首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured fluorescence spectra from Photosystem I (PS I) on a PS II-less mutant of the cyanobacterium Synechocystis sp. PCC 6803 at room temperature as a function of excitation wavelength. Our data show a gradual enhancement of long-wavelength fluorescence at 710 nm as the excitation wavelength is increased from 695 to 720 nm. This verifies the presence of low-energy chlorophylls (LE Chls), antenna Chls with energy levels below that of the primary electron donor, P700. The change in fluorescence with excitation wavelength is attributed to the finite time it takes for equilibration of excitations between the bulk and LE Chls. The spectra were deconvoluted into the sum of two basis spectra, one an estimate for fluorescence from the majority or bulk Chls and the other, the LE Chls. The bulk Chl spectrum has a major peak at 688 nm and a lower amplitude vibrational band around 745 nm and is assumed independent of excitation wavelength. The LE Chl spectrum has a major peak at 710 nm, with shoulders at 725 and 760 nm. The relative amplitude of emission at the vibrational side bands increases slightly as the excitation wavelength increases. The ratio of the fluorescence yields from LE Chls to that from bulk Chls ranges from 0.3 to 1.3 for excitation wavelengths of 695 to 720 nm, respectively. These values are consistent with a model where the LE Chls are structurally close to P700 allowing for direct transfer of excitations from both the bulk and LE Chls to P700.  相似文献   

2.
Energy equilibration in the photosystem I core antenna from the cyanobacterium Synechocystis sp. PCC 6803 was studied using femtosecond transient absorption spectroscopy at 298 K. The photosystem I core particles were excited at 660, 693, and 710 nm with 150 fs spectrally narrow laser pulses (fwhm = 5 nm). Global analysis revealed three kinetic processes in the core antenna with lifetimes of 250-500 fs, 1.5-2.5 ps, and 20-30 ps. The first two components represent strongly excitation wavelength-dependent energy equilibration processes while the 20-30 ps phase reflects the trapping of energy by the reaction center. Excitation into the blue and red edge of the absorption band induces downhill and uphill energy flows, respectively, between different chlorophyll a spectral forms of the core. Excitation at 660 nm induces a 500 fs downhill equilibration process within the bulk of antenna while the selective excitation of long-wavelength-absorbing chlorophylls at 710 nm results in a 380 fs uphill energy transfer to the chlorophylls absorbing around 695-700 nm, presumably reaction center pigments. The 1.5-2.5 ps phases of downhill and uphill energy transfer are largely equivalent but opposite in direction, indicating energy equilibration between bulk antenna chlorophylls at 685 nm and spectral forms absorbing below 700 nm. Transient absorption spectra with excitation at 693 nm exhibit spectral evolution within approximately 2 ps of uphill energy transfer to major spectral forms at 680 nm and downhill energy transfer to red pigments at 705 nm. The 20-30 ps trapping component and P(700) photooxidation spectra derived from data on the 100 ps scale are largely excitation wavelength independent. An additional decay component of red pigments at 710 nm can be induced either by selective excitation of red pigments or by decreasing the temperature to 264 K. This component may represent one of the phases of energy transfer from inhomogeneously broadened red pigments to P(700). The data are discussed based on the available structural model of the photosystem I reaction center and its core antenna.  相似文献   

3.
Nanosecond absorption dynamics at approximately 685 nm after excitation of photosystem I (PS I) from Synechocystis sp. PCC 6803 is consistent with electrochromic shift of absorption bands of the Chl a pigments in the vicinity of the secondary electron acceptor A(1). Based on experimental optical data and structure-based simulations, the effective local dielectric constant has been estimated to be between 3 and 20, which suggests that electron transfer in PS I is accompanied by considerable protein relaxation. Similar effective dielectric constant values have been previously observed for the bacterial photosynthetic reaction center and indicate that protein reorganization leading to effective charge screening may be a necessary structural property of proteins that facilitate the charge transfer function. The data presented here also argue against attributing redmost absorption in PS I to closely spaced antenna chlorophylls (Chls) A38 and A39, and suggest that optical transitions of these Chls, along with that of connecting chlorophyll (A40) lie in the range 680-695 nm.  相似文献   

4.
Fluorescence spectra from Photosystem I (PS I) are measured from 25 to –5 °C on a PS II-less mutant of the cyanobacterium Synechocystis sp. PCC 6803. Emission from antenna chlorophylls (Chls) with energy levels below that of the reaction center, or low-energy Chls (LE Chls), is resolved verifying their presence at physiological temperatures. The 25°C spectrum is characterized by peaks at 688 and 715 nm. As temperature decreases, fluorescence at 688 nm decreases while at 715 nm it increases. The total fluorescence yield does not change. The temperature dependent spectra are fit to a sum of two basis spectra. At 25°C, the first basis spectrum has a major peak at 686 nm and a minor peak at 740 nm. This is attributed to fluorescence from the majority or bulk antenna Chls. The second basis spectrum has a major peak at 712 nm, with shoulders at 722 and 770 nm. It characterizes fluorescence from a small number of LE Chls. A progressive shift to the red in the fluorescence spectra occurs as the temperature is decreased. The temperature dependence in the relative amount of fluorescence from the bulk and LE Chls is fit using a two-component energy transfer model at thermal equilibrium.  相似文献   

5.
We applied optical spectroscopy, magnetic resonance techniques, and redox titrations to investigate the properties of the primary electron donor P700 in photosystem I (PS I) core complexes from cyanobacteria (Thermosynechococcus elongatus, Spirulina platensis, and Synechocystis sp. PCC 6803), algae (Chlamydomonas reinhardtii CC2696), and higher plants (Spinacia oleracea). Remarkable species-specific differences of the optical properties of P700 were revealed monitoring the (3P700-P700) and (P700+.-P700) absorbance and CD difference spectra. The main bleaching band in the Qy region differs in peak position and line width for the various species. In cyanobacteria the absorbance of P700 extends more to the red compared with algae and higher plants which is favorable for energy transfer from red core antenna chlorophylls to P700 in cyanobacteria. The amino acids in the environment of P700 are highly conserved with two distinct deviations. In C. reinhardtii a Tyr is found at position PsaB659 instead of a Trp present in all other organisms, whereas in Synechocystis a Phe is found instead of a Trp at the homologous position PsaA679. We constructed several mutants in C. reinhardtii CC2696. Strikingly, no PS I could be detected in the mutant YW B659 indicating steric constraints unique to this organism. In the mutants WA A679 and YA B659 significant changes of the spectral features in the (3P700-P700), the (P700+.-P700) absorbance difference and in the (P700+.-P700) CD difference spectra are induced. The results indicate structural differences among PS I from higher plants, algae, and cyanobacteria and give further insight into specific protein-cofactor interactions contributing to the optical spectra.  相似文献   

6.
Photosystem I (PS-I) contains a small fraction of chlorophylls (Chls) that absorb at wavelengths longer than the primary electron donor P700. The total number of these long wavelength Chls and their spectral distribution are strongly species dependent. In this contribution we present room temperature time-resolved fluorescence data of five PS-I core complexes that contain different amounts of these long wavelength Chls, i.e., monomeric and trimeric photosystem I particles of the cyanobacteria Synechocystis sp. PCC 6803, Synechococcus elongatus, and Spirulina platensis, which were obtained using a synchroscan streak camera. Global analysis of the data reveals considerable differences between the equilibration components (3.4-15 ps) and trapping components (23-50 ps) of the various PS-I complexes. We show that a relatively simple compartmental model can be used to reproduce all of the observed kinetics and demonstrate that the large kinetic differences are purely the result of differences in the long wavelength Chl content. This procedure not only offers rate constants of energy transfer between and of trapping from the compartments, but also well-defined room temperature emission spectra of the individual Chl pools. A pool of red shifted Chls absorbing around 702 nm and emitting around 712 nm was found to be a common feature of all studied PS-I particles. These red shifted Chls were found to be located neither very close to P700 nor very remote from P700. In Synechococcus trimeric and Spirulina monomeric PS-I cores, a second pool of red Chls was present which absorbs around 708 nm, and emits around 721 nm. In Spirulina trimeric PS-I cores an even more red shifted second pool of red Chls was found, absorbing around 715 nm and emitting at 730 nm.  相似文献   

7.
Photochemically active photosystem (PS) I complexes were purified from the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina MBIC 11017, and several of their properties were characterized. PS I complexes consist of 11 subunits, including PsaK1 and PsaK2; a new small subunit was identified and named Psa27. The new subunit might replace the function of PsaI that is absent in A. marina. The amounts of pigments per one molecule of Chl d' were 97.0 +/- 11.0 Chl d, 1.9 +/- 0.5 Chl a, 25.2 +/- 2.4 alpha-carotene, and two phylloquinone molecules. The light-induced Fourier transform infrared difference spectroscopy and light-induced difference absorption spectra reconfirmed that the primary electron donor of PS I (P740) was the Chl d dimer. In addition to P740, the difference spectrum contained an additional band at 728 nm. The redox potentials of P740 were estimated to be 439 mV by spectroelectrochemistry; this value was comparable with the potential of P700 in other cyanobacteria and higher plants. This suggests that the overall energetics of the PS I reaction were adjusted to the electron acceptor side to utilize the lower light energy gained by P740. The distribution of charge in P740 was estimated by a density functional theory calculation, and a partial localization of charge was predicted to P1 Chl (special pair Chl on PsaA). Based on differences in the protein matrix and optical properties of P740, construction of the PS I core in A. marina was discussed.  相似文献   

8.
The excitation transport and trapping kinetics of core antenna-reaction center complexes from photosystem I of wild-type Synechocystis sp. PCC 6803 were investigated under annihilation-free conditions in complexes with open and closed reaction centers. For closed reaction centers, the long-component decay-associated spectrum (DAS) from global analysis of absorption difference spectra excited at 660 nm is essentially flat (maximum amplitude <10(-5) absorbance units). For open reaction centers, the long-time spectrum (which exhibits photobleaching maxima at approximately 680 and 700 nm, and an absorbance feature near 690 nm) resembles one previously attributed to (P700(+) - P700). For photosystem I complexes excited at 660 nm with open reaction centers, the equilibration between the bulk antenna and far-red chlorophylls absorbing at wavelengths >700 nm is well described by a single DAS component with lifetime 2.3 ps. For closed reaction centers, two DAS components (2.0 and 6.5 ps) are required to fit the kinetics. The overall trapping time at P700 ( approximately 24 ps) is very nearly the same in either case. Our results support a scenario in which the time constant for the P700 --> A(0) electron transfer is 9-10 ps, whereas the kinetics of the subsequent A(0) --> A(1) electron transfer are still unknown.  相似文献   

9.
Low-temperature (77 K) fluorescence emission spectra of intact cells of a cyanobacterium, Synechocystis sp. PCC 6714, and a green alga, Chlamydomonas reinhardtii, were quantitatively analyzed to examine differences in PS I/PS II stoichiometries. Cells cultured under different spectral conditions had various PS I/PS II molar ratios when estimated by oxidation-reduction difference absorption spectra of P700 (for PS I) and Cyt b-559 (for PS II) with thylakoid membranes. The fluorescence emission spectra under the Chl a excitation at 435 nm were resolved into several component bands using curve-fitting methods and the relative band area between PS II (F685 and F695) and PS I (F710 or F720) emissions was compared with the PS I/PS II stoichiometries of the various cell types. The results indicated that the PS I/PS II fluorescence ratios correlated closely with photosystem stoichiometries both in Synechocystis sp. PCC 6714 and in C. reinhardtii grown under different light regimes. Furthermore, the correlation between the PS I/PS II fluorescence ratios and the photosystem stoichiometries is also applicable to vascular plants.  相似文献   

10.
A marine cyanobacterium, Prochlorococcus, is a unique oxygenic photosynthetic organism, which accumulates divinyl chlorophylls instead of the monovinyl chlorophylls. To investigate the molecular environment of pigments after pigment replacement but before optimization of the protein moiety in photosynthetic organisms, we compared the fluorescence properties of the divinyl Chl a-containing cyanobacteria, Prochlorococcus marinus (CCMP 1986, CCMP 2773 and CCMP 1375), by a Synechocystis sp. PCC 6803 (Synechocystis) mutant in which monovinyl Chl a was replaced with divinyl Chl a. P. marinus showed a single fluorescence band for photosystem (PS) II at 687nm at 77K; this was accompanied with change in pigment, because the Synechocystis mutant showed the identical shift. No fluorescence bands corresponding to the PS II 696-nm component and PS I longer-wavelength component were detected in P. marinus, although the presence of the former was suggested using time-resolved fluorescence spectra. Delayed fluorescence (DF) was detected at approximately 688nm with a lifetime of approximately 29ns. In striking contrast, the Synechocystis mutant showed three fluorescence bands at 687, 696, and 727nm, but suppressed DF. These differences in fluorescence behaviors might not only reflect differences in the molecular structure of pigments but also differences in molecular environments of pigments, including pigment-pigment and/or pigment-protein interactions, in the antenna and electron transfer systems.  相似文献   

11.
The photosystem (PS) I photosynthetic reaction center was modified thorough the selective extraction and exchange of chlorophylls and quinones. Extraction of lyophilized photosystem I complex with diethyl ether depleted more than 90% chlorophyll (Chl) molecules bound to the complex, preserving the photochemical electron transfer activity from the primary electron donor P700 to the acceptor chlorophyll A(0). The treatment extracted all the carotenoids and the secondary acceptor phylloquinone (A(1)), and produced a PS I reaction center that contains nine molecules of Chls including P700 and A(0), and three Fe-S clusters (F(X), F(A) and F(B)). The ether-extracted PS I complex showed fast electron transfer from P700 to A(0) as it is, and to FeS clusters if phylloquinone or an appropriate artificial quinone was reconstituted as A(1). The ether-extracted PS I enabled accurate detection of the primary photoreactions with little disturbance from the absorbance changes of the bulk pigments. The quinone reconstitution created the new reactions between the artificial cofactors and the intrinsic components with altered energy gaps. We review the studies done in the ether-extracted PS I complex including chlorophyll forms of the core moiety of PS I, fluorescence of P700, reaction rate between A(0) and reconstituted A(1), and the fast electron transfer from P700 to A(0). Natural exchange of chlorophyll a to 710-740 nm absorbing chlorophyll d in PS I of the newly found cyanobacteria-like organism Acaryochloris marina was also reviewed. Based on the results of exchange studies in different systems, designs of photosynthetic reaction centers are discussed.  相似文献   

12.
To determine the fluorescence properties of cyanobacterial Photosystem I (PS I) in relatively intact systems, fluorescence emission from 20 to 295 K and polarization at 77 K have been measured from phycobilisomes-less thylakoids of Synechocystis sp. PCC 6803 and a mutant strain lacking Photosystem II (PS II). At 295 K, the fluorescence maxima are 686 nm in the wild type from PS I and PS II and at 688 nm from PS I in the mutant. This emission is characteristic of bulk antenna chlorophylls (Chls). The 690-nm fluorescence component of PS I is temperature independent. For wild-type and mutant, 725-nm fluorescence increases by a factor of at least 40 from 295 to 20 K. We model this temperature dependence assuming a small number of Chls within PS I, emitting at 725 nm, with an energy level below that of the reaction center, P700. Their excitation transfer rate to P700 decreases with decreasing temperature increasing the yield of 725-nm fluorescence.Fluorescence excitation spectra of polarized emission from low-energy Chls were measured at 77 and 295 K on the mutant lacking PS II. At excitation wavelengths longer than 715 nm, 760-nm emission is highly polarized indicating either direct excitation of the emitting Chls with no participation in excitation transfer or total alignment of the chromophores. Fluorescence at 760 nm is unpolarized for excitation wavelengths shorter than 690 nm, inferring excitation transfer between Chls before 760-nm fluorescence occurs.Our measurements illustrate that: 1) a single group of low-energy Chls (F725) of the core-like PS I complex in cyanobacteria shows a strongly temperature-dependent fluorescence and, when directly excited, nearly complete fluorescence polarization, 2) these properties are not the result of detergent-induced artifacts as we are examining intact PS I within the thylakoid membrane of S. 6803, and 3) the activation energy for excitation transfer from F725 Chls to P700 is less than that of F735 Chls in green plants; F725 Chls may act as a sink to locate excitations near P700 in PS I.Abbreviations Chl chlorophyll - BChl bacteriochlorophyll - PS Photosystem - S. 6803 Synechocystis sp. PCC 6803 - PGP potassium glycerol phosphate  相似文献   

13.
Fluorescence excitation spectra of highly anisotropic emission from Photosystem I (PS I) were measured at 295 and 77 K on a PS II-less mutant of the cyanobacterium Synechocystis sp. PCC 6803 (S. 6803). When PS I was excited with light at wavelengths greater than 715 nm, fluorescence observed at 745 nm was highly polarized with anisotropies of 0.32 and 0.20 at 77 and 295 K, respectively. Upon excitation at shorter wavelengths, the 745-nm fluorescence had low anisotropy. The highly anisotropic emission observed at both 77 and 295 K is interpreted as evidence for low-energy chlorophylls (Chls) in cyanobacteria at room temperature. This indicates that low-energy Chls, defined as Chls with first excited singlet-state energy levels below or near that of the reaction center, P700, are not artifacts of low-temperature measurements.If the low-energy Chls are a distinct subset of Chls and a simple two-pool model describes the excitation transfer network adequately, one can take advantage of the low-energy Chls' high anisotropy to approximate their fluorescence excitation spectra. Maxima at 703 and 708 nm were calculated from 295 and 77 K data, respectively. Upper limits for the number of low-energy Chls per P700 in PS I from S. 6803 were calculated to be 8 (295 K) and 11 (77 K).Abbreviations Chl - chlorophyll - BChl - bacteriochlorophyll - LHC - light-harvesting chlorophyll - PS - Photosystem - RC - reaction center - S. 6803 - Synechocystis sp. PCC 6803  相似文献   

14.
In vitro mutagenesis was used to produce two photosystem I mutants of the cyanobacterium Synechocystis sp. PCC 6803. The mutant HK and HL contained hexahistidyl tags at the C-termini of the PsaK1 and PsaL subunits, respectively. The HK mutant contained wild-type amounts of trimeric PS I complexes, but the level of hexahistidine-tagged PsaK1 was found only ten per cent in the PS I complexes and membranes of the wild type level. Therefore, attachment of a tag at the C-terminus interferes with the expression or assembly of PsaK1. In contrast, the HL mutant contained a similar level of tagged PsaL as that in the wild type. However, trimeric PS I complexes could not be obtained from this strain, indicating that the C-terminus of PsaL is involved in the formation of PS I trimers. Hexahistidine-tagged complexes of the HL and HK strains could not be purified with Nickel-affinity chromatography, unless photosystem I was denatured with urea, demonstrating that tagged C-termini of PsaK1 and PsaL were embedded inside of the PS I complex. Protection of the C-terminus from trypsin cleavage further supported this conclusion. Thus, histidine tagging allowed us to demonstrate role of C-termini of two proteins of photosystem I.  相似文献   

15.
Room temperature, light induced (P700(+)-P700) Fourier transform infrared (FTIR) difference spectra have been obtained using photosystem I (PS I) particles from Synechocystis sp. PCC 6803 that are unlabeled, uniformly (2)H labeled, and uniformly (15)N labeled. Spectra were also obtained for PS I particles that had been extensively washed and incubated in D(2)O. Previously, we have found that extensive washing and incubation of PS I samples in D(2)O does not alter the (P700(+)-P700) FTIR difference spectrum, even with approximately 50% proton exchange. This indicates that the P700 binding site is inaccessible to solvent water. Upon uniform (2)H labeling of PS I, however, the (P700(+)-P700) FTIR difference spectra are considerably altered. From spectra obtained using PS I particles grown in D(2)O and H(2)O, a ((1)H-(2)H) isotope edited double difference spectrum was constructed, and it is shown that all difference bands associated with ester/keto carbonyl modes of the chlorophylls of P700 and P700(+) downshift 4-5/1-3 cm(-1) upon (2)H labeling, respectively. It is also shown that the ester and keto carbonyl modes of the chlorophylls of P700 need not be heterogeneously distributed in frequency. Finally, we find no evidence for the presence of a cysteine mode in our difference spectra. The spectrum obtained using (2)H labeled PS I particles indicates that a negative difference band at 1698 cm(-1) is associated with at least two species. The observed (15)N and (2)H induced band shifts strongly support the idea that the two species are the 13(1) keto carbonyl modes of both chlorophylls of P700. We also show that a negative difference band at approximately 1639 cm(-1) is somewhat modified in intensity, but unaltered in frequency, upon (2)H labeling. This indicates that this band is not associated with a strongly hydrogen bonded keto carbonyl mode of one of the chlorophylls of P700.  相似文献   

16.
Ultrafast transient absorption spectroscopy was used to probe excitation energy transfer and trapping at 77 K in the photosystem I (PSI) core antenna from the cyanobacterium Synechocystis sp. PCC 6803. Excitation of the bulk antenna at 670 and 680 nm induces a subpicosecond energy transfer process that populates the Chl a spectral form at 685--687 nm within few transfer steps (300--400 fs). On a picosecond time scale equilibration with the longest-wavelength absorbing pigments occurs within 4-6 ps, slightly slower than at room temperature. At low temperatures in the absence of uphill energy transfer the energy equilibration processes involve low-energy shifted chlorophyll spectral forms of the bulk antenna participating in a 30--50-ps process of photochemical trapping of the excitation by P(700). These spectral forms might originate from clustered pigments in the core antenna and coupled chlorophylls of the reaction center. Part of the excitation is trapped on a pool of the longest-wavelength absorbing pigments serving as deep traps at 77 K. Transient hole burning of the ground-state absorption of the PSI with excitation at 710 and 720 nm indicates heterogeneity of the red pigment absorption band with two broad homogeneous transitions at 708 nm and 714 nm (full-width at half-maximum (fwhm) approximately 200--300 cm(-1)). The origin of these two bands is attributed to the presence of two chlorophyll dimers, while the appearance of the early time bleaching bands at 683 nm and 678 nm under excitation into the red side of the absorption spectrum (>690 nm) can be explained by borrowing of the dipole strength by the ground-state absorption of the chlorophyll a monomers from the excited-state absorption of the dimeric red pigments.  相似文献   

17.
Photosystem I of cyanobacteria contains different spectral pools of chlorophylls called red or long-wavelength chlorophylls that absorb at longer wavelengths than the primary electron donor P700. We measured the fluorescence spectra at the ensemble and the single-molecule level at low temperatures in the presence of oxidized and reduced P700. In accordance with the literature, it was observed that the fluorescence is quenched by P700(+). However, the efficiency of the fluorescence quenching by oxidized P700(+) was found to be extremely different for the various red states in PS I from different cyanobacteria. The emission of the longest-wavelength absorbing antenna state in PS I trimers from Thermosynechococcus elongatus (absorption maximum at 5K: ≈ 719nm; emission maximum at 5K: ≈ 740nm) was found to be strongly quenched by P700(+) similar to the reddest state in PS I trimers from Arthrospira platensis emitting at 760nm at 5K. The fluorescence of these red states is diminished by more than a factor of 10 in the presence of oxidized P700. For the first time, the emission of the reddest states in A. platensis and T. elongatus has been monitored using single-molecule fluorescence techniques.  相似文献   

18.
Surfactants are widely used in the purification and research of structure and function of the protein complexes in photosynthetic membrane. To elucidate the mechanism of interaction between surfactants and photosystem Ⅰ (PSⅠ), effects of two typical surfactants, Triton X-100 and sodium dodecyl sulfate (SDS) on PSⅠ, were studied at different concentrations. The results were: SDS led to the reduction of apparent absorption intensity and blue shift of absorption peaks; while Triton X-100 led to the decrease of apparent absorption intensity in red region and blue shift of the peak, but to the increase of apparent absorption intensity in blue region. The fourth derivative spectra show that the longwavelength (669 nm and 683 nm) absorbing chlorophyll a was affected greatly and their relative changes of absorbance were axially symmetrical. The presence of surfactant could make the long wavelength fluorescence emission decrease greatly and a new fluorescence peak appeared around 680 nm, it was obvious that the surfactant interceded the transfer of excitation energy from antenna pigments to reaction center. The surfactants might affect the microenvironment of proteins, even the structure of PSⅠ protein subunits and hence changed the binding status of pigments with protein subunits, or the pigments might be released from the subunits. All of these might affect the absorption and the transfer of excitation energy.  相似文献   

19.
Ladygin VG 《Biofizika》2002,47(6):1032-1043
The fluorescent and absorbing properties of chloroplasts and pigment-protein complexes isolated by gel electrophoresis from pea leaves of the cultivar Torsdag and the mutants chlorotica 2004 and 2014 were studied. From the absorption and fluorescence spectra of chlorophylls and their 2nd derivatives, the range of their changes in the native state at 23 degrees C and specific maxima of fluorescence and the forms of chlorophyll of individual complexes at -196 degrees C were found. It was found that in mutant chlorotica 2004 the intensity of fluorescence of long-wave band at 745 nm (23 degrees C) and the maximum--at 728 nm (-196 degrees C) belonging to the light-harvesting complex I increased. Nevertheless, the accumulation of the chlorophyll forms in this mutant at 690, 697 and 708 nm, which make an antenna of reaction centers of photosystem (PS) I decreased. No spectral differences from the spectrum of the wild type were found in mutant chlorotica 2014, except for a weakening of interaction between the complexes of PS I and PS II. It was shown by gel electrophoresis that both mutants were capable of synthesizing any chlorophyll-protein complexes. However, the analysis of the photochemical activity of reaction centers of PS I and PS II as well as calculations of the value of the photosynthetic unit and the number of reaction centers of the photosystems enabled us to conclude that the quantity of the reaction centers of PS I in the mutant chlorotica 2004 was 1.7 times lower due to disturbance of mutations in biosynthesis or the formation of the chlorophyll a-protein complex of PS I. No primary effect of mutation of chlorotica 2014 was established. Proportional changes of all parameters in this mutant gave us the ground to consider them as secondary ones, which are caused by a decrease in chlorophyll content by half.  相似文献   

20.
Site-directed mutations were constructed in photosystem II of Synechocystis sp. PCC6803 in which the axial ligand, D1-His198, of special pair chlorophyll PD1 was replaced with Gln and where D1-Thr179, which overlies monomeric chlorophyll ChlD1, was replaced with His. The D1-His198Gln mutation produces a 3nm displacement to the blue of the bleaching minimum in the Soret and in the Qy region of the (P+QA--PQA) absorbance difference spectrum. To a first approximation, the bleaching can be assigned to the low-energy exciton transition of the special pair chlorophylls PD1/PD2. The D1-Thr179His mutation produces a 2nm displacement to the red of the bleaching minimum in the Qy region of the (3P-1P) absorbance difference spectrum. Analysis of the flash-induced (P+QA--PQA) and (3P-1P) absorbance difference spectra of both mutants compared with wild-type at 80K indicate that the cation of the oxidized donor P+ is predominantly localized on the chlorophyll PD1 of the special pair and that the reaction centre triplet state, produced upon charge recombination from 3[P+Pheo-], when the primary quinone electron acceptor QA is doubly reduced, is primarily localized on ChlD1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号