首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentration and composition of gangliosides and neutral glycosphingolipids of adult human lung, and lung small cell carcinoma were studied. The structures of the glycolipids were determined by quantitative component determination, enzymic degradation, permethylation and fast atom bombardment mass spectrometry. Adult human lung contained mainly gangliosides with lactosylceramide as the basic core, GM3, GD3 and GT3, and approx. equal proportions (10%) of gangliosides of the gangliotetraosyl- and lactotetraosylceramide series. 18 gangliosides with different carbohydrate moieties were identified: four of them were only found in the tumor tissue. The adult human lung contained 85 nmol (77-120) gangliosides and 140 nmol neutral glycosphingolipids per g wet weight. Globoside was the major neutral glycolipid and there were only minor amounts of glycolipids of the lactotetraose series. In small cell carcinoma tissue the concentration of neutral glycosphingolipids was approximately twice as high than in normal lung tissue, and there was a markedly larger concentration of both lactosylceramide and glycolipids of the lactotetraose series and fucose derivatives of these. The concentration of gangliosides varied between 202 and 415 nmol per g wet weight. Compared to normal lung tissue, the tumor tissue had a lower proportion of GD3, and a higher proportion of complex gangliosides, and they contained five tumor-associated gangliosides: Fuc-GM1, Fuc-GD1b, 3'-LM1, Fuc-3'-LM1 and 6'-nLM1.  相似文献   

2.
Glycosphingolipids of human aorta   总被引:1,自引:0,他引:1  
The structures of the main gangliosides of human aorta (intima and media) were elucidated. The main component (67%) was identified as N-acetylneuraminosyl-lactosylceramide (ganglioside GM3). The aorta tissue contained also gangliosides GM1, GD3, GD1a, and GT1. All sialic acid residues in gangliosides were present as N-acetyl-neuraminosyl derivatives. Among neutral glycosphingolipids of human aorta, the main components were identified as glucosylceramide, lactosylceramide, globotriaosylceramide and globotetraosylceramide. The preliminary data suggest that the composition of the investigated glycosphingolipids in tissue might vary upon atherosclerosis lesions of aorta.  相似文献   

3.
Neutral glycosphingolipids and gangliosides were extracted from pig cortical bone and cartilage. To ensure the completeness of extraction, the cortical bone was demineralized and reextracted. Globotriaosylceramide and globoside were noted to be present at high content in the cortical bone. It contained glucosylceramide, lactosylceramide, globotriaosylceramide and globoside as neutral glycosphingolipids at a ratio of 1:0.7:3.1:2.7. In articular cartilage, the ratio was 1:0.7:0.4:0.8. GM3 and GD3 were the major gangliosides in both these tissues. GM3, GM1, GD3, GD1 and GT1 were present at ratios of 1:0.9:0.9:0.1:0.1 in the cortical bone and 1:0:1.2:0.06:0.02 in the cartilage. Neutral glycosphingolipids could be extracted from the cortical bone without the need for demineralization, while most of the gangliosides were extracted after this treatment, implying the occurrence of interactions between gangliosides and minerals in the bone.  相似文献   

4.
The composition, structure and localization of neutral glycosphingolipids of human aorta taken from subjects who had died after myocardial infarction were studied. Individual glycosphingolipids were purified by high-performance liquid chromatography and were characterized on the basis of their chromatographic mobility, carbohydrate composition, methylation analysis and by 1H-NMR spectroscopy. The main aortic glycosphingolipids were identified as glucosylceramide, lactosylceramide, globotriaosylceramide and globotetraosylceramide. Significant differences in the neutral glycosphingolipid composition of intima and media were detected. The neutral glycosphingolipid profile of medial plaques resembled that of unaffected media; however, significant differences were detected between intimal plaques and unaffected intima. Whereas the latter contained trihexosylceramide and globoside as the only neutral glycolipids, the intimal plaque glycolipids consisted mainly of glucosylceramide and also contained appreciable amounts of lactosylceramide which were completely absent in the unaffected intima. In comparison to intimal plaques, unaffected intima is characterized by a much higher content of cerebrosides terminating by beta-galactosyl residues which are known to interact with growth factors and other external stimuli. It thus seems possible that the proliferative activity of smooth muscle cells in atherosclerotic diseases is to some extent associated with their neutral glycolipid profile.  相似文献   

5.
Ganglioside sialic acid content was examined in the U87-MG human glioma grown as cultured cells and as a xenograft in severe combined immunodeficiency (SCID) mice. The cultured cells and the xenograft possessed N-glycolylneuraminic acid (NeuGc)-containing gangliosides, despite the inability of human cells to synthesize NeuGc. Human cells express only N-acetylneuraminic acid (NeuAc)-containing gangliosides, whereas mouse cells express both NeuAc- and NeuGc-containing gangliosides. Small amounts of NeuGc ganglioside sialic acid (2-3% of total ganglioside sialic acid) were detected in the cultured cells, whereas large amounts (66% of total ganglioside sialic acid) were detected in the xenograft. The NeuGc in gangliosides of the cultured cells was derived from gangliosides in the fetal bovine serum of the culture medium, whereas that in the U87-MG xenograft was derived from gangliosides of the SCID host. The chromatographic distribution of U87-MG gangliosides differed markedly between the in vitro and in vivo growth environments. The neutral glycosphingolipids in the U87-MG cells consisted largely of glucosylceramide, galactosylceramide, and lactosylceramide, and their distribution also differed in the two growth environments. Asialo-GM1 (Gg4Cer) was not present in the cultured tumor cells but was expressed in the xenograft, suggesting an origin from infiltrating cells (macrophages) from the SCID host. The infiltration of mouse host cells and the expression of mouse sialic acid on human tumor cell glycoconjugates may alter the biochemical and immunogenic properties of xenografts.  相似文献   

6.
GLYCOSPHINGOLIPIDS IN FETAL TAY-SACHS DISEASE BRAIN AND LUNG CULTURES   总被引:2,自引:1,他引:1  
Abstract— A study was undertaken of the glycosphingolipids in cell cultures derived from cerebellum of Tay-Sachs disease fetal brain in order to determine the suitability of such cell strains as a model for Tay-Sachs disease. The glycosphingolipids in the Tay-Sachs disease cultured cerebellar cells were compared with those found in normal cultured cerebellar cells, normal and Tay-Sachs cultured lung cells, and normal and Tay-Sachs fetal brain. The glycolipids were separated by TLC, then analyzed by GLC of the trimethylsilyi derivatives of the methylglycosides of the sugar moieties. In the cultured cerebellar lines, the predominant gangliosides were GM2, GM3, and GD3. There was a 4-fold increase of GM2 in the Tay-Sachs as compared with the normal line. Only GM3 and GD3 gangliosides were found in the Tay-Sachs and the normal fetal lung cell cultures. The major neutral glycosphingolipids in all of the cultured cells which were analyzed were glucosylceramide, lactosylceramide, digalactosyl-glucosylceramide, and globoside. When the Tay-Sachs cerebellar cells were labelled with [1-14C]gluco-samine, some radioactivity was observed in the trihexosylceramide band, indicating the presence of a small amount of a galactosamine-containing trihexosylceramide which may be asialo-GM2 (GA2). The trihexosylceramide in Tay-Sachs fetal brain was identified as GA2 by GLC. Both Tay-Sachs and normal fetal brain gangliosides were more complex than those found in the cultured cells. Long chain fatty acids (C24:0 and C24;1) predominated in all of the glycosphingolipids of the Tay-Sachs and the normal cultured cerebellar cells. In contrast, the glycosphingolipids of Tay-Sachs and normal fetal brain contained mainly the shorter chain fatty acids (C16:0, C18:0, and C18:1). The cerebrosides in both the Tay-Sachs and normal fetal brains were mainly glucosylceramide with only small amounts of the galactosylceramide which predominates in infant brain. Cultured cells from the fetal Tay-Sachs disease  相似文献   

7.
M Saito  M Saito  A Rosenberg 《Biochemistry》1985,24(12):3054-3059
We have reported [Saito, M., Saito, M., & Rosenberg, A. (1984) Biochemistry 23, 1043-1046] that the monovalent cationic ionophore monensin reduced the incorporation of labeled galactose into oligosaccharidyl glycosphingolipids (globotriaosylceramide, globotetraosylceramide, and gangliosides) and induced a cellular accumulation of glucosyl- and lactosylceramide in cultured diploid human fibroblasts. We have undertaken further studies on the effects of monensin and made comparison with the effects of related monovalent cation transporters on plasma membrane glycosphingolipid anabolism in human fibroblasts. Our results demonstrate that ionic flux can markedly influence glycosphingolipid synthesis, and they indicate that, like glycoprotein, the sites of glycosylation of the initial, precursor glycosphingolipids are different from the sites of higher glycosylation. At a concentration of 10(-7) M, monensin induced the maximum inhibition of incorporation of labeled galactose into polyglycosyl sphingolipids: globotriaosylceramide, globotetraosylceramide, and gangliosides; increased incorporation of labeled galactose into glucosyl- and lactosylceramide was clearly evident, and their content rose measurably in the cell at concentrations of monensin as low as 10(-8) M. These effects of monensin were reversible. Incorporation of labeled galactose into higher glycosylated neutral glycosphingolipids and gangliosides slowly resumed, and the accumulated glycosylceramide diminished after removal of monensin from the culture medium. Ouabain (plasma membrane Na+,K+-ATPase inhibitor) and A23187 (Ca2+ ionophore) also caused a rapid increase in incorporation of labeled hexose into glucosylceramide and decreased its incorporation into higher neutral glycosphingolipids and into gangliosides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In view of the increasing evidence that gangliosides in membrane microdomains or rafts are closely associated with various signal transducing molecules including Src family kinases, we compared rafts in two subclones of 3LL mouse lung carcinoma cell line, J18 and J5, characterized by high and very low GM3 ganglioside contents, respectively. Rafts were isolated from cell lysates as low density detergent-insoluble microdomains (DIM) by sucrose density gradient centrifugation. J5 and J18 cells expressed comparable amounts of Src family kinases and the majority of Src kinases in both clones were concentrated in their DIMs, suggesting that GM3 is not necessary for DIM localization of Src kinases and there is no direct interaction between Src and GM3. However, the Src kinases were eliminated from DIMs after depletion of the major neutral GSLs of J5 cells, glucosylceramide and lactosylceramide, by an inhibitor of glucosylceramide synthase (D-PDMP), indicating that GSLs in general are required for Src kinase association to DIM. J5 and the D-PDMP-treated J5 cells had very similar DIM protein profiles and moreover cholesterol and sphingomyelin in the GSL-depleted cells were enriched in DIM similar to the untreated control cells. Interestingly, the levels of tyrosine-phosphorylated DIM proteins and cell proliferation of J5 cells were much lower than those of J18 cells, suggesting that GM3 might be involved in tyrosine phosphorylation of DIM proteins required for cell growth. Thus, our data suggest that GSLs are essential for functional raft formation.  相似文献   

9.
Prior studies have demonstrated that sex hormones can influence the glycosphingolipid composition of different organs, including small intestine. However, to date, the effects of testosterone on glycosphingolipids of rat small intestinal mucosa have not been examined. Experiments were conducted to examine the effect of subcutaneous administration of synthetic testosterone (500 micrograms/100 g body wt.) on the gangliosides and neutral glycosphingolipids of rat small intestinal mucosa. Their results demonstrated that testosterone administrations: (i) increased the ganglioside content including hematoside (GM3); (ii) increased the total content of neutral glycosphingolipids, which was due to the increases in glucosylceramide and globotriaosylceramide; (iii) increased the activities of cytidine 5'-monophosphate-N-acetylneuraminic acid: lactosylceramide sialyltransferase, and UDPgalactose: lactosylceramide galactosyltransferase; (iv) increased the percentage of the long chain base phytosphingosine in hematoside, glucosyl-, and globotriaosylceramide; and (v) significantly altered the fatty acid composition of each of these glycosphingolipids. These results demonstrate that administration of testosterone induces alterations in glycosphingolipid composition and glycosyltransferases activities in rat small intestinal mucosa.  相似文献   

10.
The effects of exogenously added glycosphingolipids on the differentiation of mouse myeloid leukemia cells (M1-T22) have been studied. Eight gangliosides and ten neutral glycosphingolipids were tested in terms of their induction of phagocytic activities on the leukemia cells. N-Acetyl-neuraminosyllactosylceramide (NAc-GM3) was the most effective glycolipid for inducing the activity. By the addition of 25 micrograms/ml of NAc-GM3, about 70 percent of the cells acquired phagocytic activity within 20 h incubation. GM1a showed about half the activity of the GM3. In the case of the neutral glycosphingolipids, lactosylceramide (CDH) and globotriaosylceramide (CTH) showed significant effects on the induction of phagocytic activity. Preincubation of the cells with the NAc-GM3 enhanced the effect of dexamethasone as a differentiation inducer on M1-T22 cells. When a human promyelocytic leukemia cell line, HL-60, was preincubated with the NAc-GM3 ganglioside, induction of the phagocytic activity, together with inhibition of the cell growth by phorbol ester (TPA), were markedly enhanced. From these observations, the NAc-GM3 ganglioside seems to act as a modulator of differentiation of mouse myeloid leukemia cells and also of HL-60 cells.  相似文献   

11.
Glycolipid compositions of three mouse myeloid leukemia cell clones, two that are sensitive to differentiation inducers (M1-T22 and M1-S1) and one that is differentiation-resistant (M1-R1), have been compared. The T22 and S1 clones contained glucosylceramide (GlcCer), lactosylceramide (LacCer) and gangliotriaosylceramide (Gg3Cer) as the major neutral glycolipids. The differentiation resistant clone, R1, was characterized by the appearance of globotriaosylceramide (Gb3Cer) and a decrease of Gg3Cer. There was a distinct difference in the ganglioside profile between the differentiation-inducible and -resistant clones: T22 and S1 cells contained no detectable amounts of ganglioside, whereas six different gangliosides were detected in the R1 clone. These gangliosides were isolated and identified as GM3, GM2, GM1a, GD1a, GM1b, and a unique disialoganglioside, GD1 alpha, having the following structure: (formula; see text) Based on these comparative studies, the relationship between the glycolipid composition and the differentiation potential of leukemia cells is discussed.  相似文献   

12.
Soluble gangliosides in cultured neurotumor cells   总被引:3,自引:3,他引:0  
Abstract: The biosynthesis and degradation of glycosphingolipids were studied in cytosolic and membrane fractions obtained from rat glioma C6 cells. Both pools had a similar composition of neutral glycosphingolipids but the soluble pool contained only a few percent of the total. The major ganglioside in C6 cells was GM3, of which only 2% was soluble. Whereas the bulk of the membrane GM3 was accessible to surface labeling procedures, the soluble GM3 was not. Mouse neuroblastoma N18 cells also contained small amounts of cytoplasmic gangliosides corresponding to GM3, GM2, GM1, and GDla. When C6 cells were incubated with medium containing [3H]galactose at 37°C, the specific activity of soluble GM3 initially increased more rapidly than that of membrane GM3; by 4 h, the specific activities in both pools became equal. Total incorporation into the membrane pool, however, was always several-fold greater even at the shortest incubation times examined. The labeling pattern of neutral glycosphingolipids in both soluble and membrane fractions indicated the existence of a precursor-product relationship between glucosylceramide and other glycosphingolipids. When labeled cells were transferred to nonradioactive medium, glucosylceramide disappeared the most rapidly, with a 50% loss within <6 h. The turnover rates of other glycosphingolipids were much slower. Although cytosolic GM3 was degraded more rapidly (t1/2= 26 h) than membrane-bound GM3 (t1/2= 44 h), its turnover rate was much slower than the time required for transport of GM3 to the cell surface (20–30 min). Our results are consistent with the existence of a small intracellular pool of soluble gangliosides and neutral glycosphingolipids that is stable and independent of the main membrane-bound pool. Although the role of these cytosolic glycolipids is unknown, they do not appear to represent a transport pool between the site of synthesis and the plasma membrane.  相似文献   

13.
The neutral sphingolipids and gangliosides were isolated from 62- and 63-day-old chicken livers and characterized. The total concentration of neutral sphingolipids was 59 nmol/g of liver, and that of gangliosides was 330 nmol/g of liver. The major neutral sphingolipids were free ceramide, galactosylceramide, glucosylceramide, lactosylceramide, galabiosylceramide, and Forssman glycolipid. Galactosylceramide was the most abundant and free ceramide was the second most abundant. The major gangliosides were sialosylgalactosylceramide (GM4) and sialosyllactosylceramide (GM3), each of which contained only N-acetylneuraminic acid as a sialic acid. Sphingosine (d18:1) was a major long-chain base in all the sphingolipids. Considerable amounts of 2-hydroxy fatty acids were present in free ceramide, galactosylceramide, and GM4.  相似文献   

14.
Modulation of Ganglioside Biosynthesis in Primary Cultured Neurons   总被引:11,自引:4,他引:7  
Murine cerebellar cells were pulse labeled with [14C]galactose, and the incorporation of radioactivity into gangliosides and neutral glycosphingolipids was examined under different experimental conditions. In the presence of drugs affecting intracellular membrane flow, as well as at 15 degrees C, labeled GlcCer was found to accumulate in the cells, whereas the labeling of higher glycosphingolipids and gangliosides was reduced. Monensin and modulators of the cytoskeleton effectively blocked biosynthesis of the complex gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, whereas incorporation of radioactivity into neutral glycosphingolipids, such as glucosylceramide and lactosylceramide, as well as GM3, GM2, and GD3 was either increased or unaltered. As monensin has been reported to interfere with the flow of molecules from the cis to the trans stacks of the Golgi apparatus, this result highlights at least one subcompartmentalization of ganglioside biosynthesis within the Golgi system. Inhibitors of energy metabolism affected, predominantly, the biosynthesis of the b-series gangliosides, whereas a reduced temperature (15 degrees C) more effectively blocked incorporation of radiolabel into the a-series gangliosides, a result suggesting the importance of GM3, as the principal branching point, for the regulation of ganglioside biosynthesis.  相似文献   

15.
Several components of milk fat globule membranes (MFGMs) have been reported to display beneficial health properties and some of them have been implicated in the defense of newborns against pathogens. These observations prompted us to determine the glycosphingolipid content of MFGMs and their interaction with pathogens. A comparative study with whole milk components was also carried out. Milk fat globules and MFGMs were isolated from milk. Gangliosides and neutral glycosphingolipids were obtained from MFGMs and whole milk and their fatty acid contents were determined by gas chromatography-mass spectrometry (GC-MS). MFGMs and whole milk showed similar ganglioside and neutral glycosphingolipid contents, with whole milk having more GM3 and glucosylceramide and less GD3, O-acetyl GD3, O-acetyl GT3, and lactosylceramide. The fatty acid content of gangliosides from both sources showed a similar composition. However, the neutral glycosphingolipid fatty acid content seemed to be quite different. Whole milk had fewer very-long-chain fatty acids (18.1% vs. 46.4% in MFGMs) and more medium-chain and unsaturated C18:1 and C18:2 fatty acids. Milk fat globules, MFGMs, lactosylceramide, and gangliosides GM3 and GD3 were observed to bind enterotoxigenic Escherichia coli strains. Furthermore, bacterial hemagglutination was inhibited by MFGMs and glycosphingolipids.  相似文献   

16.
The synthesis and intracellular expression of glycosphingolipids by mouse serosal mast cells (SMC) have been characterized by radiolabeling and TLC and by immunodetection in situ. Chromatographic analysis of purified glycosphingolipids from SMC intrinsically labeled with [14C]galactose and [14C]glucosamine hydrochloride revealed the predominant synthesis of only the simplest neutral glycosphingolipid and ganglioside, glucosylceramide and ganglioside GM3, respectively. Intracellular indirect immunofluorescence staining of permeabilized SMC demonstrated the absence of the more complex neutral glycosphingolipids lactosylceramide, globotriosylceramide, globotetraosylceramide, and globopentaosylceramide, the absence of ganglioside GM1, and the presence of ganglioside GM3. By contrast, permeabilized mouse IL-3-dependent bone marrow culture-derived mast cells (BMMC) and mast cells recovered after 21 days of coculture of BMMC with mouse 3T3 fibroblasts expressed lactosylceramide, globotriosylceramide, globotetraosylceramide, ganglioside GM1, and ganglioside GM3, but not globopentaosylceramide intracellularly as determined by immunofluorescence. The findings indicate a loss of biosynthetic capacity and epitope maintenance for glycosphingolipids with in vivo differentiation of SMC from IL-3-dependent BMMC progenitors. Thus, although mast cells derived after coculture of these progenitors for 21 days with fibroblasts assume multiple SMC-like properties in terms of their histochemical staining and their secretory granule proteoglycan and neutral protease constituents, they do not lose the ability to express complex glycosphingolipids. The finding that glycosphingolipid composition does not change coordinately with other secretory granule markers defines a new stage of mouse mast cell development between the BMMC and SMC and provides evidence that mast cell development is more complex than previously appreciated.  相似文献   

17.
Glycosphingolipid composition of human semen   总被引:3,自引:0,他引:3  
Glycosphingolipids were extracted from human semen and purified. Based on the fluorometric assay of sphingosine, in spermatozoa a content of 4.4 +/- 0.9 nmol/10(8) cells of gangliosides and 22.1 +/- 1.7 nmol/10(8) cells of neutral glycosphingolipids was determined. Seminal plasma contained 4.1 +/- 0.6 nmol gangliosides and 29.3 +/- 1.5 nmol neutral glycosphingolipids per milliliter. The glycosphingolipid component patterns of human spermatozoa and seminal plasma were determined by thin-layer chromatography. Four neutral glycolipids were isolated and their carbohydrate moieties were characterized. All of these glycolipid components belonged to the globo-series. Gas chromatography, combined gas chromatography/mass fragmentography, and exoglycosidase treatments revealed the following structures for the glycosphingolipids of human semen: Glc1-Cer, Gal beta 1-4Glc1-Cer, Gal alpha 1-4Gal beta 1-4Glc1-Cer, and Gal-NAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc1-Cer. In addition, the occurrence of trace amounts of lactoneotetraosyl- and lactoneohexaosylceramide was detected by immunostaining after thin-layer chromatographic separation. Human spermatozoa, as well as seminal plasma, contained the gangliosides Glac1,Glac2, a sialolactoneotetraosylceramide, and a sialolactoneohexaosylceramide. The gangliosides were identified on the basis of their running characteristics by high-performance thin-layer chromatography, exoglycosidase treatment, and immunostaining after thin-layer chromatography. The ceramide composition of the glycolipids in human spermatozoa, as well as in seminal plasma, was dominated by C22:0-behenic acid and the saturated sphingoid d18:0, sphinganine.  相似文献   

18.
In view of the increasing evidence that gangliosides in membrane microdomains or rafts are closely associated with various signal transducing molecules including Src family kinases, we compared rafts in two subclones of 3LL mouse lung carcinoma cell line, J18 and J5, characterized by high and very low GM3 ganglioside contents, respectively. Rafts were isolated from cell lysates as low density detergent-insoluble microdomains (DIM) by sucrose density gradient centrifugation. J5 and J18 cells expressed comparable amounts of Src family kinases and the majority of Src kinases in both clones were concentrated in their DIMs, suggesting that GM3 is not necessary for DIM localization of Src kinases and there is no direct interaction between Src and GM3. However, the Src kinases were eliminated from DIMs after depletion of the major neutral GSLs of J5 cells, glucosylceramide and lactosylceramide, by an inhibitor of glucosylceramide synthase (D-PDMP), indicating that GSLs in general are required for Src kinase association to DIM. J5 and the D-PDMP-treated J5 cells had very similar DIM protein profiles and moreover cholesterol and sphingomyelin in the GSL-depleted cells were enriched in DIM similar to the untreated control cells. Interestingly, the levels of tyrosine-phosphorylated DIM proteins and cell proliferation of J5 cells were much lower than those of J18 cells, suggesting that GM3 might be involved in tyrosine phosphorylation of DIM proteins required for cell growth. Thus, our data suggest that GSLs are essential for functional raft formation.  相似文献   

19.
1. The glycosphingolipid compositions of the thymus and bursa of Fabricius of young male chickens were compared. The two tissues were found to contain complex mixtures of both neutral glycosphingolipids and gangliosides. Both tissues contained mono-, di-, tri-, tetra- and penta-glycosylceramides; the pentaglycosylceramide displayed a reaction of identity with authentic Forssman antigen when tested against a specific anti-(Forssman antigen) serum. The ganglioside G(m3) containing N-acetylneuraminic acid was the principle ganglioside of both tissues. 2. The thymus contained appreciable amounts of the simple ganglioside N-acetylneuraminylgalactosylceramide, a compound not found in the bursa. The ganglioside G(d3) (disialohaematoside) was detected in both tissues. 3. Rat and human thymus, like sheep thymus (Narasimhan, Hay, Greaves & Murray (1976) Biochim, Biophys. Acta 431, 578-591), both contained a tetraglycosylceramide species as their most complex neutral glycosphingolipid and possessed little or no Forssman antigen. They also contained a complex mixture of gangliosides. 4. The possible significance of these results is briefly discussed.  相似文献   

20.
M Saito  M Saito  A Rosenberg 《Biochemistry》1984,23(6):1043-1046
We have exposed cultured human fibroblasts to micromolar concentrations of the ionophore monensin. A salient result was a rapid accumulation in these cells of glucosylceramide (glucocerebroside, GlcCer) and lactosylceramide (lactocerebroside, LacCer). When we incubated these cells with radioactively labeled galactose, GlcCer and LacCer became highly labeled. These results indicate that monensin greatly increases these simplest glycosphingolipids that are the precursor to the major plasma membrane glycosphingolipids. We observed, simultaneously, a decreased incorporation of labeled galactose into some more highly glycosylated neutral glycosphingolipids and sialoglycosphingolipids (gangliosides), and unlike GlcCer and LacCer, the cellular content of these more highly glycosylated compounds remained the same in the presence or absence of monensin. We have found that cultured Gaucher disease fibroblasts, with genetically impaired lysosomal glucocerebrosidase activity, accumulated even more GlcCer and LacCer than normal cells upon exposure to monensin. This finding shows that monensin affects biosynthesis rather than merely disrupting lysosomal degradation that is already deleted with respect to GlcCer in Gaucher disease cells. These results represent the first indication of an apparently remarkable effect of the monovalent ionophore, monensin, on plasma membrane glycosphingolipid biosynthesis. The evidence suggests a regulatory distinction between initial and higher intracellular glycosylation steps. Monensin does not diminish and may augment initial anabolic mono- and diglycosylations and also appears to inhibit higher glycosylations of glycosphingolipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号