首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mycobacterium tuberculosis serine/threonine protein kinases are attractive potential drug targets, and protein kinase D (PknD) is particularly interesting, as it is autophosphorylated on 11 residues, binds proteins containing forkhead associated domains, and contains a beta-propeller motif that likely functions as an anchoring sensor domain. We created a pknD knockout of a clinical M. tuberculosis isolate, and found that on in vitro phosphorylation of cell wall fractions it lacked a family of phosphorylated polypeptides seen in the WT. Mass spectrometry identified the phosphorylated polypeptides as MmpL7, a transporter of the RND family. MmpL7 is essential for virulence, presumably because it transports polyketide virulence factors such as phthiocerol dimycocerosate (PDIM) to the cell wall. Phosphorylation of the MmpL family of transporters has not been previously described, but these results suggest that PknD, and perhaps other serine/threonine kinases, could regulate their critical role in the formation of the M. tuberculosis envelope.  相似文献   

2.
The mycobacterial membrane protein large 3 (MmpL3) transporter is essential and required for shuttling the lipid trehalose monomycolate (TMM), a precursor of mycolic acid (MA)-containing trehalose dimycolate (TDM) and mycolyl arabinogalactan peptidoglycan (mAGP), in Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium smegmatis. However, the mechanism that MmpL3 uses to facilitate the transport of fatty acids and lipidic elements to the mycobacterial cell wall remains elusive. Here, we report 7 structures of the M. smegmatis MmpL3 transporter in its unbound state and in complex with trehalose 6-decanoate (T6D) or TMM using single-particle cryo-electron microscopy (cryo-EM) and X-ray crystallography. Combined with calculated results from molecular dynamics (MD) and target MD simulations, we reveal a lipid transport mechanism that involves a coupled movement of the periplasmic domain and transmembrane helices of the MmpL3 transporter that facilitates the shuttling of lipids to the mycobacterial cell wall.

Mycobacterial membrane protein Large 3 (MmpL3) is a transporter required for shuttling trehalose monomycolate. Structures of M. smegmatis MmpL3 with and without substrate reveal the mechanism by which MmpL3 transports this essential precursor of lipids for the mycobacterial cell wall.  相似文献   

3.
AIMS: Phthiocerol dimycocerosate (PDIM) waxes and other lipids are necessary for successful Mycobacterium tuberculosis infection, although the exact role of PDIM in host-pathogen interactions remains unclear. In this study, we investigated the contribution of tesA, drrB, pks6 and pks11 genes in complex lipid biosynthesis in M. tuberculosis. METHODS AND RESULTS: Four mutants were selected from M. tuberculosis H37Rv transposon mutant library. The transposon insertion sites were confirmed to be within the M. tuberculosis open reading frames for tesA (a probable thioesterase), drrB (predicted ABC transporter), pks11 (putative chalcone synthase) and pks6 (polyketide synthase). The first three of these transposon mutants were unable to generate PDIM and the fourth lacked novel polar lipids. CONCLUSIONS: Mycobacterium tuberculosis can be cultivated in vitro without the involvement of certain lipid synthesis genes, which may be necessary for in vivo pathogenicity. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of transposon mutants is a new functional genomic approach for the eventual definition of the mycobacterial 'lipidome'.  相似文献   

4.
The fatty acid biosynthesis (FAS-II) pathway in Mycobacterium tuberculosis generates long chain fatty acids that serve as the precursors to mycolic acids, essential components of the mycobacterial cell wall. Enzymes in the FAS-II pathway are thought to form one or more noncovalent multi-enzyme complexes within the cell, and a bacterial two-hybrid screen was used to search for missing components of the pathway and to furnish additional data on interactions involving these enzymes in vivo. Using the FAS-II beta-ketoacyl synthase, KasA, as bait, an extensive bacterial two-hybrid screen of a M. tuberculosis genome fragment library unexpectedly revealed a novel interaction between KasA and PpsB as well as PpsD, two polyketide modules involved in the biosynthesis of the virulence lipid phthiocerol dimycocerosate (PDIM). Sequence analysis revealed that KasA interacts with PpsB and PpsD in the region of the acyl carrier domain of each protein, raising the possibility that lipids could be transferred between the FAS-II and PDIM biosynthetic pathways. Subsequent studies utilizing purified proteins and radiolabeled lipids revealed that fatty acids loaded onto PpsB were transferred to KasA and also incorporated into long chain fatty acids synthesized using a Mycobacterium smegmatis lysate. These data suggest that in addition to producing PDIMs, the growing phthiocerol product can also be shuttled into the FAS-II pathway via KasA as an entry point for further elongation. Interactions between these biosynthetic pathways may exist as a simple means to increase mycobacterial lipid diversity, enhancing functionality and the overall complexity of the cell wall.  相似文献   

5.
New chemotherapeutics active against multidrug-resistant Mycobacterium tuberculosis are urgently needed. We report on the identification of an adamantyl urea compound that shows potent bactericidal activity against M. tuberculosis and a unique mode of action, namely the abolition of the translocation of mycolic acids from the cytoplasm, where they are synthesized to the periplasmic side of the plasma membrane and are in turn transferred onto cell wall arabinogalactan or used in the formation of virulence-associated, outer membrane, trehalose-containing glycolipids. Whole-genome sequencing of spontaneous-resistant mutants of M. tuberculosis selected in vitro followed by genetic validation experiments revealed that our prototype inhibitor targets the inner membrane transporter MmpL3. Conditional gene expression of mmpL3 in mycobacteria and analysis of inhibitor-treated cells validate MmpL3 as essential for mycobacterial growth and support the involvement of this transporter in the translocation of trehalose monomycolate across the plasma membrane.  相似文献   

6.
Trehalose monomycolate (TMM) represents an essential element of the mycobacterial envelope. While synthesized in the cytoplasm, TMM is transported across the inner membrane by MmpL3 but, little is known regarding the MmpL3 partners involved in this process. Recently, the TMM transport factor A (TtfA) was found to form a complex with MmpL3 and to participate in TMM transport, although its biological role remains to be established. Herein, we report the crystal structure of the Mycobacterium smegmatis TtfA core domain. The phylogenetic distribution of TtfA homologues in non-mycolate containing bacteria suggests that TtfA may exert additional functions.  相似文献   

7.
To study the role of MmpL8-mediated lipid transport in sulfatide biogenesis, we insertionally inactivated the mmpL8 gene in Mycobacterium tuberculosis. Characterization of this strain showed that the synthesis of mature sulfolipid SL-1 was interrupted and that a more polar sulfated molecule, termed SL-N, accumulated within the cell. Purification of SL-N and structural analysis identified this molecule as a family of 2,3-diacyl-alpha,alpha'-D-trehalose-2'-sulfates. This structure suggests that transport and biogenesis of SL-1 are coupled and that the final step in sulfatide biosynthesis may be the extra-cellular esterification of two trehalose 6-positions with hydroxyphthioceranic acids. To assess the effect of the loss of this anionic surface lipid on virulence, we infected mice via aerosol with the MmpL8 mutant and found that, although initial replication rates and containment levels were identical, compared with the wild type, a significant attenuation of the MmpL8 mutant strain in time-to-death was observed. Early in infection, differential expression of cytokines and cytokine receptors revealed that the mutant strain less efficiently suppresses key indicators of a Th1-type immune response, suggesting an immunomodulatory role for sulfatides in the pathogenesis of tuberculosis.  相似文献   

8.
Polyketide synthases (PKSs) of Mycobacterium tuberculosis are increasingly being seen as producers of virulence factors that are important for pathogenesis by the bacterium. Thus, the phenolphthiocerol synthase PKS cluster of M. tuberculosis is responsible, in part, for the synthesis of a virulence determinant called phthiocerol dimycocerosate (PDIM). Here, we provide evidence that the PpsE protein, which is part of that cluster, interacts with the type II thioesterase TesA of M. tuberculosis. The interaction was demonstrated by employing a two-hybrid system, and confirmed using a GST (glutathione S-transferase) pull-down assay after both proteins had been purified to homogeneity. Based on the present findings, a revised model for the processing of polyketides during the synthesis of PDIM is presented.Communicated by W. Goebel  相似文献   

9.
Phthiocerol dimycocerosates (DIM) and phenolglycolipids (PGL) are functionally important surface-exposed lipids of Mycobacterium tuberculosis. Their biosynthesis involves the products of several genes clustered in a 70-kb region of the M. tuberculosis chromosome. Among these products is PpsD, one of the modular type I polyketide synthases responsible for the synthesis of the lipid core common to DIM and PGL. Bioinformatic analyses have suggested that this protein lacks a functional enoyl reductase activity domain required for the synthesis of these lipids. We have identified a gene, Rv2953, that putatively encodes an enoyl reductase. Mutation in Rv2953 prevents conventional DIM formation and leads to the accumulation of a novel DIM-like product. This product is unsaturated between C-4 and C-5 of phthiocerol. Consistently, complementation of the mutant with a functional pks15/1 gene from Mycobacterium bovis BCG resulted in the accumulation of an unsaturated PGL-like substance. When an intact Rv2953 gene was reintroduced into the mutant strain, the phenotype reverted to the wild type. These findings indicate that Rv2953 encodes a trans-acting enoyl reductase that acts with PpsD in phthiocerol and phenolphthiocerol biosynthesis.  相似文献   

10.
Mycobacterium tuberculosis is the causative agent of tuberculosis, which is becoming an increasingly global public health problem due to the rise of drug-resistant strains. While residing in the human host, M. tuberculosis needs to acquire iron for its survival. M. tuberculosis has two iron uptake mechanisms, one that utilizes non-heme iron and another that taps into the vast host heme-iron pool. To date, proteins known to be involved in mycobacterial heme uptake are Rv0203, MmpL3, and MmpL11. Whereas Rv0203 transports heme across the bacterial periplasm or scavenges heme from host heme proteins, MmpL3 and MmpL11 are thought to transport heme across the membrane. In this work, we characterize the heme-binding properties of the predicted extracellular soluble E1 domains of both MmpL3 and MmpL11 utilizing absorption, electron paramagnetic resonance, and magnetic circular dichroism spectroscopic methods. Furthermore, we demonstrate that Rv0203 transfers heme to both MmpL3-E1 and MmpL11-E1 domains at a rate faster than passive heme dissociation from Rv0203. This work elucidates a key step in the mycobacterial uptake of heme, and it may be useful in the development of anti-tuberculosis drugs targeting this pathway.  相似文献   

11.
Mycobacterium tuberculosis possesses unique cell-surface lipids that have been implicated in virulence. One of the most abundant is sulfolipid-1 (SL-1), a tetraacyl-sulfotrehalose glycolipid. Although the early steps in SL-1 biosynthesis are known, the machinery underlying the final acylation reactions is not understood. We provide genetic and biochemical evidence for the activities of two proteins, Chp1 and Sap (corresponding to gene loci rv3822 and rv3821), that complete this pathway. The membrane-associated acyltransferase Chp1 accepts a synthetic diacyl sulfolipid and transfers an acyl group regioselectively from one donor substrate molecule to a second acceptor molecule in two successive reactions to yield a tetraacylated product. Chp1 is fully active in vitro, but in M. tuberculosis, its function is potentiated by the previously identified sulfolipid transporter MmpL8. We also show that the integral membrane protein Sap and MmpL8 are both essential for sulfolipid transport. Finally, the lipase inhibitor tetrahydrolipstatin disrupts Chp1 activity in M. tuberculosis, suggesting an avenue for perturbing SL-1 biosynthesis in vivo. These data complete the SL-1 biosynthetic pathway and corroborate a model in which lipid biosynthesis and transmembrane transport are coupled at the membrane-cytosol interface through the activity of multiple proteins, possibly as a macromolecular complex.  相似文献   

12.
The cell envelope of mycobacteria is a complex multilaminar structure that protects the cell from stresses encountered in the environment, and plays an important role against the bactericidal activity of immune system cells. The outermost layer of the mycobacterial envelope typically contains species-specific glycolipids. Depending on the mycobacterial species, the major glycolipid localized at the surface can be either a phenolglycolipid or a peptidoglycolipid (GPL). Currently, the mechanism of how these glycolipids are addressed to the cell surface is not understood. In this study, by using a transposon library of Mycobacterium smegmatis and a simple dye assay, six genes involved in GPLs synthesis have been characterized. All of these genes are clustered in a single genomic region of approximately 60 kb. We show by biochemical analyses that two non-ribosomal peptide synthetases, a polyketide synthase, a methyltransferase and a member of the MmpL family are required for the biosynthesis of the GPLs backbone. Furthermore, we demonstrate that a small integral membrane protein of 272 amino acids named Gap (gap: GPL addressing protein) is specifically required for the transport of the GPLs to the cell surface. This protein is predicted to contain six transmembrane segments and possesses homologues across the mycobacterial genus, thus delineating a new protein family. This Gap family represents a new paradigm for the transport of small molecules across the mycobacterial envelope, a critical determinant of mycobacterial virulence.  相似文献   

13.
Phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs) are structurally related lipids noncovalently bound to the outer cell wall layer of Mycobacterium tuberculosis, Mycobacterium leprae, and several opportunistic mycobacterial human pathogens. PDIMs and PGLs are important effectors of virulence. Elucidation of the biosynthesis of these complex lipids will not only expand our understanding of mycobacterial cell wall biosynthesis, but it may also illuminate potential routes to novel therapeutics against mycobacterial infections. We report the construction of an in-frame deletion mutant of tesA (encoding a type II thioesterase) in the opportunistic human pathogen Mycobacterium marinum and the characterization of this mutant and its corresponding complemented strain control in terms of PDIM and PGL production. The growth and antibiotic susceptibility of these strains were also probed and compared with the parental wild-type strain. We show that deletion of tesA leads to a mutant that produces only traces of PDIMs and PGLs, has a slight growth yield increase and displays a substantial hypersusceptibility to several antibiotics. We also provide a robust model for the three-dimensional structure of M. marinum TesA (TesAmm) and demonstrate that a Ser-to-Ala substitution in the predicted catalytic Ser of TesAmm renders a mutant that recapitulates the phenotype of the tesA deletion mutant. Overall, our studies demonstrate a critical role for tesA in mycobacterial biology, advance our understanding of the biosynthesis of an important group of polyketide synthase-derived mycobacterial lipids, and suggest that drugs aimed at blocking PDIM and/or PGL production might synergize with antibiotic therapy in the control of mycobacterial infections.  相似文献   

14.
Understanding the mechanism that controls space-time coordination of elongation and division of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is critical for fighting the tubercle bacillus. Most of the numerous enzymes involved in the synthesis of Mycolic acid - Arabinogalactan-Peptidoglycan complex (MAPc) in the cell wall are essential in vivo. Using a dynamic approach, we localized Mtb enzymes belonging to the fatty acid synthase-II (FAS-II) complexes and involved in mycolic acid (MA) biosynthesis in a mycobacterial model of Mtb: M. smegmatis. Results also showed that the MA transporter MmpL3 was present in the mycobacterial envelope and was specifically and dynamically accumulated at the poles and septa during bacterial growth. This localization was due to its C-terminal domain. Moreover, the FAS-II enzymes were co-localized at the poles and septum with Wag31, the protein responsible for the polar localization of mycobacterial peptidoglycan biosynthesis. The dynamic localization of FAS-II and of the MA transporter with Wag31, at the old-growing poles and at the septum suggests that the main components of the mycomembrane may potentially be synthesized at these precise foci. This finding highlights a major difference between mycobacteria and other rod-shaped bacteria studied to date. Based on the already known polar activities of envelope biosynthesis in mycobacteria, we propose the existence of complex polar machinery devoted to the biogenesis of the entire envelope. As a result, the mycobacterial pole would represent the Achilles'' heel of the bacillus at all its growing stages.  相似文献   

15.
The Mycobacterium tuberculosis genome encodes 12 alternative sigma factors, several of which regulate stress responses and are required for virulence in animal models of acute infection. In this work we investigated M. tuberculosis SigM, a member of the extracytoplasmic function subfamily of alternative sigma factors. This sigma factor is expressed at low levels in vitro and does not appear to function in stress response regulation. Instead, SigM positively regulates genes required for the synthesis of surface or secreted molecules. Among these are genes encoding two pairs of Esx secreted proteins, a multisubunit nonribosomal peptide synthetase operon, and genes encoding two members of the proline-proline-glutamate (PPE) family of proteins. Genes up regulated in a sigM mutant strain include a different PPE gene, as well as several genes involved in surface lipid synthesis. Among these are genes involved in synthesis of phthiocerol dimycocerosate (PDIM), a surface lipid critical for virulence during acute infection, and the kasA-kasB operon, which is required for mycolic acid synthesis. Analysis of surface lipids showed that PDIM synthesis is increased in a sigM-disrupted strain and is undetectable in a sigM overexpression strain. These findings demonstrate that SigM positively and negatively regulates cell surface and secreted molecules that are likely to function in host-pathogen interactions.  相似文献   

16.
Treatment of tuberculosis still represent a major public health issue. The emergence of multi-and extensively-drug resistant (MDR and XDR) Mycobacterium tuberculosis clinical strains further pinpoint the urgent need for new anti-tuberculous drugs. We previously showed that vancomycin can target mycobacteria lacking cell wall integrity, especially those lacking related phthiocerol and phthiodolone dimycocerosates, PDIM A and PDIM B, respectively. As aloe emodin was previously hypothesized to be able to target the synthesis of mycobacterial cell wall lipids, we tested its ability to potentiate glycopeptides antimycobacterial activity. The aloe emodin with the vancomycin induced a combination effect beyond simple addition, close to synergism, at a concentration lower to reported IC50 cytotoxic value, on M. bovis BCG and on H37Rv M. tuberculosis. Interestingly, out of six MDR and pre-XDR clinical strains, one showed a strong synergic susceptibility to the drug combination. Mycobacterial cell wall lipid analyses highlighted a selective reduction of PDIM B by aloe emodin.  相似文献   

17.
A growing body of evidence indicates that MmpL (mycobacterial membrane protein large) transporters are dedicated to cell wall biosynthesis and transport mycobacterial lipids. How MmpL transporters function and the identities of their substrates have not been fully elucidated. We report the characterization of Mycobacterium smegmatis MmpL11. We showed previously that M. smegmatis lacking MmpL11 has reduced membrane permeability that results in resistance to host antimicrobial peptides. We report herein the further characterization of the M. smegmatis mmpL11 mutant and identification of the MmpL11 substrates. We found that biofilm formation by the M. smegmatis mmpL11 mutant was distinct from that by wild-type M. smegmatis. Analysis of cell wall lipids revealed that the mmpL11 mutant failed to export the mycolic acid-containing lipids monomeromycolyl diacylglycerol and mycolate ester wax to the bacterial surface. In addition, analysis of total lipids indicated that the mycolic acid-containing precursor molecule mycolyl phospholipid accumulated in the mmpL11 mutant compared with wild-type mycobacteria. MmpL11 is encoded at a chromosomal locus that is conserved across pathogenic and nonpathogenic mycobacteria. Phenotypes of the M. smegmatis mmpL11 mutant are complemented by the expression of M. smegmatis or M. tuberculosis MmpL11, suggesting that MmpL11 plays a conserved role in mycobacterial cell wall biogenesis.  相似文献   

18.
The approximately 27 kDa ABC-ATPase, an extraordinarily conserved, unique type of ATPase, acts as a machine to fuel the movement across membranes of almost any type of molecule, from large polypeptides to small ions, via many different membrane-spanning proteins. A particular ABC-ATPase must therefore be tailor-made to function in a complex with its cognate membrane protein, forming a transport pathway appropriate for a specific type of molecule, or in the case of some ABC-transporters, several types of molecule. Molecules to be transported recognise their own transporter, bind and switch on the ATPase, which in turn activates or opens the transport pathway. ABC-dependent transport can be inwards across the membrane, or outwards to the cell exterior, and the ABC-ATPase can fuel transport through pathways which may involve a classical channel (CFTR), a "gateway" mechanism through a proteinacious chamber spanning the bilayer, or conceivably via a pathway at the protein-lipid interface of the outside of the membrane domain. This may be the case for drugs transported by Pgp, a multidrug resistance transporter. In this review, we try to identify the common fundamental principles which unite all ABC-transporters, including the basis of specificity for different transported compounds (allocrites), the interactions between the ATPase and membrane domains, activation of the ATPase and the coupling of consequent conformational changes, to the final movement of an allocrite through a given transport pathway. We discuss the so far limited structural information for the intact ABC-transporter complex and the exciting information from the first crystal structure of an ABC-ATPase. Finally, the action of specific transporters, CFTR (Cl- transport), Pgp, MRP and LmrA, all transporting many different drug molecules and HlyB transporting a large protein toxin are discussed.  相似文献   

19.
Wang  Jiali  Zielewicz  Laura  Dong  Yang  Grewer  Christof 《Neurochemical research》2022,47(1):148-162

Plasma membrane glutamate transporters move glutamate across the cell membrane in a process that is thought to involve elevator-like movement of the transport domain relative to the static trimerization domain. Conformational changes associated with this elevator-like movement have been blocked by covalent crosslinking of cysteine pairs inserted strategically in several positions in the transporter structure, resulting in inhibition of steady-state transport activity. However, it is not known how these crosslinking restraints affect other partial reactions of the transporter that were identified based on pre-steady-state kinetic analysis. Here, we re-examine two different introduced cysteine pairs in the rat glutamate transporter EAAC1 recombinantely expressed in HEK293 cells, W440C/K268C and K64C/V419C, with respect to the molecular mechanism of their impairment of transporter function. Pre-steady-state kinetic studies of glutamate-induced partial reactions were performed using laser photolysis of caged glutamate to achieve sub-millisecond time resolution. Crosslinking of both cysteine pairs abolished steady-state transport current, as well as the majority of pre-steady-state glutamate-induced charge movements, in both forward and reverse transport mode, suggesting that it is not only the elevator-like movement associated with translocation, but also other transporter partial reactions that are inhibited. In contrast, sodium binding to the empty transporter, and glutamate-induced anion conductance were still intact after the W440C/K268C crosslink. Our results add to the previous mechanistic view of how covalent restraints of the transporter affect function and structural changes linked to individual steps in the transport cycle.

  相似文献   

20.
Iron availability affects the course of tuberculosis infection, and the ability to acquire this metal is known to be essential for replication of Mycobacterium tuberculosis in human macrophages. M. tuberculosis overcomes iron deficiency by producing siderophores. The relevance of siderophore synthesis for iron acquisition by M. tuberculosis has been demonstrated, but the molecules involved in iron uptake are currently unknown. We have identified two genes (irtA and irtB) encoding an ABC transporter similar to the YbtPQ system involved in iron transport in Yersinia pestis. Inactivation of the irtAB system decreases the ability of M. tuberculosis to survive iron-deficient conditions. IrtA and -B do not participate in siderophore synthesis or secretion but are required for efficient utilization of iron from Fe-carboxymycobactin, as well as replication of M. tuberculosis in human macrophages and in mouse lungs. We postulate that IrtAB is a transporter of Fe-carboxymycobactin. The irtAB genes are located in a chromosomal region previously shown to contain genes regulated by iron and the major iron regulator IdeR. Taken together, our results and previous observations made by other groups regarding two other genes in this region indicate that this gene cluster is dedicated to siderophore synthesis and transport in M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号