barrens patches. In barrens patches from which C. rodgersii was removed, there was a rapid proliferation of canopy-forming macroalgae (Ecklonia radiata and Phyllospora comosa), and within 24 months the algal community structure had converged with that of adjacent macroalgal beds where C. rodgersii grazing was absent. A notable scarcity of limpets on C. rodgersii barrens in eastern Tasmania (relative to the historic range) likely promotes rapid macroalgal recovery upon removal of the sea urchin. In the recovered macroalgal habitat, faunal composition redeveloped similar to that from adjacent intact macroalgal beds in terms of total numbers of taxa, total individuals and Shannon diversity. In contrast, the faunal community of the barrens habitat is overwhelmingly impoverished. Of 296 individual floral/faunal taxa recorded, only 72 were present within incipient barrens, 253 were present in the recovered patches, and 221 were present within intact macroalgal beds. Grazing activity of C. rodgersii results in an estimated minimum net loss of approximately 150 taxa typically associated with Tasmanian macroalgal beds in this region. Such a disproportionate effect by a single range-expanding species demonstrates that climate change may lead to unexpectedly large impacts on marine biodiversity as key habitat-modifying species undergo range modification.  相似文献   

5.
Changes in assemblages of plants, macroinvertebrates and fishes on three eastern Tasmanian reefs were monitored over 12 months in replicated control blocks and adjacent 10×12-m blocks cleared of fucoid, laminarian and dictyotalean algae. Removal of canopy-forming plants produced less change to biotic assemblages than reported in studies elsewhere, with the magnitude of change for fish and invertebrate taxa lower than variation between sites and comparable to variation between months.The introduced annual kelp Undaria pinnatifida exhibited the only pronounced response to canopy removal amongst algal taxa, with a fivefold increase in cleared blocks compared to control blocks. Marine reserves are suggested to assist reef communities resist invasion by U. pinnatifida, through an indirect mechanism involving increased predation pressure on sea urchins and reduced formation of urchin barrens that are amenable to U. pinnatifida propagation.Large invertebrates were more associated with turfing algae or the reef substratum than the macroalgal canopy. The herbivorous sea urchin Heliocidaris erythrogramma and abalone Haliotis ruber showed the strongest response to clearing amongst common macroinvertebrate species, with a halving of population numbers. Observed densities of the common monacanthid fish Acanthaluteres vittiger also declined by about 50%. The relatively high level of resistance shown by eastern Tasmanian reef biota to patch disturbance was attributed largely to high diversity and biomass of turfing macroalgae damping effects of canopy clearance.  相似文献   

6.
Sarah C. Lee 《Oikos》2006,112(2):442-447
Theoretical and empirical evidence suggest that positive feedbacks can increase resilience in ecological communities. On Caribbean coral reefs, there have been striking shifts from physically complex communities with high coral cover to relatively homogenous communities dominated by macroalgae, which have persisted for decades. However, little is known about positive feedbacks that may maintain coral reef community states. Here, I explore a potential consumer-mediated feedback on a Jamaican reef by examining how grazing by a keystone herbivore ( Diadema antillarum ) is enhanced by physical structure, which offer refugia from predation. Surveys revealed that habitat complexity and Diadema density were positively related. Increasing habitat complexity by adding physical structure significantly decreased macroalgal cover and increased the proportion of urchins in algal habitats in field manipulations. Experimental increases in urchin density also decreased macroalgal cover, but did not affect the proportion of urchins in algal habitats. These results suggest that the low habitat complexity of macroalgal-dominated reefs may inhibit an urchin-mediated shift to coral dominance and that positive feedbacks must be considered in reef restoration efforts.  相似文献   

7.
A pronounced, widespread and persistent regime shift among marine ecosystems is observable on temperate rocky reefs as a result of sea urchin overgrazing. Here, we empirically define regime-shift dynamics for this grazing system which transitions between productive macroalgal beds and impoverished urchin barrens. Catastrophic in nature, urchin overgrazing in a well-studied Australian system demonstrates a discontinuous regime shift, which is of particular management concern as recovery of desirable macroalgal beds requires reducing grazers to well below the initial threshold of overgrazing. Generality of this regime-shift dynamic is explored across 13 rocky reef systems (spanning 11 different regions from both hemispheres) by compiling available survey data (totalling 10 901 quadrats surveyed in situ) plus experimental regime-shift responses (observed during a total of 57 in situ manipulations). The emergent and globally coherent pattern shows urchin grazing to cause a discontinuous ‘catastrophic’ regime shift, with hysteresis effect of approximately one order of magnitude in urchin biomass between critical thresholds of overgrazing and recovery. Different life-history traits appear to create asymmetry in the pace of overgrazing versus recovery. Once shifted, strong feedback mechanisms provide resilience for each alternative state thus defining the catastrophic nature of this regime shift. Importantly, human-derived stressors can act to erode resilience of desirable macroalgal beds while strengthening resilience of urchin barrens, thus exacerbating the risk, spatial extent and irreversibility of an unwanted regime shift for marine ecosystems.  相似文献   

8.
Palinurid lobsters are being exploited with increasing intensity in coral reef ecosystems, but marine protected areas may play a key role in preventing overfishing and local extinctions. In order to define the spatial requirements for protection, we compared the spatial and temporal patterns in distribution, density, biomass, size structure, and reproductive seasonality of Caribbean spiny lobsters Panulirus argus and the congeneric spotted lobsters P. guttatus on coral patch reef, forereef, and deep reef habitat at Glover's Reef, Belize. The relative impact of fishing on P. argus was also examined in an isolated marine reserve and adjacent fished habitats, in comparison with the relatively unfished distribution of P. guttatus. Over a 5-year period, both species co-occurred in all major reef habitats, but aspects of their population dynamics differed markedly due to both habitat and fishing effects. All size classes of spiny lobsters P. argus occupied shallow patch reefs, but large adults were predominant on the deep wall reef. Panulirus guttatus also occupied patch reefs in the lagoon, but spur-and-groove forereef appeared to be the primary habitat of this species. Density and exploitable (adult) biomass of P. argus increased significantly over time in the protected patch reef habitat of the lagoon but remained stable on deep reef habitat. The biomass of spotted lobsters P. guttatus in all habitats was at least an order of magnitude less than that of exploitable P. argus. Reproductive activity by both species was evident most of the year in all habitats, but breeding P. argus females were concentrated on the deep reef. Commercial fisheries for spotted lobsters P. guttatus are currently being considered for development, but data from this and other studies suggest that such a fishery may be relatively unproductive and may lead to rapid localized extinctions. Spiny lobsters P. argus used a variety of coral reef habitats, but spotted lobsters P. guttatus were habitat specialists restricted to shallow reef habitat. The protection needs of both species are similar in one aspect: large protected areas. However, P. argus required large areas with heterogeneous habitats including coral reefs and seagrass beds, whereas P. guttatus required large areas of coral reef habitat.  相似文献   

9.
Predation on urchins by migratory shorebirds was investigated during tidal exposure of the reef flat at Galeta, Panama. Avian predators, primarily ruddy turnstones Arenaria interpres (Linnaeus) reduced the patchiness of Echinometra lucunter (Linnaeus), the most abundant urchin on the reef flat. No mortality of E. lucunter occurred in quadrats protected from avian predation. No mortality occurred when urchin crowding was increased experimentally in protected areas. Stress-induced mortality could not be determined from the condition of tests alone, since turnstones were capable of removing lantern and internal organs without damage to the test. The importance of shorebird predation in reef communities during aerial exposure can be hard to detect because mortality can occur during brief periods, at night, and without damage to urchin tests.  相似文献   

10.
As climate-driven environmental changes and anthropogenic perturbations increasingly affect ecological systems, the number of abrupt phase shifts in ecosystem dynamics is rising, with far-reaching ecological, economic and social effects. These shifts are notoriously difficult to study, anticipate and manage. Although indicators of impending phase shifts in ecosystems have been described theoretically, they have only been observed empirically either after the fact or under controlled experiments. Here we demonstrate the usefulness of case-specific simulation models to estimate tipping points in the dynamics of real ecological systems, characterise how these thresholds may vary depending on local conditions and derive safe management targets associated with low risk of undesirable phase shifts. Under the combined effects of ocean changes and fishing, inshore rocky reefs in eastern Tasmania can transition from dense seaweed beds to sea urchin ‘barrens’ habitat, realising severe local loss of habitat, productivity and valuable fisheries. Using Monte-Carlo simulations with a validated model that realistically captures reef dynamics, we characterise the hysteresis in community dynamics and the variability in ecological thresholds along the gradient of environmental conditions. Simulation suggests that prevention of ongoing sea urchin destructive grazing of macroalgal beds is achievable but the yet-to-be-observed restoration of seaweed beds from extensive sea urchin barrens is highly unlikely. To guide management against undesirable phase shifts, we define target points associated with low risk of widespread barrens formation and show that, along with sea urchin culling, recognising the role of lobsters in mitigating sea urchin destructive grazing through predation is key to maintain reef productivity.  相似文献   

11.
Disease has dramatically reduced populations of the herbivorous urchin Diadema antillarum Philippi on Caribbean reefs, contributing to an increased abundance of macroalgae and reduction of coral cover. Therefore, recovery of D. antillarum populations is critically important, but densities are still low on many reefs. Among the many potential factors limiting these densities, the focus of this study is on predation pressure by fishes. Marine reserves provide opportunities to examine large-scale manipulations of predator–prey interactions and, therefore, D. antillarum densities were compared inside and outside a reserve in The Bahamas (Exuma Cays Land and Sea Park; ECLSP). Urchins and their fish predators were surveyed at nine sites inside and outside the ECLSP. Because of lower fishing effort, the total biomass of urchin predators, weighted by their dietary preferences for urchins, was significantly higher inside the ECLSP. Furthermore, fish community structure was significantly different inside the Park because of the increased biomass of the majority of species. No urchins were seen inside the ECLSP and this was significantly lower than the density of 0.04 urchin m−2 outside the Park. Regression analysis indicated that the relationship between the biomass of urchin predators and the proportion of transects containing urchins was non-linear, suggesting that small increases in fish biomass dramatically reduce urchin abundances. The link between lower density of urchins and higher density of their predators inside the ECLSP is strengthened by discounting five alternative primary mechanisms (variations in macroalgal cover, larval supply, environmental setting, density of other urchin species and abundance of predators not surveyed). Caribbean marine reserves have an important conservation role, but increased fish predation appears to reduce densities of D. antillarum. Urchins currently have limited functional significance on Bahamian reefs, but any future recovery of D. antillarum is likely to be limited in reserves, with potentially important ecological consequences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Echinoids are important in causing disturbance in many marine communities yet little is known of their foraging behaviour in the field. This work investigates the field diet of an echinoid species, Evechinus chloroticus (Valenciennes), in relation to food availability and food preferences. E. chloroticus is a generalist grazer occurring abundantly in a variety of algal and encrusting communities dominated by sponges. In the field, urchins grazed the sponge species according to abundance. In the laboratory, food preferences were demonstrated for two populations of E. chloroticus when presented with 24 species of sponge. One population of urchins came from an intertidal reef where sponges were rarely encountered and the other from a sublittoral habitat where the encrusting community was dominated by sponges. The sponges used as food in the preference experiments came from two different areas: one where urchins were almost absent, the other (from which the second group of urchins were taken) where urchins were abundant and were observed to feed upon sponges. When presented with sponge species unfamiliar to both urchin groups, urchins ranked sponge species similarly. Food preferences did not relate to the diet of the urchins in the field. Reasons for the difference between experimental results and field observations are suggested.  相似文献   

13.
Sea urchin overgrazing has caused widespread phase shifts from kelp forests to “urchin barrens” on many temperate reefs, reducing habitat complexity, productivity, and biodiversity. Sea urchin removal is increasingly used for kelp restoration; however, few studies have quantified the efficiency and effectiveness of different removal methods, resulting in limited understanding of their practicality. In this study, the efficiency (removal rate) and effectiveness (proportion removed) of four removal methods were evaluated in northeastern New Zealand. We compared culling or collecting sea urchins by either SCUBA or freediving in 128 small-scale plots (25 m2). We also evaluated the efficiency and effectiveness of culling in four large (1.6–2 ha) barren areas, scales relevant for restoration. On average, culling sea urchins was 1.9–4.4 times faster than collecting, and SCUBA was 1.5–3.3 times faster than freediving. Removal rates increased with sea urchin density, especially for culling on SCUBA, while freediving removal rates increased with experience. Effectiveness was lower in large-scale removals (86–93% of sea urchins ≥40 mm removed) compared to small-scale removals (98–99%), but sufficient for restoration objectives. Estimated time per area (using SCUBA culling) was similar across large-scale removals (49–57 hours/ha), despite an almost 2-fold variation in initial sea urchin densities (approximately 4–8 urchins/m2), suggesting area may better predict total removal time than simply number of sea urchins across low-density ranges. While sea urchin removal provides a rapid, feasible, and effective approach to restoring kelp in urchin barrens, restoration plans need to also address the causes of sea urchin overpopulation to ensure long-term benefits.  相似文献   

14.
Summary Recurrent outbreaks of disease between 1980 and 1983 caused catastrophic mortality of sea urchins (>260,000 t fresh weight) along 280 km (straight line distance) of the Atlantic coast of Nova Scotia. The complete elimination of sea urchins and concomitant development of fleshy macroalgal communities have occurred along different parts of this coast in different years. Macroalgal communities in areas where sea urchins died off 1, 3 and 4 years previously are compared to existing sea urchin-dominated barren grounds and to a mature kelp bed without sea urchins. Changes in macroalgal cover and species composition, and increases in biomass, density and size of kelp (Laminaria) species, characterize the succession from barren grounds to 3- and 4-year-old kelp beds. The greatest change occurred between one and three years following sea urchin mass mortality. Within 3 years, kelp beds attained a level of biomass (7.6 kg m-2) comparable to that of mature beds. Recovery of sea urchin populations via recruitment of planktonic larvae has been slow and spatially variable. Large-scale reciprocal fluctuations in kelp and sea urchin biomass may characterize the trajectory of a dynamic system which cycles between two alternate community states: kelp beds and sea urchin-dominated barren grounds. Periodic decimation of sea urchin populations by disease may be an important mechanism underlying this cyclicity.  相似文献   

15.
Brenda Konar 《Polar Biology》2001,24(10):754-763
This paper documents seasonal variation in certain sea urchin (Strongylocentrotus polyacanthus) characteristics in habitats of varying environmental conditions. At Shemya Island, Alaska, three habitat types [dense kelp beds, intermediate kelp beds, and algal barrens (low to no foliose algal cover)] were monitored seasonally from September 1995 to August 1996, for live and drift foliose algae. In general, drift algal abundance was greater in areas with more attached kelp, but this varied with season. Along with drift algae, sea urchin density, test size diameter, gonad and nutrition indices, and mobility were seasonally sampled within each habitat. Densities were highest in the algal barrens and lowest in the kelp beds. Seasonally, densities varied between summer/fall, and winter/spring, with lower numbers in the winter/spring. Test size was largest in the kelp habitats when compared to the intermediate or barren sites. Test size was seasonally consistent in the kelp habitats but not in the intermediate or barren sites. Here, test size did vary depending on season (larger urchins were found in winter). The gonad index showed much seasonal variation at the kelp and intermediate kelp sites, but was relatively more stable over time in the barren habitats. Between habitats, gonad and nutrition indices were larger in areas with kelp. Urchin movement varied seasonally between habitats, with more overall movement and variation in barren habitats. These results illustrate the importance of small-scale temporal and spatial variation. Monitoring for 1 year demonstrated that certain parameters varied more in areas of higher foliose algal cover (gonad indices), while other parameters varied more in low kelp areas (test size and movement). These results suggest that studies involving urchins should consider both time of year and overall algal community composition when conducting any type of experimental or monitoring work.  相似文献   

16.
No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.  相似文献   

17.
Consumers and prey diversity, their interactions, and subsequent effects on ecosystem function are important for ecological processes but not well understood in high diversity ecosystems such as coral reefs. Consequently, we tested the potential for diversity-effects with a series of surveys and experiments evaluating the influence of browsing herbivores on macroalgae in Kenya’s fringing reef ecosystem. We surveyed sites and undertook experiments in reefs subject to three levels of human fishing influence: open access fished reefs, small and recently established community-managed marine reserves, and larger, older government-managed marine reserves. Older marine reserves had a greater overall diversity of herbivores and browsers but this was not clearly associated with reduced macroalgal diversity or abundance. Experiments studying succession on hard substrata also found no effects of consumer diversity. Instead, overall browser abundance of either sea urchins or fishes was correlated with declines in macroalgal cover. An exception was that the absence of a key fish browser genus, Naso, which was correlated with the persistence of Sargassum in a marine reserve. Algal selectivity assays showed that macroalgae were consumed at variable rates, a product of strong species-specific feeding and low overlap in the selectivity of browsing fishes. We conclude that the effects of browser and herbivore diversity are less than the influences of key species, whose impacts emerge in different contexts that are influenced by fisheries management. Consequently, identifying key herbivore species and managing to protect them may assist protecting reef functions.  相似文献   

18.
Abstract The sea urchin Centrostephanus rodgersii grazes areas of reef free of large brown algae (the barrens habitat). Survival of the kelp Ecklonia radiata adjacent to patches of barrens habitat was compared to that in the centre of kelp forests (centre) and edges of forests not adjacent to patches of barrens habitat (ungrazed). Estimates of rates of instantaneous mortality for tagged plants, as described by the slope of a negative exponential model (± 95% CI) were: barrens, 0.078 ± 0.004; centre, 0.051 ± 0.004 and ungrazed edge, 0.065 ± 0.007. Survival of plants was greatest in the middle of forests and least on the margins of patches of barrens habitat. A significant proportion of mortality in the barrens and centre positions was caused by herbivorous fish. When these plants were excluded from analysis there were no significant differences in survival between the barrens and ungrazed positions. It is concluded that C. rodgersii has little impact on the abundance of Ecklonia outside sharply defined boundaries.  相似文献   

19.
Although sea urchins are critical for controlling macroalgae on heavily fished coral reefs, high densities threaten reefs, as urchins are also prodigous bioeroders. This study examined urchin population characteristics, bioerosion rates, their fish predators (Labridae), and potential competitors (Scaridae) on unprotected reefs and a reef within a marine protected area (MPA) in the lagoonal regions off Belize. Urchin density (<1 m−2) and bioerosion rates (∼0.2 kg CaCO3 m−2 year−1) were lowest and members of the Labridae were the highest (∼20 fish 200 m−3) within the MPA, while several unprotected reefs had higher (∼18–40 m−2) urchin densities, lower Labridae abundances (1–3 fish 200 m−3), and bioerosion rates ranging from ∼0.3–2.6 kg CaCO3 m−2 year−1. Urchin abundances were inversely related to Labridae (wrasses and hogfish) densities; however, on reef ridges, low algal cover (∼15%), small urchin size (∼14 mm), and low proportion of organic material in urchin guts suggested food limitation. Both top–down (predation) and bottom–up factors (food limitation) likely contribute to the control of urchins, predominantly Echinometra viridis, off Belize, thereby potentially diminishing the negative impacts of bioerosion activities by urchins.  相似文献   

20.
It is well known that predators often influence the foraging behaviour of prey through the so-called “fear effect”. However, it is also possible that predators could change prey behaviour indirectly by altering the prey’s food supply through a trophic cascade. The predator–sea urchin–kelp trophic cascade is widely assumed to be driven by the removal of sea urchins by predators, but changes in sea urchin behaviour in response to predators or increased food availability could also play an important role. We tested whether increased crevice occupancy by herbivorous sea urchins in the presence of abundant predatory fishes and lobsters is a response to the increased risk of predation, or an indirect response to higher kelp abundances. Inside two New Zealand marine reserves with abundant predators and kelp, individuals of the sea urchin Evechinus chloroticus were rarer and remained cryptic (i.e. found in crevices) to larger sizes than on adjacent fished coasts where predators and kelp are rare. In a mesocosm experiment, cryptic behaviour was induced by simulated predation (the addition of crushed conspecifics), but the addition of food in the form of drift kelp did not induce cryptic behaviour. These findings demonstrate that the ‘fear’ of predators is more important than food availability in promoting sea urchin cryptic behaviour and suggest that both density- and behaviourally mediated interactions are important in the predator–sea urchin–kelp trophic cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号