首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Ca2+/calmodulin dependent protein kinase associated with the sarcoplasmic reticulum membranes (SR CaM kinase) plays a specific and important role in the modulation of both Ca2+ uptake and release functions of the sarcoplasmic reticulum itself. In this work we have localized a 60 kD SR CaM kinase in slow and fast twitch rabbit skeletal muscle fractions; the kinase was present in both the longitudinal and the junctional sarcoplasmic reticulum. We then developed a procedure for the purification of the active kinase from the longitudinal sarcoplasmic reticulum and performed biochemical and functional characterization of the enzyme. Differently from what was previously suggested, our analysis shows that the biochemical properties of the purified SR CaM kinase (Ca2+ sensitivity, K0.5 for calmodulin, Km for ATP, IC50 for the specific inhibitory peptide (290-309), autophosphorylation properties) are not significantly different from those of the soluble multifunctional CaM kinase II. Moreover, we show that the purified SR CaM kinase retains the ability to autophosphorylate in a Ca2+/calmodulin-dependent manner, becoming a Ca2+-independent enzyme. In the light of the knowledge of the rabbit SR CaM kinase biochemical properties, we propose and discuss the possibility that, under physiological conditions, the activity of the autophosphorylated kinase persists when the Ca2+ transient is over.  相似文献   

2.
Canine cardiac sarcoplasmic reticulum is phosphorylated by an endogenous calcium X calmodulin-dependent protein kinase and phosphorylation occurs mainly on a 27 kDa proteolipid, called phospholamban. To determine whether this phosphorylation has any effect on Ca2+ release, sarcoplasmic reticulum vesicles were phosphorylated by the calcium X calmodulin-dependent protein kinase, while non-phosphorylated vesicles were preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both non-phosphorylated and phosphorylated vesicles were centrifuged to remove calmodulin, and subsequently used for Ca2+ release studies. Calcium loading was carried out either by the active calcium pump or by incubation with high (5 mM) calcium for longer periods. Phosphorylation of sarcoplasmic reticulum by calcium X calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca2+ released from cardiac sarcoplasmic reticulum vesicles loaded under passive conditions and on the apparent 45Ca2+-40Ca2+ exchange from cardiac sarcoplasmic reticulum vesicles loaded under active conditions. Thus, it appears that calcium X calmodulin-dependent protein kinase mediated phosphorylation of cardiac sarcoplasmic reticulum is not involved in the regulation of Ca2+ release and 45Ca2+-40Ca2+ exchange.  相似文献   

3.
Modulation of sarcoplasmic reticulum (SR) Ca(2+) transport by endogenous calmodulin-dependent protein kinase II (CaM K II) involves covalent changes of regulatory protein phospholamban (PLB), as a common, but not the only mechanism, in limb slow-twitch muscles of certain mammalian species, such as the rabbit. Here, using immunofluorescent techniques in situ, and biochemical and immunological methods on the isolated SR, we have demonstrated that rabbit masseter, a muscle with a distinct embryological origin, lacks PLB. Accommodating embryological heterogeneity in the paradigm of neural-dependent expression of specific isogenes in skeletal muscle fibers, our results provide novel evidence for the differential expression in the SR of 72 kDa beta components of CaM K II, together with the expression of a slow-twitch sarcoendoplasmic reticulum Ca(2+)-ATPase isoform, both in limb muscle and in the masseter.  相似文献   

4.
Ryanodine receptors have recently been shown to be the Ca2+ release channels of sarcoplasmic reticulum in both cardiac muscle and skeletal muscle. Several regulatory sites are postulated to exist on these receptors, but to date, none have been definitively identified. In the work described here, we localize one of these sites by showing that the cardiac isoform of the ryanodine receptor is a preferred substrate for multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase). Phosphorylation by CaM kinase occurs at a single site encompassing serine 2809. Antibodies generated to this site react only with the cardiac isoform of the ryanodine receptor, and immunoprecipitate only cardiac [3H]ryanodine-binding sites. When cardiac junctional sarcoplasmic reticulum vesicles or partially purified ryanodine receptors are fused with planar bilayers, phosphorylation at this site activates the Ca2+ channel. In tissues expressing the cardiac isoform of the ryanodine receptor, such as heart and brain, phosphorylation of the Ca2+ release channel by CaM kinase may provide a unique mechanism for regulating intracellular Ca2+ release.  相似文献   

5.
Proteolytic digestion and indirect immunostaining were used to compare the platelet and sarcoplasmic reticulum Ca2+-ATPase proteins. When the platelet and sarcoplasmic reticulum Ca2+-ATPase proteins were digested in the native state with trypsin, the platelet Ca2+-ATPase, which had an apparent undigested molecular mass of 103 kDa, yielded 78-kDa and 25-kDa fragments. Calcium transport activity depended on the integrity of the 103-kDa protein, while the digested protein had residual ATPase activity. Tryptic digestion of the sarcoplasmic reticulum pump protein, which also had an undigested molecular mass of 103 kDa, yielded products with apparent molecular masses of 55 kDa, 36 kDa, and 26 kDa. Distinct patterns were also observed when the platelet and sarcoplasmic reticulum calcium pump proteins were digested with chymotrypsin and Staphylococcus aureus protease in the presence of sodium dodecyl sulfate. Chymotrypsin digestion of the platelet protein resulted in the appearance of products with apparent molecular masses of 70 kDa, 39 kDa, and 31 kDa, while a similar digestion of the sarcoplasmic reticulum calcium pump protein yielded 54-kDa, 52.5-kDa, 46-kDa, 41-kDa, and 36-kDa fragments. Exposure of the sarcoplasmic reticulum and platelet Ca2+-ATPase proteins to S. aureus protease also yielded dissimilar fragmentation patterns. These results indicate that the Ca2+-ATPases from platelets and sarcoplasmic reticulum are distinct proteins.  相似文献   

6.
K U Bayer  K Harbers    H Schulman 《The EMBO journal》1998,17(19):5598-5605
Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) is present in a membrane-bound form that phosphorylates synapsin I on neuronal synaptic vesicles and the ryanodine receptor at skeletal muscle sarcoplasmic reticulum (SR), but it is unclear how this soluble enzyme is targeted to membranes. We demonstrate that alphaKAP, a non-kinase protein encoded by a gene within the gene of alpha-CaM kinase II, can target the CaM kinase II holoenzyme to the SR membrane. Our results indicate that alphaKAP (i) is anchored to the membrane via its N-terminal hydrophobic domain, (ii) can co-assemble with catalytically competent CaM kinase II isoforms and target them to the membrane regardless of their state of activation, and (iii) is co-localized and associated with rat skeletal muscle CaM kinase II in vivo. alphaKAP is therefore the first demonstrated anchoring protein for CaM kinase II. CaM kinase II assembled with alphaKAP retains normal enzymatic activity and the ability to become Ca2+-independent following autophosphorylation. A new variant of beta-CaM kinase II, termed betaM-CaM kinase II, is one of the predominant CaM kinase II isoforms associated with alphaKAP in skeletal muscle SR.  相似文献   

7.
1-[N,O-Bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpipera zine (KN-62), a selective inhibitor of rat brain Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM kinase II) was synthesized and its inhibitory properties in vitro and in vivo were investigated. KN-62 inhibited phosphorylation of exogenous substrate (chicken gizzard myosin 20-kDa light chain) by Ca2+/CaM kinase II with Ki value of 0.9 microM, but no significant effect up to 100 microM on activities of chicken gizzard myosin light chain kinase, rabbit brain protein kinase C, and bovine heart cAMP-dependent protein kinase type II. KN-62 also inhibited the Ca2+/calmodulin-dependent autophosphorylation of both alpha (50 kDa) and beta (60 kDa) subunits of Ca2+/CaM kinase II dose dependently in the presence or absence of exogenous substrate. Kinetic analysis indicated that this inhibitory effect of KN-62 was competitive with respect to calmodulin. However, KN-62 did not inhibit the activity of autophosphorylated Ca2+/CaM kinase II. Moreover, Ca2+/CaM kinase II bound to a KN-62-coupled Sepharose 4B column, but calmodulin did not. These results suggest that KN-62 affects the interaction between calmodulin and Ca2+/CaM kinase II following inhibition of this kinase activity by directly binding to the calmodulin binding site of the enzyme but does not affect the calmodulin-independent activity of already autophosphorylated (activated) enzyme. We examined the effect of KN-62 on cultured PC12 D pheochromocytoma cells. KN-62 suppressed the A23187 (0.5 microM)-induced autophosphorylation of the 53-kDa subunit of Ca2+/CaM kinase in PC12 D cells, which was immunoprecipitated with anti-rat forebrain Ca2+/CaM kinase II polypeptides antibodies coupled to Sepharose 4B, thereby suggesting that KN-62 could inhibit the Ca2+/CaM kinase II activity in vivo.  相似文献   

8.
Sarcoplasmic reticulum isolated from moderately fast rabbit skeletal muscle contains intrinsic adenosine 3',5'-monophosphate (cAMP)-independent protein kinase activity and a substrate of 100 000 Mr. Phosphorylation of skeletal sarcoplasmic reticulum by either endogenous membrane bound or exogenous cAMP-dependent protein kinase results in stimulation of the initial rates of Ca2+ transport and Ca2+-ATPase activity. To determine the molecular mechanism by which protein kinase-dependent phosphorylation regulates the calcium pump in skeletal sarcoplasmic reticulum, we examined the effects of protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Skeletal sarcoplasmic reticulum vesicles were preincubated with cAMP and cAMP-dependent protein kinase in the presence (phosphorylated sarcoplasmic reticulum) and absence (control sarcoplasmic reticulum) of adenosine 5'-triphosphate (ATP). Control and phosphorylated sarcoplasmic reticulum were subsequently assayed for formation (5-100 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase. Protein kinase mediated phosphorylation of skeletal sarcoplasmic reticulum resulted in pronounced stimulation of initial rates and levels of E approximately P in sarcoplasmic reticulum preincubated with either ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) prior to assay (Ca2+-free sarcoplasmic reticulum), or with calcium/EGTA buffer (Ca2+-bound sarcoplasmic reticulum). These effects were evident within a wide range of ionized Ca2+. Phosphorylation of skeletal sarcoplasmic reticulum by protein kinase also increased the initial rate of E approximately P decomposition. These findings suggest that protein kinase-dependent phosphorylation of skeletal sarcoplasmic reticulum regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the active calcium transport observed at steady state.  相似文献   

9.
The effect of cyclic AMP on Ca2+ uptake by rabbit heart microsomal vesicular fractions representing mainly fragments of either sarcoplasmic reticulum or sarcolemma was investigated in the presence and absence of soluble cardiac protein kinase and with microsomes prephosphorylated by cyclic AMP-dependent protein kinase. The acceleration of oxalate-promoted Ca2+ uptake by fragmented sarcoplasmic reticulum following cyclic AMP-dependent membrane protein phosphorylation, observed by other authors, was confirmed. In addition it was found that the acceleration was greatest at pH 7.2 and almost negligible at pH 6.0 and pH 7.8. A very marked increase in Ca2+ uptake by cyclic AMP-dependent membrane protein phosphorylation was observed in the presence of boric acid, a reversible inhibitor of Ca2+ uptake. In addition to the microsomal fraction thought to represent mainly fragments of the sarcoplasmic reticulum, the effect of protein kinase and cyclic AMP on Ca2+ uptake was investigated in a cardiac sarcolemma-enriched membrane fraction. Ca2+ uptake by sarcolemmal vesicles, unlike Ca2+ uptake by sarcoplasmic reticulum vesicles, was inhibited by low doses of digitoxin. The acceleration of oxalate-promoted Ca2+ uptake by cyclic AMP and soluble cardiac protein kinase, however, was quite similar to what was seen in preparations of fragmented sarcoplasmic reticulum, which suggests that it may reflect an acceleration of active Ca2+ transport across the myocardial cell surface membrane.  相似文献   

10.
Elevations in the intracellular Ca(2+) concentration activate the serine/threonine protein kinase Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). We tested the hypothesis that increased sarco(endo)plasmic reticulum Ca(2+)-ATPase activity by phospholamban (PLB) phosphorylation contributes to smooth muscle relaxation by elevating the sarcoplasmic reticulum (SR) Ca(2+) load and increasing the frequency of Ca(2+) release events from the SR. We have previously shown that caffeine or sodium nitroprusside (SNP) relaxes murine gastric fundus smooth muscles and increases PLB phosphorylation by CaM kinase II. These findings suggest that an increased SR Ca(2+) load increases the frequency of Ca(2+) transients from the SR and results in PLB phosphorylation by CaM kinase II, contributing to caffeine- or SNP-induced relaxation. The aim of the present study was to investigate the effects of SNP on CaM kinase II and PLB phosphorylation in gastric antrum smooth muscles. SNP or 8-bromo-cGMP decreased the basal tone and amplitudes of spontaneous phasic contractions and activated CaM kinase II. SNP-induced relaxation and CaM kinase II activation were blocked by [1,2,4]oxadizolo-[4,3alpha]quinoxaline-1-one (ODQ) and inhibited by cyclopiazonic acid (CPA) or KN-93. SNP also increased PLBSer(16) and PLBThr(17) phosphorylation. Both PLBSer(16) and Thr(17) phosphorylation were ODQ sensitive. However, only PLBThr(17) phosphorylation was inhibited by CPA or KN-93. These results suggest that CaM kinase II activation and PLB phosphorylation participate in the relaxant effect of SNP on murine gastric antrum smooth muscles through a nitric oxide/guanylyl cyclase/cGMP pathway.  相似文献   

11.
The Ca2+ -activated neutral protease can proteolyze both Ca2+ -dependent cyclic nucleotide phosphodiesterase and smooth muscle myosin light chain kinase. Ca2+ -dependent cyclic nucleotide phosphodiesterase from rat brain was converted to the Ca2+ -independent active form by Ca2+ -activated protease. The proteolytic effects on myosin light chain kinase of Ca2+-activated protease differed in the presence and absence of the Ca2+-calmodulin (CaM) complex. In the presence of bound CaM, myosin light chain kinase (130k dalton) was degradated to a major fragment of 62 kDa, which had Ca2+/CaM-dependent enzyme and CaM-binding activity. When digestion occurred in the absence of bound CaM, myosin light chain kinase cleaved to a fragment of 60 kDa. This peptide had no enzymatic activity in the presence or absence of the Ca2+-CaM complex. Available evidence suggests that the Ca2+-activated proteases may recognize the conformational change of smooth muscle myosin light chain kinase induced by Ca2+-CaM complex.  相似文献   

12.
Phosphorylation of sarcoplasmic reticulum (SR) Ca2+-cycling proteins by a membrane-associated Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) is a well-documented physiological mechanism for regulation of transmembrane Ca2+ fluxes and the cardiomyocyte contraction-relaxation cycle. The present study investigated the effects of L-thyroxine-induced hyperthyroidism on protein expression of SR CaM kinase II and its substrates, endogenous CaM kinase II-mediated SR protein phosphorylation, and SR Ca2+ pump function in the rabbit heart. Membrane vesicles enriched in junctional SR (JSR) or longitudinal SR (LSR) isolated from euthyroid and hyperthyroid rabbit hearts were utilized. Endogenous CaM kinase II-mediated phosphorylation of ryanodine receptor-Ca2+ release channel (RyR-CRC), Ca2+-ATPase, and phospholamban (PLN) was significantly lower (30-70%) in JSR and LSR vesicles from hyperthyroid than from euthyroid rabbit heart. Western immunoblotting analysis revealed significantly higher (approximately 40%) levels of sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) in JSR, but not in LSR, from hyperthyroid than from euthyroid rabbit heart. Maximal velocity of Ca2+ uptake was significantly increased in JSR (130%) and LSR (50%) from hyperthyroid compared with euthyroid rabbit hearts. Apparent affinity of the Ca2+-ATPase for Ca2+ did not differ between the two groups. Protein levels of PLN and CaM kinase II were significantly lower (30-40%) in JSR, LSR, and ventricular tissue homogenates from hyperthyroid rabbit heart. These findings demonstrate selective downregulation of expression and function of CaM kinase II in hyperthyroid rabbit heart in the face of upregulated expression and function of SERCA2 predominantly in the JSR compartment.  相似文献   

13.
Junctional sarcoplasmic reticulum (SR) vesicles isolated from back muscles of normal and malignant hyperthermia susceptible (MHS) pigs were phosphorylated by addition of MgATP in the presence of 5 mM Ca2+ and 1 microM calmodulin (CaM). The major site of phosphorylation was a 60 kDa protein both in normal and MHS SR. The maximal amount of phosphorylation in MHS SR (5 pmol P/mg SR) was significantly lower than that in the normal SR (12 pmol P/mg SR). The phosphorylated 60 kDa protein was spontaneously dephosphorylated both in normal and MHS SR. Ca2+ release from the passively loaded SR was induced by a Ca2+-jump, and monitored by stopped-flow fluorometry using chlorotetracycline. In the absence of preincubation with MgATP, no significant difference was found in any of the kinetic parameters of Ca2+ release between normal and MHS SR. Upon addition of 20 microM MgATP to the passively loaded SR to phosphorylate the 60 kDa protein, the initial rate of Ca2+ release in normal SR significantly decreased from 659 +/- 102 to 361 +/- 105 nmol Ca2+/mg SR per s, whereas in MHS SR the rate decreased from 749 +/- 124 to 652 +/- 179 nmol Ca2+/mg SR per s. Addition of 20 microM adenosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppA) did not significantly alter the initial rate of Ca2+ release both in normal and MHS SR. These results suggest that the previously reported higher Ca2+ release rate in MHS SR (Kim et al. (1984) Biochim. Biophys. Acta 775, 320-327) is at least partly due to the reduced extent of the Ca2+/CaM-dependent phosphorylation of the 60 kDa protein. Two-dimensional gel electrophoresis study showed that amount of a protein with Mr = 55,000 was significantly lower in MHS SR than in normal SR suggesting that the abnormally lower amount of 55 kDa protein would cause the lower amount of phosphorylation of the 60 kDa protein in MHS SR.  相似文献   

14.
Sarcolemmal vesicles were prepared from bovine cardiac muscle by differential and discontinuous sucrose density gradient centrifugation. Na+/K+-ATPase was purified 33-fold to a specific activity of 53 +/- 0.5 (12) mumol Pi X mg-1 X h-1, binding sites for strophantin 20-fold to a density of 56.3 +/- 5.3 (14) pmol/mg and that for the calcium antagonist nitrendipine 5.5-fold to a density of 0.72 +/- 0.07 (6) pmol/mg. The specific activity of the Na+/Ca2+ exchanger was 61.1 +/- 3.7 (6) nmol/mg. The vesicles had an intravesicular volume of 20 +/- 4 (4) microliter/mg and 56.9 +/- 6 (4)% of the vesicles were right-side-out oriented. Several peptides of the purified membranes were phosphorylated in the presence of Mg . ATP and EGTA. Most of the radioactive phosphate was incorporated into a peptide with an apparent molecular mass of 22 kDa. Denaturation of the membranes at 100 degrees C changed the mobility of this peptide to 15 kDa and 11 kDa. This peptide could not be distinguished from a sarcoplasmic reticulum peptide of similar molecular mass. The phosphorylation of the sarcolemmal peptide was stimulated by Ca2+/calmodulin, cAMP and the catalytic subunit of cAMP-dependent protein kinase. A comparison of the phosphorylation of sarcolemmal membranes with that of sarcoplasmic reticulum showed that Ca2+/calmodulin stimulated in each membrane, the phosphorylation of the 22-kDa peptide and a 44-kDa peptide, and in the sarcoplasmic reticulum the phosphorylation of an additional peptide of 55-kDa. Ca2+/calmodulin-dependent phosphorylation of a 55-kDa peptide could not be demonstrated in sarcolemma, regardless if sarcolemmal membranes were incubated together with sarcoplasmic reticulum or if the phosphorylation was carried out in the presence of purified cardiac myosin light chain kinase or phosphorylase kinase. 'Depolarization' induced Ca2+ uptake which was measured according to Bartschat, D.K., Cyr, D.L. and Lindenmayer, G.E. [(1980) J. Biol. Chem. 255, 10044-10047] was 5 nmol/mg protein. This uptake was not enhanced after preincubation of the vesicles with Mg . ATP or Mg . ATP and cAMP-dependent protein kinase. The value of 5 nmol/mg protein is in agreement with the theoretical amount of Ca2+ which can be accumulated by the bovine cardiac sarcolemma in the absence of a driving force other than the Ca2+ gradient. The potassium-stimulated Ca2+ uptake was not blocked by the organic Ca2+ channel blockers. Prolonged incubation of Mg . ATP with sarcolemmal vesicles in the presence of various ATPase inhibitors led to the hydrolysis of ATP. The liberated phosphate precipitated with Ca2+ in the presence of LaCl3. These precipitates amounted to an apparent Ca2+ uptake ranging from 50 to over 1000 nmol/mg. The results suggest that potassium-stimulated Ca2+ uptake of bovine cardiac sarcolemmal vesicles is not enhanced in the presence of ATP or by phosphorylation of a 22-kDa peptide.  相似文献   

15.
Sarcolemmal fractions of vascular smooth muscles were prepared from porcine thoracic aortae by differential and sucrose density gradient centrifugation. In these fractions, there was a high activity of 5'-nucleotidase, a putative marker enzyme of plasma membrane, and a low activity of rotenone insensitive NADH-cytochrome c reductase a marker of sarcoplasmic reticulum. In these fractions, the Ca2+ uptake was ATP-dependent. A low concentration of saponin which inhibited Ca2+ uptake by the plasma membrane but not by the sarcoplasmic reticulum, inhibited 65% of the Ca2+ uptake of this fraction. The Ca2+ uptake of this fraction was enhanced by cAMP- and cGMP-dependent protein kinases, and by calmodulin. The cAMP-dependent protein kinase enhanced the phosphorylation of 28 and 22 kDa proteins, while the cGMP-dependent protein kinase phosphorylated the 35 kDa protein. The phosphorylation of 100, 75, 65, 41 and 22 kDa proteins was enhanced by Ca2+ and calmodulin. These results indicate that cAMP- and cGMP-dependent protein kinases as well as calmodulin play important roles in Ca2+ transport in the sarcolemma, and that the phosphorylated proteins may be associated with an enhancement of Ca2+ transport in the sarcolemma.  相似文献   

16.
The functional effects of calmodulin (CaM) on single cardiac sarcoplasmic reticulum Ca(2+) release channels (ryanodine receptors) (RyR2s) were determined in the presence of two endogenous channel effectors, MgATP and reduced glutathione, using the planar lipid bilayer method. Single-channel activities, number of events, and open and close times were determined at varying cytosolic Ca(2+) concentrations. CaM reduced channel open probability at <10 micro M Ca(2+) by decreasing channel events and mean open times and increasing mean close times. At >10 micro M Ca(2+), CaM was less effective in inhibiting RyR2. CaM decreased mean open times but increased channel events, without significantly affecting mean close times. A series of voltage pulses was applied to the bilayer from +50 to -50 mV and from -50 mV to +50 mV to rapidly increase and decrease open channel-mediated sarcoplasmic reticulum lumenal to cytosolic Ca(2+) fluxes. CaM decreased the duration of the open events after the voltage switch from -50 mV to +50 mV. In parallel experiments, a Ca(2+)-insensitive calmodulin mutant was without effect on RyR2 activity. The results are discussed in terms of a possible role of CaM in the termination of cardiac sarcoplasmic reticulum Ca(2+) release.  相似文献   

17.
The subcellular localization of myotonic dystrophy protein kinase has been examined in human cardiac muscles with confocal laser-scanning microscopy and electron microscopy. A polyclonal antibody was produced against the synthesized peptide from a human kinase cDNA clone. We checked the antibody specificity for cardiac myotonic dystrophy protein kinase using an immunoblotting technique. Immunoblotting of extract from human cardiac muscles showed mainly 70 kDa and 55 kDa molecular weight bands. Confocal images of the protein kinase immunostaining showed striated banding patterns similar to those of skeletal muscles. In addition, the kinase was strongly detected around the intercalated disc. Immunoelectron microscopy showed that the kinase was mainly expressed in both corbular and junctional sarcoplasmic reticulum, but not in network sarcoplasmic reticulum. These results suggest that myotonic dystrophy protein kinase may be involved in the modulation of Ca2+ homeostasis in cardiac myofibres. © 1998 Chapman & Hall  相似文献   

18.
We have demonstrated by immunological and molecular methods the presence of a reticulum endoplasmic-related Ca2+-ATPase in human omental microvascular endothelial cells (HOME cells). HOME cells reacted positively with a previously characterized sarcoplasmic reticulum Ca2+-ATPase antibody as demonstrated by indirect immunofluorescence. Western blotting revealed that the antibody recognized a 95-100 kDa protein. 35S-Metabolic labeling led to the detection of a similar protein with which the purified sarcoplasmic reticulum Ca2+-ATPase competed. Dot-blotting experiments indicated that a substantial amount of Ca2+-ATPase was present in HOME cell membranes. In addition, Northern blot analysis using a cDNA probe from cardiac sarcoplasmic reticulum showed the presence of mRNA species of 4-kb. As these experiments were conducted in comparison with cell types with well-defined Ca2+-ATPase in HOME cells.  相似文献   

19.
Calmodulin(CaM)-dependent cyclic nucleotide phosphodiesterase (PDE1) plays a critical role in the complex interactions between the cyclic nucleotide and Ca(2+) second messenger systems. Bovine brain contains two major PDE1 isozymes, designated according to tissue origin and subunit molecular mass as brain 60 kDa and 63 kDa PDE1 isozymes. Kinetic properties suggest that 63 kDa PDE1 isozyme is distinct from 60 kDa, heart and lung PDE1 isozymes. Although 60 kDa, heart and lung PDE1 isozymes are almost identical in immunological properties, they are differentially activated by calmodulin (CaM). These isozymes are further distinguished by the effects of pharmacological agents. Another main difference is that 60 kDa PDE1 isozyme is a substrate of cAMP-dependent protein kinase, whereas, 63 kDa PDE1 isozyme is phosphorylated by CaM-dependent protein kinase. The phosphorylation of PDE1 isozymes is accompanied by a decrease in the isozyme affinity towards CaM, and it can be reversed by a CaM-dependent phosphatase (calcineurin). The complex regulatory properties of PDE1 isozymes are precisely regulated by cross-talk between the Ca(2+) and cAMP signaling pathways.  相似文献   

20.
Phospholamban (PLB) inhibits the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA), and this inhibition is relieved by Ca(2+) calmodulin-dependent protein kinase II (CaM kinase II) phosphorylation. We previously reported significant differences in contractility, SR Ca(2+) release, and CaM kinase II activity in gastric fundus smooth muscles as a result of PLB phosphorylation by CaM kinase II. In this study, we used PLB-knockout (PLB-KO) mice to directly examine the effect of PLB absence on contractility, CaM kinase II activity, and intracellular Ca(2+) waves in gastric antrum smooth muscles. The frequencies and amplitudes of spontaneous phasic contractions were elevated in antrum smooth muscle strips from PLB-KO mice. Bethanecol increased the amplitudes of phasic contractions in antrum smooth muscles from both control and PLB-KO mice. Caffeine decreased and cyclopiazonic acid (CPA) increased the basal tone of antrum smooth muscle strips from PLB-KO mice, but the effects were less pronounced compared with control strips. The CaM kinase II inhibitor KN-93 was less effective at inhibiting caffeine-induced relaxation in antrum smooth muscle strips from PLB-KO mice. CaM kinase II autonomous activity was elevated, and not further increased by caffeine, in antrum smooth muscles from PLB-KO mice. Similarly, the intracellular Ca(2+) wave frequency was elevated, and not further increased by caffeine, in antrum smooth muscles from PLB-KO mice. These findings suggest that PLB is an important modulator of gastric antrum smooth muscle contractility by modulation of SR Ca(2+) release and CaM kinase II activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号