首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic treatment of neuroblastoma X glioma NG108-15 hybrid cells with opiate agonist resulted in loss of the acute opiate inhibition of adenylate cyclase activity with a concomitant increase in the enzymatic activity observable on addition of the antagonist naloxone. The role of membrane lipids in the cellular expression of these chronic opiate effects was investigated by the hydrolysis of phospholipids with various lipases. Treatment with phospholipase C from Clostridium welchii produced an enzyme concentration-dependent decrease of prostaglandin E1-stimulated adenylate cyclase activity in control or etorphine-treated (1 microM for 4 h) hybrid cells. In addition, incubation of hybrid cells with phospholipase C concentrations of greater than or equal to 0.5 U/ml completely abolished the compensatory increase in adenylate cyclase activity after chronic opiate treatment. This attenuation of the increase in adenylate cyclase activity by phospholipase C could be prevented by inclusion of phosphatidylcholine but not of phosphatidic acid during the enzymatic incubations. The specificity of the phospholipids involved in expression of the chronic opiate effect could be demonstrated further by the absence of effect exhibited by phospholipase C from Bacillus cereus and phospholipase D. Hydrolysis of the acyl side chains of phospholipids with phospholipase A2 did not alter the chronic opiate effect after removal of lysophosphatides with bovine serum albumin. Because the guanylylimidodiphosphate- and NaF-sensitive adenylate cyclase activities were not affected by these phospholipase treatments, the expression of the compensatory increase in adenylate cyclase activity is mediated via an increase in the coupling between hormonal receptor and adenylate cyclase with the participation of the polar head groups of the phospholipids and not the hydrophobic side chains.  相似文献   

2.
Abstract: The cholinergic agonist carbachol, epinephrine, and the opiate morphine all inhibit prostaglandin E1 (PGE1)-stimulated adenylate cyclase in homogenates from the neuroblastoma-glioma hybrid NG108-15. Pretreatment of the hybrid with 100 μ M carbachol resulted in the rapid loss (desensitization) of the carbachol inhibition of adenylate cyclase (tM1/2< 3 min). The desensitization of the carbachol inhibition was blocked by 0.1 μ M atropine. Pretreatment with carbachol (1–24 h) did not significantly affect the inhibition of adenylate cyclase by either epinephrine or morphine, nor did it alter the PGE1-stimulated activity, that is, no supersensitization was observed. Cholate extracts of the particulate fraction from either carbachol-desensitized or of control NGlOS-15 were able to reconstitute adenylate cyclase activities of the coupling proteins (G/F)-deficient cyclymphoma cell membranes with equal efficacy. These results suggested that the coupling proteins of the adenylate cyclase were not altered by the carbachol pretreatment and that desensitization occurs at the receptor or at a receptor-associated level. However, the possibility remained that specific domains of the G/F, which interact only with muscarinic receptors, were altered.  相似文献   

3.
Abstract: Monolayer cultures of neuroblastome × glioma hybrid (clonal) cell line NG108-15, synchronized by the isoleucine/glutamine deprivation method, showed maximal expression of opiate binding sities at the same point in the cell cycle at which prostaglandin E1(PGE1) had a maximum stimulatory effect of cyclinc AMP synthesis. However, the capacity of enkephalin (D-Ala2D-Leu5] to block the stimulation of cyclic AMP synthesis by PGE1 was not related to the number of opiate receptors expressed. The K1 for the inhibition of cyclic AMP synthesis by opioid peptides increased substanitilly during the period of the cell cycle at which maximal expression of opiate binding sites occurred, making the effectivel level of inhibition of adenylate cyclase activity by 0.1μM enkephalin [D-Al2D-Leu3] the same throght the cell cycle. Data are presented to suggest the enkephalin receptor coupling to adenylate cyclase, via a GTP-binding protein, is maximal during G1 phase (which may approximate the state of the differentiated neuron) and minimal during S + G2 phase, just prior to cell division, when many receptors are uncoupled.  相似文献   

4.
The role of membrane phospholipids in enkephalin receptor-mediated inhibition of adenylate cyclase (EC 4.6.1.1) activity in neuroblastoma X glioma NG108-15 hybrids was studied by selective hydrolysis of lipids with phospholipases. When NG108-15 cells were treated with phospholipase C from Clostridium welchii at 37 degrees C, an enzyme concentration--dependent decrease in adenylate cyclase activity was observed. The basal and prostaglandin E1 (PGE1)-stimulated adenylate cyclase activities were more sensitive to phospholipase C (EC 3.1.4.3) treatment than were the NaF-5'-guanylylimidodiphosphate (Gpp(NH)p)-sensitive adenylate cyclase activities. Further, Leu5-enkephalin inhibition of basal or PGE1-stimulated adenylate cyclase activity was attenuated by phospholipase C treatment, characterized by a decrease of enkephalin potency and of maximal inhibitory level. [3H]D-Ala2-Met5-enkephalinamide binding revealed a decrease in receptor affinity with no measurable reduction in number of binding sites after phospholipase C treatment. Although opiate receptor was still under the regulation of guanine nucleotide after phospholipase C treatment, adenylate cyclase activity was more sensitive to the stimulation of Gpp(NH)p. Thus, the reduction of opiate agonist affinity was not due to the uncoupling of opiate receptor from N-component. Further, treatment of NG108-15 hybrid cell membrane with phospholipase C at 24 degrees C produced analogous attenuation of enkephalin potency and efficacy without alteration in receptor binding. The reduction in enkephalin potency could be reversed by treating NG108-15 membrane with phosphatidylcholine, but not with phosphatidylserine, phosphatidylinositol, or cerebroside sulfate. The enkephalin activity in NG108-15 cells was not altered by treating the cells with phospholipase A2 o phospholipase C from Bacillus cereus. Hence, apparently, there was a specific lipid dependency in enkephalin inhibition of adenylate cyclase activity.  相似文献   

5.
Adenylate cyclase in NG108-15 (neuroblastoma X glioma hybrid) cells is responsive to both stimulatory and inhibitory ligands. Bordetella pertussis toxin (PT) catalyzes the ADP-ribosylation of a 41,000-Da peptide believed to be a subunit of the putative guanyl nucleotide-binding protein (Gi) involved in cyclase inhibition and abolishes inhibitory effects of opiate agonists. In studying the effects of PT on opiate receptors, we found that [3H]enkephalinamide binding was reduced by approximately 90% in membranes prepared from cells incubated with PT compared to control membranes. Agonist affinity, assessed by enkephalinamide competition for [3H]diprenorphine-binding sites, was markedly reduced in cells incubated with PT. Furthermore, inhibition by guanylylimidodiphosphate of ligand binding to opiate receptors was reduced following treatment with PT. The number of opiate receptors assessed by [3H]diprenorphine binding was unaltered by PT. These data are consistent with the hypothesis that PT-catalyzed ADP-ribosylation impairs the interaction of Gi with the inhibitory receptor-ligand complex, effectively uncoupling the inhibitory receptor from Gi and the cyclase catalytic unit.  相似文献   

6.
Pertussis toxin inhibits enkephalin stimulation of GTPase of NG108-15 cells   总被引:22,自引:0,他引:22  
In neuroblastoma-glioma (NG108-15) hybrid cells, opiates inhibit adenylate cyclase and stimulate a low Km GTPase. It has been postulated that the stimulation of GTPase plays a role in opiate inhibition of adenylate cyclase (Koski, G., and Klee, W. A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 4185-4189). Treatment of NG108-15 cells with pertussis toxin attenuates receptor-mediated inhibition of adenylate cyclase. The toxin acts by catalyzing the ADP-ribosylation of a 41,000-dalton substrate believed to be a part of the receptor-adenylate cyclase complex. We have found that toxin treatment of NG108-15 results in inhibition of the opiate-stimulated GTPase. The concentration of toxin required for inhibition of this GTPase was similar to that needed for both attenuation of opiate inhibition of adenylate cyclase and ADP ribosylation of the 41,000-dalton substrate. Inhibition of the opiate-induced GTPase by pertussis toxin in isolated membranes required NAD, consistent with the hypothesis that this effect of the toxin resulted from ADP ribosylation of a protein component of the system. Since the opiate-stimulated GTPase is believed to play a role in the receptor-mediated decrease in adenylate cyclase activity, inhibition of this GTPase may be an important part of the mechanism by which the toxin interferes with opiate action on adenylate cyclase.  相似文献   

7.
(-)-Norepinephrine and other catecholamines inhibit basal and prostaglandin E1-stimulated adenylate cyclase activities by 35 to 60% in homogenates of NG108-15 neuroblastoma x gloma hybrid cells and markedly reduce adenosine 3'35:'-monophosphate levels of intact cells, but do not affect guanosine 3':5'-monophosphate levels. The specificity of the NG108-15 receptor for ligands is that of an alpha receptor, possibly a presynaptic alpha 2 receptor. The inhibition of adenylate cyclase by norepinephrine is reversed by alpha receptor antagonists such as dihydroergotamine or phentolamine, but not by the beta receptor antagonist propranolol. The effect of norepinephrine on adenylate cyclase activity initially is dependent on GTP; half-maximal inhibition of enzyme activity by norepinephrine is obtained with 0.2 micron GTP. The inhibition of adenylate cyclase activity by norepinephrine is reduced by 10 mM NaF and is abolished by 0.05 mM guanyl-5'-yl imidodiphosphate. Inhibitions of NG108-15 adenylate cyclase mediated by alpha receptors, opiate receptors, and muscarinic acetylcholine receptors are not additive; this suggests that the three species of receptors can be functionally coupled to the same adenylate cyclase molecules or molecules regulating the enzyme.  相似文献   

8.
Chronic treatment of neuroblastoma X glioma NG108-15 hybrid cells with 10 nM [D-Ala2,D-Leu5] enkephalin (DADLE) results in a reduction of cell-surface opiate delta receptors. Whether opiate receptor internalization requires the activation of the guanine nucleotide-binding protein (Ni) is unclear. Hence, activation of Ni was attenuated by treating hybrid cells with 100 ng/ml pertussis toxin (PT) for 3 h, which resulted in a decrease in DADLE's ability to inhibit adenylate cyclase activity. Despite this prior treatment with PT, chronic exposure of these cells to 10 nM DADLE resulted in a time-dependent decrease in both [3H]diprenorphine and [3H]DADLE binding. This reduction in 3H-ligand binding in cells previously treated with PT represented internalization of the receptors because translocation was observed of bound [3H]DADLE from plasma membrane fractions to the lysosomal fractions in the Percoll gradients. Thus, opiate receptors internalize without activation of Ni. The internalization of opiate receptors was not accompanied by Ni. By measuring the amount of the 41-kDa alpha subunit being labeled by PT with [32P]NAD+, it was determined that plasma membrane preparations, of both the control cells and cells treated with 10 nM of DADLE for 4 h, contained equal concentrations of Ni, 2 pmol of Ni/mg of protein. Additionally, there was no measurable alteration in the amount of PT substrate in the lysosomal fractions of the DADLE-treated cells as compared to that of control cells. Chronic DADLE treatment resulted in a decrease in Km value of NAD+ in the ADP-ribosylation of 41-kDa subunit of Ni. In summary, opiate receptors internalize as agonist-receptor complexes without the guanine nucleotide-binding component.  相似文献   

9.
NG108-15 cells were exposed in culture to 1 microM [D-Ala2,D-Leu5]enkaphalin (DADLE) for 17 h. This treatment increased the maximum iloprost- and 5'-(N-ethylcarboxamido)adenosine-dependent activation of adenylate cyclase, as well as basal enzyme activity. In addition, there was an increase in the capacity of 5'-guanylylimidodiphosphate [Gpp(NH)p] to inhibit adenylate cyclase activity by direct interaction with the alpha-subunit of the Gi regulatory protein. A similar effect was observed if the cells were exposed to 10 microM carbachol. These treatments of NG108-15 cells did not alter the capacity of NaF to activate adenylate cyclase by direct interaction with Gs alpha. Exposure of NG108-15 cells to DADLE alone or DADLE plus carbachol had no effect on the capacity of pertussis toxin to ADP-ribosylate membrane proteins in these cells; neither was there any change in the activity of eukaryotic ADP-ribosyltransferase expressed in these cells. Under these conditions, the endogenous enzyme did not label any protein with a molecular mass similar to Gi alpha, 41 kDa. Treatment of the cells with DADLE or carbachol had no effect on the abundance of Gs alpha, Gi alpha, or G beta. The underlying mechanism for the changes in agonist-dependent stimulatory responses or Gpp(NH)p-dependent inhibition of adenylate cyclase remains obscure, but appears not to be mediated by eukaryotic ADP-ribosyltransferase activity or a change in the abundance of G proteins known to regulate adenylate cyclase.  相似文献   

10.
It has been repeatedly demonstrated that the neuroblastoma-glioma (NG 108-15) cell line has opiate receptors that inhibit adenylate cyclase and it has been proposed that this inhibition is mediated by a naloxone reversible stimulation of a low Km GTPase (Koski and Klee, Proc. Natl. Acad. Sci. 78:4185, 1981). The guanine nucleotides of NG cells were labeled with [3H]guanine followed by incubation with 10?6M guanine. Etorphine (10?6M] or vehicle were added and the incubations continued for 1–4 min. The reaction was stopped with 5 percent TCA containing nucleotides as carriers and markers for the HPLC. Marker nucleotides were detected at 254 nm and the labeled nucleotides by liquid scintillation spectrometry. In several experiments, etorphine failed to produce any measurable change in the labeled nucleotides or in the GTP/GDP ratios. To verify that the opiate receptors were functional we measured its capacity to inhibit the formation of cAMP induced by PGE1. We also studied the effects of naloxone and PGE1 on the formation of cAMP in opiate tolerant cells. Tolerant cells responded to naloxone with a 50 percent increase in cAMP, indicating again that the opiate receptors were functional. Our results are consistent with the idea that in intact NG108-15 cells the opiate-mediated hydrolysis of GTP observed in cell membrane preparations is of very small magnitude.  相似文献   

11.
Opiates and opioid peptides inhibit adenylate cyclase and stimulate specific low Km GTPase activity in membranes from neuroblastoma x glioma NG108-15 hybrid cells. The effects of opiate agonists on both enzymes are mediated by high affinity stereospecific receptors and require Mg2+, GTP, and Na+. In the presence of Mg2+, Na+ inhibits basal GTPase activity; opiates stimulate GTP hydrolysis by antagonizing the Na+-induced inhibition. Activation of GTPase leads, in turn, to inactivation of GTP-stimulated adenylate cyclase activity. The intrinsic activities (or efficacies) of a series of opiates are identical for stimulation of GTPase and inhibition of adenylate cyclase. These results provide a mechanism for the dual requirement for Na+ and GTP in the inhibitory coupling of opiate receptors to the adenylate cyclase system in these cells and may be of general significance to the action of other inhibitory hormones.  相似文献   

12.
Abstract— Morphine has been observed to have only a minor effect on the prostaglandin E1 (PGE1) stimulated adenylate cyclase or the basal cyclase activity in the neuroblastoma N18TG2 calls. However, this ineffectiveness of the opiates was not due to the absence of opiate receptor in this cell line. Contrary to previous observations, neuroblastoma N18TG2 cells possessed a high affinity, stereospecific opiate receptor. When [3H]dihydromorphine and [3H]naloxone binding were determined, a single component receptor with Kdiss= 25-31 n m and with a capacity of 165 fmol/mg protein could be observed. This receptor has similar properties to those observed in the brain homogenates. The naloxone specific binding was dependent on the pH of the incubation medium and maximal binding occurred at pH 7.6. The agonist binding was inhibited by the alkali metal cations and divalent cations, while the antagonist binding was not affected by the cations significantly. There was no observable reversal of the Na+ inhibitory effect on agonist binding by the addition of Mn2+ to the incubation mixtures. Opiate binding to the neuroblastoma N18TG2 cells could be attenuated by pretreating the cells with N -ethylmaleimide or proteolytic enzymes. Of the lipases tested, only phospholipase A2 has an inhibitory effect on the naloxone binding. Fractionation of the cell homogenates with differential centrifugation and purification of the membrane fractions by sucrose gradients suggested the localization of the receptor at the plasma membranes. Thus, the receptor in the neuroblastoma N18TG2 cells closely resembles those observed in the brain homogenates  相似文献   

13.
Photolabile derivatives of D-Ala2-Leu5-enkephalin were prepared by synthetic procedures in which a 2-nitro-4-azidophenyl group is linked to the terminal carboxyl group of the enkephalin by means of an ethylenediamine or ethylenediamine beta-alanine spacer. These peptides bind to opiate receptors with nanomolar affinities and inhibit electrically stimulated contractions of the mouse vas deferens and adenylate cyclase activity of NG108-15 neuroblastoma x glioma hybrid cell membranes. Both inhibitions are reversed by the opiate antagonist naloxone. Photolysis of the ligands bound to rat brain membranes results in the loss of approximately 50% of the receptor sites. This decrease in receptor number is blocked by naloxone and requires light. A photolabile [3H]enkephalin derivative labels an equivalent number of sites under similar irradiation conditions.  相似文献   

14.
A novel analogue of clonidine with opiate-receptor agonist activity   总被引:1,自引:0,他引:1  
A new analogue of the α2-adrenergic receptor ligand clonidine, N-(4-hydroxphenacetyl)-4-aminoclonidine, was synthesized. The analogue possesses opiate-receptor agonist activity in addition to α-adrenergic partial agonist activity. The analogue elicits inhibition of adenylate cyclase of NG108-15 neuroblastoma × glioma hybrid cells; most of the inhibition is reversed by the opiate-receptor antagonist naloxone. The analogue also inhibits the binding of [3H]D-Ala2-Met5-enkephalinamide and [3H]dihydromorphine to rat brain opiate receptors. The structure of the analogue suggests common elements in the ligand binding sites of α- and opiate receptors and may lead to a new class of opiate analgesics.  相似文献   

15.
The nature of the opiate modulation of adenylate cyclase following acute and chronic agonist exposure has been investigated in rat spinal cord. Using membranes of both adult rat spinal cord and spinal cord-dorsal root ganglion cocultures, we found that kappa-opiate receptors are negatively coupled to adenylate cyclase. The kappa-opiate agonists (e.g., U50488) inhibit significantly and dose-dependently the basal and the forskolin-stimulated cyclase activities, whereas mu and delta agonists are ineffective. The regulatory action is stereospecific and requires the presence of GTP. EGTA treatment of the plasma membranes abolished the effect of kappa-opiate agonists on the basal cyclase activity, and this inhibitory effect could not be restored by subsequent addition of Ca2+. The EGTA treatment did not affect the kappa agonist inhibition of the forskolin-stimulated cyclase. The results also show that following chronic exposure of cultured cells to etorphine or U50488, there is a loss of kappa agonist inhibition of the cyclase. Moreover, this desensitization process appears to be heterologous, because alpha 2-adrenergic agonists (e.g., clonidine or norepinephrine) and the muscarinic agonist (carbachol) exhibited significantly lower potency for inhibiting cyclase activity when compared to untreated cultures. This pattern of heterologous desensitization suggests that chronic exposure to kappa opiates leads to alterations in postreceptor regulatory components, possibly GTP-binding proteins.  相似文献   

16.
In cultured rat striatal neurons exposed to 10 microM morphine or oxotremorine for 24 hours, we observed an increased (about 30%) dopamine D1 receptor-stimulated cyclic AMP production, whereas no desensitization of mu-opioid receptor or muscarinic cholinergic receptor was found. However, whereas upregulation of dopamine D1 receptor-stimulated adenylate cyclase activity upon 7 days morphine exposure was at least as pronounced as observed after 24 hours of exposure to the opioid, this adaptive phenomenon was virtually absent following one week of oxotremorine treatment. This reduced adenylate cyclase sensitization upon 7 days oxotremorine exposure appeared to coincide with desensitization of muscarinic cholinergic receptors. A possible role of the resistance of mu receptors to desensitization and the (resulting) upregulation of the neuronal adenylate cyclase system upon chronic receptor activation in the development of opiate tolerance and dependence is suggested.  相似文献   

17.
Abstract: Dopamine and dopamine receptor agonists were found to inhibit adenylate cyclase activity dose-de-β ndently in a neuroblastoma × Chinese hamster brain explant hybrid cell line NCB-20. Apomorphine (with an IC50 value of 10 n M ) was the most effective inhibitor, followed by 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydro-naphthaline (ADTN), dopamine, and N -dipropyldopa-mine. The inhibition was potently reversed by sulpiride, butaclamol, and flupenthixol in a stereospecific manner, but was unaffected by yohimbine, except at high concentrations. Clonidine also inhibited adenylate cyclase activity in these cells and this was reversed by the α2-adrenoreceptor antagonist yohimbine, but not by sulpiride. [ d -Ala2, d -Leu5]Enkephalin inhibited adenylate cyclase activity in NCB-20 cells at nanomolar concentrations; this was reversed by naloxone. All three inhibitory neurotransmitters were able to reverse the stimulation of cyclic AMP synthesis by serotonin or prostaglandin E1The dopamine receptor that modulates cyclic AMP synthesis in NCB-20 cells is pharmacologically quite distinct from a high-affinity spiperone binding site identified in these cells, but shows the pharmacologic specificity of the D2 receptor previously described in mammalian brain.  相似文献   

18.
Opioid receptor activity in neuroblastoma x glioma NG108-15 hybrid cell membranes was attenuated by acid phosphatase purified by high performance liquid chromatography and devoid of protease activity. Treatment of membranes with this phosphatase decreased opioid inhibition of adenylate cyclase and this effect was potentiated by the presence of the opioid agonist during the phosphatase treatment. Phosphatase treatment did not affect the number of opioid receptors but it did alter the distribution of receptors among affinity states, by increasing the percentage of receptors in the low affinity state. The similarities between these effects and desensitization of the opioid receptor, during chronic opioid treatment, are discussed.  相似文献   

19.
Abstract— Regulation of muscarinic acetylcholine receptor concentration by receptor activity in neuron-like NG108-15 hybrid cells is a highly specific process. Receptor levels, monitored by binding of [3H]quinuclidinyl benzilate ([3H]QNB), decreased 50-75% following 24-h incubation of cells with muscarinic agonists, but none of the following cellular processes was altered by this chronic receptor stimulation: (1) glycolytic energy metabolism, measured by [3H]deoxy- d -glucose ([3H]DG) uptake and retention; (2) rate of cell division; (3) transport, measured by [3H]valine and [3H]uridine uptake; (4) RNA biosynthesis, measured by [3H]uridine incorporation; (5) protein biosynthesis, measured by [3H]valine and [35S]methionine incorporation into total protein and into protein fractions obtained by polyacrylamide gel electrophoresis. In contrast, chronic stimulation did cause a threefold decrease in the capacity of carbachol to stimulate phosphatidylinositol (PI) turnover, a receptor-mediated response. In addition to cholinomimetics, the neuroeffector adenosine (1 m m for 24 h) also caused a decrease in [3H]QNB binding levels, but chronic stimulation of α -adrenergic, opiate, prostaglandin E1, and prostaglandin F receptors found on NG108-15 cells caused no changes. The data indicate that loss of muscarinic receptors caused by receptor stimulation is not a consequence of fundamental changes evoked in overall cellular physiology but reflects a specific regulation of cholinoceptive cell responsiveness.  相似文献   

20.
When membranes from neuroblastoma X glioma NG108-15 hybrid cells were incubated in a cell-free system with opioid agonists, a time-, temperature-, and dose-dependent desensitization to opioid inhibition of adenylate cyclase activity was observed. The composition of the system during the incubation was manipulated to elucidate the biochemical mechanisms of desensitization. Receptor coupling appeared to be a prerequisite for desensitization, because both magnesium and sodium, which are necessary for coupling, were required for desensitization. Removal of ATP and addition of cyclic AMP or cyclic GMP had no effect on desensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号