首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A biotransformation process has been developed for the production of (S)-N-(2-ethyl-6-methylphenyl) alanine by enantioselective hydrolysis of racemic methyl ester in the presence of Candida antarctica lipase B (CAL-B). However, the enantioselectivity of CAL-B towards the resolution is not high enough to obtain enantiomerically pure product. In order to improve the enantioselectivity of the enzyme, the effects of surfactants on CAL-B-catalyzed hydrolysis were tested. The results suggest that surfactants can influence the microenvironment of the enzyme, and the addition of Tween-80, in particular, to the reaction medium markedly enhanced the selectivity of CAL-B towards the substrate used, with the enantiomeric ratio (E-value) increasing from 11.3 to 60.1.  相似文献   

2.
Increasing the expression yield of active Candida antarctica lipase B (CAL-B) in Escherichia coli was achieved by using a codon-optimized synthetic gene and by mutagenesis to introduce hydrophilic residues on the surface of CAL-B. Five residues (four leucines and one isoleucine) on the surface of CAL-B were selected and changed with aspartate after codon optimization. While the codon-optimized synthetic gene of CAL-B did not increase the expression yield, the mutation increased the activity of the enzyme three-fold (3.3 mg/l of culture) compared to the wild type. The mutant enzyme had similar hydrolytic activity toward hydrolysis of p-nitrophenyl acetate or p-nitrophenyl butyrate and enantioselectivity toward hydrolysis of (R, S)-1-phenylethyl acetate compared to the wild-type enzyme. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
The enzyme (BSL2), a highly active lipase expressed from newly constructed strain of Bacillus subtilis BSL2, is used in the kinetic resolution of N-(2-ethyl-6-methylphenyl)alanine from the corresponding racemic methyl ester. Reaction conditions are optimized to enhance the enantioselectivity. The effects of various racemic alkyl esters, substrate concentration, operating temperature, pH of the aqueous medium and organic solvents on activity and enantioselectivity of BSL2 for kinetic resolution are also studied. A high enantiomeric ratio (E = 60.7) is reached in diisopropyl ether/water (10%, v/v) and the enantioselectivity is about 22-fold higher than that in pure buffered aqueous solution. The results show that the reaction medium greatly influences BSL2 reaction and its enantioselectivity in the hydrolysis of racemic methyl ester.  相似文献   

4.
A method for the determination of lipase activity in terms of rate and enantioselectivity of hydrolysis of a chiral ester substrate has been developed. When this method was applied to fractions, isolated from preparative, column chromatographic separations (anion-exchange, molecular sieve) of the lipase, significant differences in enantioselectivity (E) was found between the fractions. The highest enantioselectivity was found in the first main peak obtained on DEAE-Sepharose chromatography, meaning that the enzyme with the highest isoelectric point shows the highest esterolytic enantioselectivity.

The experimental results are discussed in the light of some earlier reported results and with respect to the possible existence of subunit aggregates and isoenzymes.  相似文献   

5.
This paper shows that the properties of lipase B from Candida antarctica (CAL-B) may be easily modulated using different hydrophobic supports to immobilize it (octyl and butyl-agarose, octadecyl-Sepabeads or Lewatit). CAL-B could be fully desorbed from the supports by just incubating the biocatalyst with Triton X-100, although the concentration of detergent necessary was to fully desorb the enzyme varied with the support employed (from 1% for butyl-agarose to 4% for octadecyl-Sepabeads), suggesting that in all cases, the main reason for the enzyme immobilization was hydrophobic interactions. Lewatit VP OC 1600 yielded very different results in terms of activity, selectivity or enantioselectivity in the hydrolysis of rac-2-O-butyryl-2-phenylacetic acid (1) and 3-phenylglutaric acid dimethyl diester (3) compared to the other preparations. For example, in the hydrolysis of 1, Novozym 435 preferred the S-isomer (with an E value higher than 100) whereas all the other preparations preferred the R isomer (e.g. octyl-agarose-CAL-B with E value of 50). In the hydrolysis of 3, Novozym 435 gave S-3-phenylglutaric acid methyl ester with an ee higher than 99%, by coupling the first asymmetric hydrolysis to the enantiospecific hydrolysis of the monoester. CAL-B immobilized on Lewatit at low ionic strength not only behaved similarly to Novozym 435, but also presented some differences that should be due to the exact protocol of the enzyme immobilization in Novozym 435.  相似文献   

6.
It has been found that enantioselectivity of lipases is strongly modified when their immobilization is performed by involving different areas of the enzyme surface, by promoting a different degree of multipoint covalent immobilization or by creating different environments surrounding different enzyme areas. Moreover, selectivity of some immobilized enzyme molecules was much more modulated by the experimental conditions than other derivatives. Thus, some immobilized derivatives of Candida rugosa (CRL) and C. antarctica-B (CABL) lipases are hardly enantioselective in the hydrolysis of chiral esters of (R,S)-mandelic acid under standard conditions (pH 7.0 and 25°C) (E<2). However, other derivatives of the same enzymes exhibited a very good enantioselectivity under nonstandard conditions. For example, CRL adsorbed on PEI-coated supports showed a very high enantio-preference towards S-isomer (E=200) at pH 5. On the other hand, CABL adsorbed on octyl-agarose showed an interesting enantio-preference towards the R-isomer (E=25) at pH 5 and 4°C. These biotransformations are catalyzed by isolated lipase molecules acting on fully soluble substrates and in the absence of interfacial activation against external hydrophobic interfaces. Under these conditions, lipase catalysis may be associated to important conformational changes that can be strongly modulated via biocatalyst and biotransformation engineering. In this way, selective biotransformations catalyzed by immobilized lipases in macro-aqueous systems can be easily modulated by designing different immobilized derivatives and reaction conditions.  相似文献   

7.
Purified lipase from Mucor miehei (MML) has been covalently immobilized on different epoxy resins (standard hydrophobic epoxy resins, epoxy-ethylenediamine, epoxy-iminodiacetic acid, epoxy-copper chelates) and adsorbed via interfacial activation on octadecyl-Sepabeads support (fully coated with very hydrophobic octadecyl groups). These immobilized enzyme preparations were used under slightly different conditions (temperature ranging from 4 to 25 °C and pH values from 5 to 7) in the hydrolytic resolution of (R,S)-2-butyroyl-2-phenylacetic acid.

Different catalytic properties (activity, specificity, enantioselectivity) were found depending on the particular support used. For example, the epoxy-iminodiacetic acid-Sepabeads gave the most active preparation at pH 7 while, at pH 5, the ethylenediamine-Sepabeads was superior.

More interestingly, the enantiomeric ratio (E) also depends strongly on the immobilized preparation and the conditions employed. Thus, the octadecyl-MML preparation was the only immobilized enzyme derivative which exhibited enantioselectivity towards R isomer (with E values ranging from 5 at 4 °C and pH 7 to 1.2 at pH 5 and 25 °C).

The other immobilized preparations, in contrast, were S selective. Immobilization on iminodiacetic acid-Sepabeads afforded the catalyst with the highest enantioselectivity (E=59 under optimum conditions).  相似文献   


8.
Microbial isolates from biofilters and petroleum-polluted bioremediation sites were screened for the presence of enantioselective epoxide hydrolases active towards tert-butyl glycidyl ether, benzyl glycidyl ether, and allyl glycidyl ether. Out of 270 isolated strains, which comprised bacteria, yeasts, and filamentous fungi, four were selected based on the enantioselectivities of their epoxide hydrolases determined in biotransformation reactions. The enzyme of Aspergillus niger M200 preferentially hydrolyses (S)-tert-butyl glycidyl ether to (S)-3-tert-butoxy-1,2-propanediol with a relatively high enantioselectivity (the enantiomeric ratio E is about 30 at a reaction temperature of 28 °C). Epoxide hydrolases of Rhodotorula mucilaginosa M002 and Rhodococcus fascians M022 hydrolyse benzyl glycidyl ether with relatively low enantioselectivities, the former reacting predominantly with the (S)-enantiomer, the latter preferring the (R)-enantiomer. Enzymatic hydrolysis of allyl glycidyl ether by Cryptococcus laurentii M001 proceeds with low enantioselectivity (E = 3). (R)-tert-Butyl glycidyl ether with an enantiomeric excess (ee) of over 99%, and (S)-3-tert-butoxy-1,2-propanediol with an ee-value of 86% have been prepared on a gram-scale using whole cells of A. niger M200. An enantiomeric ratio of approximately 100 has been determined under optimised biotransformation conditions with the partially purified epoxide hydrolase from A. niger M200. The regioselectivity of this enzyme was determined to be total for both (S)-tert-butyl glycidyl ether and (R)-tert-butyl glycidyl ether.  相似文献   

9.
Esterase PF1-K from Pseudomonas sp. KTCC 10122BP was overproduced by the fed-batch culture of Escherichia coli. The soluble expression of esterase PF1-K was achieved by shifting the culture temperature from 37 to 25 °C at the time of IPTG induction. The enzyme was partially purified to about 75% purity by a single-step hydrophobic interaction column chromatography. The purified enzyme exhibited a fairly high enantioselectivity towards the hydrolysis of rac-flurbiprofen ethyl ester. The enzymatic chiral resolution was further improved by optimizing the reaction conditions in terms of reaction rate and enantioselectivity. The optimal reaction conditions were found to be 40 °C, pH 10.5 and 600 mM of initial rac-flurbiprofen ethyl ester. After 90 min of batch reaction under the optimal conditions, 50% of the initial rac-flurbiprofen was hydrolyzed with an enantiomeric excess of 99%.  相似文献   

10.
A highly enantioselective (R)-ester hydrolase was partially purified from a newly isolated bacterium, Acinetobacter sp. CGMCC 0789, whose resting cells exhibited a highly enantioselective activity toward the acetate of (4R)-hydroxy-3-methyl-2-(2-propynyl)- cyclopent-2-enone (R-HMPC). The optimum pH and temperature of the partially purified enzyme were 8.0 and 60 °C, respectively. The enantioselectivity of the crude enzyme was increased by 1.2-fold from 16 to 20 when the reaction temperature was raised from 30 to 60 °C. The activity of the crude enzyme was enhanced by 4.1-fold and the enantioselectivity (E-value) was markedly enhanced by 4.3-fold from 16 to 68 upon addition of a cationic detergent, benzethonium chloride [(diisobutyl phenoxyethoxyethyl) dimethyl benzylammoniom chloride]. The hydrolysis of 52 mM (R,S)-HMPC acetate to (R)-HMPC was completed within 8 h, with optical purity of 91.4% eep and conversion of 49%.  相似文献   

11.
The initial rate and enantioselectivity of enzymatic asymmetric hydrolysis of amino acid esters were examined in methylimidazolium-based ionic liquids with anions including tetrafluoroborate, chloride, bromide and bisulfate and in typical organic solvents. Papain displayed much higher enantioselectivity but lower activity in phosphate buffer solution of 1-butyl-3-methylimidazolium tetrafluoroborate BMIM·BF4 than in other media tested (i.e. E=100, V 0=0.21 mM min-1 in BMIM·BF4, E=2, V 0=0.43 mM min-1 in phosphate buffer, E=14-92, V 0=0.22-0.25 mM min-1 in organic solvents for D,L-phenylglycine methyl ester). The influence of BMIM·BF4 on enzyme activity and enantioselectivity also varied with the substrate and the enzyme used. All of the enzymes assayed showed no activity or low enantioselectivity in the ILs with anions including chloride, bromide and bisulfate.  相似文献   

12.
Enzymatic hydrolysis of racemic mixtures may provide an attractive method for the enantiopure production of chiral pharmaceuticals. For example, the carboxylesterase NP of Bacillus subtilis Thai I-8 is an excellent biocatalyst in the kinetic resolution of NSAID esters, such as naproxen and ibuprofen methyl esters. Two homologues of this enzyme were identified when the genome sequence of B. subtilis 168 was revealed in 1997. We characterised one of the homologous, YbfK, as a very enantioselective 1,2-O-isopropylidene-sn-glycerol caprylate esterase, while only modest enantioselectivity towards the naproxen ester was observed. The other homologue, the carboxylesterase NA has not been characterised yet. The purpose of the present study was to fully characterise these three highly homologous esterases with respect to their applicability towards the enantiospecific hydrolysis of a wide range of compounds. The esterase genes were cloned and expressed in B. subtilis using a combination of two strong promotors in a multi-copy vector. After purification of the enzymes from the cytoplasm of B. subtilis, the biochemical and enantioselective properties of the enzymes were determined. Although all carboxylesterases have similar physico-chemical properties, comparison of their specific activities and enantioselectivities towards several compounds revealed rather different substrate specificities. We conclude that carboxylesterase NP and carboxylesterase NA are particularly suited for the enzymatic conversion of naproxen esters, while YbfK offers enantiopure (+)-IPG from its caprylate ester. Given the carboxylesterase activities of the esterases it has been proposed to rename the nap gene of B. subtilis 168 into cesA and the ybfK gene into cesB.  相似文献   

13.
Kinetic resolution of a chiral alcohol, 4-hydroxy-3-methyl-2-(2′-propenyl)-2-cyclopentenone (HMPC), a key intermediate for the production of prallethrin insecticides, was successfully carried out by enantioselective hydrolysis of (RS)-HMPC acetate using calcium alginate gel-entrapped cells of a newly isolated esterase-producing bacterium Acinetobacter sp. CGMCC 0789. When the effect of different cosolvents was investigated, it was found that isopropanol could markedly enhance the activity and enantioselectivity of the immobilized cells. The optimum concentration of isopropanol was 10% (v/v) where immobilized cells still showed good operational stability. After 10 cycles of reaction, no significant decrease in the enzyme activity was observed. The catalytic specificity constants (Vmax/Km) for both enantiomers of the substrate were determined with partially purified enzyme, giving 0.0184 and 0.671 h−1 for the (S)- and (R)-ester, respectively.  相似文献   

14.
环氧化物水解酶可催化外消旋环氧化物的动力学拆分或对映归一性水解制备手性环氧化物或邻二醇,具有广阔的应用前景.为提高宇佐美曲霉环氧化物水解酶 (AuEH2) 催化外消旋对甲基苯基缩水甘油醚 (rac-pMPGE) 的对映体选择率 (E).通过分子动力学模拟 (MD) 选取相互作用频率最高的位点A250替换为其他19种氨基酸;选取对映选择性显著提高的突变体测定其动力学参数 (Kmkcat) 及区域选择性系数 (βS和βR),并利用重组大肠杆菌全细胞拆分rac-pMPGE.突变体AuEH2A250HE值从12.7提高至38.4,重组菌比活力为51.9U/g湿细胞;其水解 (S)-pMPGE的kcat/Km从10.0mmol/(L·s)提高至12.8 mmol/(L·s),而水解 (R)-pMPGE的kcat/Km从1.13mmol/(L·s)降低至0.35mmol/(L·s);全细胞拆分20mmol/L rac-pMPGE获得 (R)-pMPGE的ees为>99%,产率从33.0% 提高至40.7%.A250位点的突变对AuEH2的对映选择性和酶活力具有显著影响;高对映选择性的AuEH2突变体在制备高光学纯的 (R)-pMPGE中具有应用潜力.  相似文献   

15.
Selective lipase-catalyzed synthesis of glucose fatty acid esters in two-phase systems consisting of an ionic liquid (1-butyl-3-methyl imidazolium tetrafluoroborate [BMIM][BF4] or 1-butyl-3-methyl imidazolium hexafluorophosphate [BMIM][PF6]) and t-butanol as organic solvent was investigated. The best enzyme was commercially available lipase B from Candida antarctica (CAL-B), but also lipase from Thermomyces lanuginosa (TLL) gave good conversion. After thorough optimization of several reaction conditions (chain-length and type of acyl donor, temperature, reaction time, percentage of co-solvent) conversions up to 60% could be achieved using fatty acid vinyl ester as acyl donors in [BMIM][PF6] in the presence of 40% t-BuOH with CAL-B at 60 °C.  相似文献   

16.
Cross-linked enzyme aggregates (CLEAs) are prepared by precipitation of an enzyme and then chemical cross-linking the precipitate. Three CLEAs of lipase with glutaraldehyde concentrations of 10 mM (CLEA A), 40 mM (CLEA B) and 60 mM (CLEA C) were prepared. Studies show that there is a trade-off between thermal stability vs transesterification/hydrolysis rate vs enantioselectivity. The initial rates for transesterification of β-citronellol for the uncross-linked enzyme and CLEAs A, B and C were 243, 167, 102 and 40 µmol mg-1 h-1, respectively. Their thermal stabilities in aqueous media, as reflected by their half-life values at 55°C, were 6, 9, 13 and 16 h, respectively. The enantioselectivity, E values (for kinetic resolution of β-citronellol by transesterification) were 19, 74, 11 and 6, respectively. These results show that CLEA C was the most thermostable; the uncross-linked enzyme was best at obtaining the highest transesterification rate; and CLEA A was best suited for the enantioselective synthesis. Scanning electron microscopy (SEM) showed that the morphology of CLEA was dependent upon the extent of cross-linking.  相似文献   

17.
Candida antarctica lipase fraction B (CAL-B) showed substrate specificity in the synthesis of esters in hexane involving reactions of short-chain acids having linear (acetic and butyric acids) and branched chain (isovaleric acid) structures, an unsaturated (tiglic acid) fatty acid, and phenylacetic acid with n-butanol and geraniol. The variation in the conversion to the esters was ca. 10%. Similar results were observed in a study of the alcohol specificity of the enzyme for esterification of acetic and butyric acids with four alcohols: n-butyl, isopentyl, 2-phenylethyl, and geraniol. Enantioselectivity of CAL-B in hexane with a range of chiral -substituted or -substituted carboxylic acids and n-butyl alcohol was analyzed. The results show that CAL-B can be employed as a robust biocatalyst in esterification reactions due to the high conversions obtained in the synthesis of short-chain flavor esters in an organic solvent, although this enzyme exhibited modest enantioselectivity with chiral short-chain carboxylic acids.  相似文献   

18.
Rhodococcus rhodochrous IFO 15564 enantioselectively hydrolysed racemic 3-benzoyloxypentanenitrile and 3-benzoyloxypentanamide to afford (R)-amide and (S)-car☐ylic acid with high enantiomeric excess (> 90%). In this reaction, both enantiomers of the starting nitrile were converted to the amide by nitrile hydratase, and amidase-catalysed enantioselective hydrolysis of the amide was responsible for the kinetic resolution. The lack of enantioselectivity of the nittile hydratase toward the racemic nitrile forms a marked contrast to the case of previously reported highly enantioselective conversion of prochiral 3-benzoyloxypentanedinitrile by this enzyme. since (R)-amide could be hydrolysed chemically to (R)-car☐ylic acid without any loss of its ee, the present microbial kinetic resolution serves as an effective method for preparing both enantiomers of synthetically useful 3-hydroxypentanoic acid derivatives.  相似文献   

19.
Several racemic β- and γ-thiolactones were synthesized and kinetic resolutions of them were executed using lipases. While a lipase from Pseudomonas cepacia (PCL) showed the highest enantioselectivity for (S)-form (>99% eeS at 53% conversion, E > 100) in the kinetic resolution of racemic -methyl-β-propiothiolactone (rac-MPTL), it showed no hydrolysis activity in the kinetic resolution of -benzyl--methyl-β-propiothiolactone (rac-BMPTL), suggesting that the changes in the size of alkyl group from rac-MPTL to rac-BMPTL leads to lower hydrolysis activity and enantioselectivity. In contrast, racemic γ-butyrothiolactones were hydrolyzed by several lipases with low enantioselectivity, whereas a lipase from Candida antarctica (CAL) showed moderate enantioselectivity for (S)-form (>99% eeS at 76% conversion, E = 11) in the kinetic resolution of racemic -methyl-γ-butyrothiolactone (rac-MBTL). Computer-aided molecular modeling was also performed to investigate the enantioselectivites and activities of PCL toward β-propiothiolactones. The computer modeling results suggest that the alkyl side chains of β-propiothiolactones and γ-butyrothiolactones interact with amino acid residues around hydrophobic crevice, which affects the activity of PCL.  相似文献   

20.
The resolution of 1,2-O-isopropylidene glycerol via enzyme catalyzed hydrolysis of the corresponding benzoic ester was investigated. Using lipase PS from Pseudomonas cepacia, we determined the influence of organic co-solvents on the activity and enantioselectivity of the enzyme. The performance of the lipase was correlated to the nature (logP, ε,μ and the percentage of the organic media. The highest enzymatic activity was found in solvents completely miscible or completely immiscible in water. The enzyme stereoselectivity was inversely related to the logP of the solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号