首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The role of electrostatic interactions in determining the rate of electron transfer between cytochrome f and plastocyanin has been examined in vitro with mutants of turnip cytochrome f and mutants of pea and spinach plastocyanins. Mutation of lysine residues Lys58, Lys65 and Lys187 of cytochrome f to neutral or acidic residues resulted in decreased binding constants and decreased rates of electron transfer to wild-type pea plastocyanin. Interaction of the cytochrome f mutant K187E with the pea plastocyanin mutant D51K gave a further decrease in electron transfer rate, indicating that a complementary charge pair at these positions could not compensate for the decreased overall charge on the proteins. Similar results were obtained with the interaction of the cytochrome f mutant K187E with single, double and triple mutants of residues in the acidic patches of spinach plastocyanin. These results suggest that the lysine residues of the basic patch on cytochrome f are predominantly involved in long-range electrostatic interactions with plastocyanin. However, analysis of the data using thermodynamic cycles provided evidence for the interaction of Lys187 of cytochrome f with Asp51, Asp42 and Glu43 of plastocyanin in the complex, in agreement with a structural model of a cytochrome f-plastocyanin complex determined by NMR.  相似文献   

2.
Soluble turnip cytochrome f has been purified from the periplasmic fraction of Escherichia coli expressing a truncated petA gene encoding the precursor protein lacking the C-terminal 33 amino-acid residues. The protein is identical [as judged by 1H-NMR spectroscopy, midpoint redox potential (+ 365 mV) and electron transfer reactions with plastocyanin] to cytochrome f purified from turnip leaves. Several residues in the hydrophobic patch surrounding the haem group have been changed by site-directed mutagenesis, and the proteins purified from E. coli. The Y1F and Q7N mutants showed only minor changes in the plastocyanin-binding constant Ka and the second-order rate constant for electron transfer to plastocyanin, whereas the Y160S mutant showed a 30% decrease in the overall rate of electron transfer caused in part by a 60% decrease in binding constant and partially compensated by an increased driving force due to a 27-mV decrease in redox potential. In contrast, the F4Y mutant showed increased rates of electron transfer which may be ascribed to an increased binding constant and a 14-mV decrease in midpoint redox potential. This indicates that subtle changes in the hydrophobic patch can influence rates of electron transfer to plastocyanin by changing the binding constants and altering the midpoint redox potential of the cytochrome haem group.  相似文献   

3.
The interaction between plastocyanin and the intact cytochrome bf complex, both from spinach, has been studied by stopped-flow kinetics with mutant plastocyanin to elucidate the site of electron transfer and the docking regions of the molecule. Mutation of Tyr-83 to Arg or Leu provides no evidence for a second electron transfer path via Tyr-83 of plastocyanin, which has been proposed to be the site of electron transfer from cytochrome f. The data found with mutations of acidic residues indicate that both conserved negative patches are essential for the binding of plastocyanin to the intact cytochrome bf complex. Replacing Ala-90 and Gly-10 at the flat hydrophobic surface of plastocyanin by larger residues slowed down and accelerated, respectively, the rate of electron transfer as compared with wild-type plastocyanin. These opposing effects reveal that the hydrophobic region around the electron transfer site at His-87 is divided up into two regions, of which only that with Ala-90 contributes to the attachment to the cytochrome bf complex. These binding sites of plastocyanin are substantially different from those interacting with photosystem I. It appears that each of the two binding regions of plastocyanin is split into halves, which are used in different combinations in the molecular recognition at the two membrane complexes.  相似文献   

4.
Chemical modification of plastocyanin was carried out using 4-chloro-3,5-dinitrobenzoic acid, which has the effect of replacing positive charges on amino groups with negatively charged carboxyl groups. Four singly-modified forms were obtained which were separated using anion exchange FPLC. The four forms were modified at the N-terminal valine and at lysines 54, 71 and 77. The rates of reaction with mammalian cytochrome c were increased for all four modified plastocyanins. In contrast, the rates of reaction with cytochrome f were inhibited for the forms modified at residues 1, 54 and 77, whereas no effect was observed for the form modified at residue 71. Modification had no effect on either the midpoint redox potential or the reaction with K3Fe(CN)6. These results are consistent with a model in which charged residues on plastocyanin located at or near the binding site for cytochrome f recognize the positively-charged binding site on cytochrome f. In contrast, charged residues located at points on plastocyanin distant from the cytochrome f binding site recognize the net negative charge on the cytochrome f molecule. Based on these considerations, Glu-68 may be within the interaction sphere of cytochrome f, suggesting that cytochrome f may donate electrons to plastocyanin at either Tyr-83 or His-87.  相似文献   

5.
This paper reports the first site-directed mutagenesis analysis of any cytochrome c6, a heme protein that performs the same function as the copper-protein plastocyanin in the electron transport chain of photosynthetic organisms. Photosystem I reduction by the mutants of cytochrome c6 from the cyanobacterium Synechocystis sp. PCC 6803 has been studied by laser flash absorption spectroscopy. Their kinetic efficiency and thermodynamic properties have been compared with those of plastocyanin mutants from the same organism. Such a comparative study reveals that aspartates at positions 70 and 72 in cytochrome c6 are located in an acidic patch that may be isofunctional with the well known "south-east" patch of plastocyanin. Calculations of surface electrostatic potential distribution in the mutants of cytochrome c6 and plastocyanin indicate that the changes in protein reactivity depend on the surface electrostatic potential pattern rather than on the net charge modification induced by mutagenesis. Phe-64, which is close to the heme group and may be the counterpart of Tyr-83 in plastocyanin, does not appear to be involved in the electron transfer to photosystem I. In contrast, Arg-67, which is at the edge of the cytochrome c6 acidic area, seems to be crucial for the interaction with the reaction center.  相似文献   

6.
Transient complex formation between plastocyanin from Prochlorothrix hollandica and cytochrome f from Phormidium laminosum was investigated using nuclear magnetic resonance (NMR) spectroscopy. Binding curves derived from NMR titrations at 10 mM ionic strength reveal a 1:1 stoichiometry and a binding constant of 6 (+/-2) x 10(3) M(-1) for complex formation, 1 order of magnitude larger than that for the physiological plastocyanin-cytochrome f complex from Ph. laminosum. Chemical-shift perturbation mapping indicates that the hydrophobic patch of plastocyanin is involved in the complex interface. When the unusual hydrophobic patch residues of P. hollandica plastocyanin were reverted to the conserved residues found in most other plastocyanins (Y12G/P14L), the binding constant for the interaction with cytochrome f was unaffected. However, the chemical shift perturbation map was considerably different, and the size of the average perturbation decreased by 40%. The complexes of both the wild-type and double mutant plastocyanin with cytochrome f were sensitive to ionic strength, contrary to the physiological complex. The possible implications of these findings for the mechanism of transient complex formation are discussed.  相似文献   

7.
The plastocyanin-cytochrome f complex from Nostoc exhibits relevant structural differences when compared with the homologous complexes from other cyanobacteria and plants, with electrostatic and hydrophobic interactions being differently involved in each case. Here, five negatively charged residues of a recombinant form of cytochrome f from Nostoc have been replaced with either neutral or positively charged residues, and the effects of mutations on the kinetics of electron transfer to wild-type and mutant forms of plastocyanin have been measured by laser flash absorption spectroscopy. Cytochrome f mutants with some negative charges replaced with neutral residues exhibit an apparent electron transfer rate constant with wild-type plastocyanin similar to or slightly higher than that of the wild-type species, whereas the mutants with negative charges replaced with positive residues exhibit a significantly lower reactivity. Taken together, these results indicate that the effects of neutralizing residues at the electrostatically charged patch of cytochrome f are smaller than those previously observed for mutants of plastocyanin, thus suggesting that it is the copper protein which determines the specificity of the electrostatic interaction with the heme protein. Moreover, cross reactions between mutants of both proteins reveal the presence of some short-range specific electrostatic interactions. Our findings also make evident the fact that in Nostoc the main contribution to the electrostatic nature of the complex is provided by the small domain of cytochrome f.  相似文献   

8.
The interaction domain for cytochrome c on the cytochrome bc(1) complex was studied using a series of Rhodobacter sphaeroides cytochrome bc(1) mutants in which acidic residues on the surface of cytochrome c(1) were substituted with neutral or basic residues. Intracomplex electron transfer was studied using a cytochrome c derivative labeled with ruthenium trisbipyridine at lysine 72 (Ru-72-Cc). Flash photolysis of a 1:1 complex between Ru-72-Cc and cytochrome bc(1) at low ionic strength resulted in electron transfer from photoreduced heme c to cytochrome c(1) with a rate constant of k(et) = 6 x 10(4) s(-1). Compared with the wild-type enzyme, the mutants substituted at Glu-74, Glu-101, Asp-102, Glu-104, Asp-109, Glu-162, Glu-163, and Glu-168 have significantly lower k(et) values as well as significantly higher equilibrium dissociation constants and steady-state K(m) values. Mutations at acidic residues 56, 79, 82, 83, 97, 98, 213, 214, 217, 220, and 223 have no significant effect on either rapid kinetics or steady-state kinetics. These studies indicate that acidic residues on opposite sides of the heme crevice of cytochrome c(1) are involved in binding positively charged cytochrome c. These acidic residues on the intramembrane surface of cytochrome c(1) direct the diffusion and binding of cytochrome c from the intramembrane space.  相似文献   

9.
Chemical modification of plastocyanin was carried out using ethylenediamine plus a water-soluble carbodiimide, which has the effect of replacing a negatively charged carboxylate group with a positively charged amino group at pH 6-8. The conditions were adjusted to produce a series of singly and doubly modified forms of plastocyanin. Differences in charge configuration allowed separation of these forms on a Pharmacia fast protein liquid chromatograph using a Mono Q anion exchange column. These forms were used to study the interaction of plastocyanin with its reaction partner cytochrome f. The rate of cytochrome f oxidation was progressively inhibited upon incorporation of increasing numbers of ethylenediamine moieties indicating a positively charged binding site on cytochrome f. However, differential inhibition was obtained for the various singly modified forms allowing mapping of the binding site on plastocyanin. The greatest inhibition was found for forms modified at negatively charged residues Nos. 42-45 and Nos. 59-61 which comprise a negative patch surrounding Tyr-83. In contrast, the form modified at residue No. 68, on the opposite side of the globular plastocyanin molecule, showed the least inhibition. It can be concluded that the binding site for cytochrome f is located in the vicinity of residues Nos. 42-45 and Nos. 59-61. Modification of plastocyanin at residues Nos. 42-45 showed no effect on the rate of P-700+ reduction, suggesting that these residues are not involved in the binding of Photosystem I. However, an increase in the rate of P-700+ reduction was observed for plastocyanins modified at residue No. 68 or Nos. 59-61, which is consistent with the idea that the reaction domain of Photosystem I is negatively charged and Photosystem I binds at the top of the molecule and accepts electrons via His-87 in plastocyanin. These results raise the possibility that plastocyanin can bind both cytochrome f and Photosystem I simultaneously. The effect of ethylenediamine modification on the formal potential of plastocyanin was also examined. The formal potential of control plastocyanin was found to be +372 +/- 5 mV vs. normal hydrogen electrode at pH 7. All modified forms showed a positive shift in formal potential. Singly modified forms showed increases in formal potentials between +8 and +18 mV with the largest increases being observed for plastocyanins modified at residues Nos. 42-45 or Nos. 59-61.  相似文献   

10.
A number of surface residues of plastocyanin from Prochlorothrix hollandica have been modified by site-directed mutagenesis. Changes have been made in amino acids located in the amino-terminal hydrophobic patch of the copper protein, which presents a variant structure as compared with other plastocyanins. The single mutants Y12G, Y12F, Y12W, P14L, and double mutant Y12G/P14L have been produced. Their reactivity toward photosystem I has been analyzed by laser flash absorption spectroscopy. Plots of the observed rate constant with all mutants versus plastocyanin concentration show a saturation profile similar to that with wild-type plastocyanin, thus suggesting the formation of a plastocyanin-photosystem I transient complex. The mutations do not induce relevant changes in the equilibrium constant for complex formation but induce significant variations in the electron transfer rate constant, mainly with the two mutants at proline 14. Additionally, molecular dynamics calculations indicate that mutations at position 14 yield small changes in the geometry of the copper center. The comparative kinetic analysis of the reactivity of plastocyanin mutants toward photosystem I from different organisms (plants and cyanobacteria) reveals that reversion of the unique proline of Prochlorothrix plastocyanin to the conserved leucine of all other plastocyanins at this position enhances the reactivity of the Prochlorothrix protein.  相似文献   

11.
Oxidation of the soluble, truncated form of cytochrome f by wild-type and mutant species of plastocyanin has been analyzed by laser flash absorption spectroscopy in the cyanobacterium Nostoc (formerly, Anabaena) sp. PCC 7119. At low ionic strengths, the apparent electron transfer rate constant of cytochrome f oxidation by wild-type plastocyanin is 1.34 x 10(4) s(-)(1), a value much larger than those determined for the same proteins from other organisms. Upon site-directed mutagenesis of specific residues at the plastocyanin interaction area, the rate constant decreases in all cases yet to varying extents. The only exception is the D54K variant, which exhibits a higher reactivity toward cytochrome f. In most cases, the reaction rate constant decreases monotonically with an increase in ionic strength. The observed changes in the reaction mechanism and rate constants are in agreement with the location of the mutated residues at the interface area, as well as with the peculiar orientation of the two partners within the Nostoc plastocyanin-cytochrome f transient complex, whose NMR structure has been determined recently. Furthermore, the experimental data herein reported match well the kinetic behavior exhibited by the same set of plastocyanin mutants when acting as donors of electrons to photosystem I [Molina-Heredia, F. P., et al. (2001) J. Biol. Chem. 276, 601-605], thus indicating that the copper protein uses the same surface areas-one hydrophobic and the other electrostatic-to interact with both cytochrome f and photosystem I.  相似文献   

12.
A combination of site-directed mutagenesis and NMR chemical shift perturbation analysis of backbone and side-chain protons has been used to characterize the transient complex of the photosynthetic redox proteins plastocyanin and cytochrome f. To elucidate the importance of charged residues on complex formation, the complex of cytochrome f and E43Q/D44N or E59K/E60Q spinach plastocyanin double mutants was studied by full analysis of the (1)H chemical shifts by use of two-dimensional homonuclear NMR spectra. Both mutants show a significant overall decrease in chemical shift perturbations compared with wild-type plastocyanin, in agreement with a large decrease in binding affinity. Qualitatively, the E43Q/D44N mutant showed a similar interaction surface as wild-type plastocyanin. The interaction surface in the E59K/E60Q mutant was distinctly different from wild type. It is concluded that all four charged residues contribute to the affinity and that residues E59 and E60 have an additional role in fine tuning the orientation of the proteins in the complex.  相似文献   

13.
The complex between cytochrome f and plastocyanin from the cyanobacterium Nostoc has been characterized by NMR spectroscopy. The binding constant is 16 mM(-1), and the lifetime of the complex is much less than 10 ms. Intermolecular pseudo-contact shifts observed for the plastocyanin amide nuclei, caused by the heme iron, as well as the chemical-shift perturbation data were used as the sole experimental restraints to determine the orientation of plastocyanin relative to cytochrome f with a precision of 1.3 angstroms. The data show that the hydrophobic patch surrounding tyrosine 1 in cytochrome f docks the hydrophobic patch of plastocyanin. Charge complementarities are found between the rims of the respective recognition sites of cytochrome f and plastocyanin. Significant differences in the relative orientation of both proteins are found between this complex and those previously reported for plants and Phormidium, indicating that electrostatic and hydrophobic interactions are balanced differently in these complexes.  相似文献   

14.
Chemical modification of plastocyanin was carried out using ethylenediamine plus a water-soluble carbodiimide, which has the effect of replacing a negatively charged carboxylate group with a positively charged amino group at pH 6–8. The conditions were adjusted to produce a series of singly and doubly modified forms of plastocyanin. Differences in charge configuration allowed separation of these forms on a Pharmacia fast protein liquid chromatograph using a Mono Q anion exchange column. These forms were used to study the interaction of plastocyanin with its reaction partner cytochrome f. The rate of cytochrome f oxidation was progressively inhibited upon incorporation of increasing numbers of ethylenediamine moieties indicating a positively charged binding site on cytochrome f. However, differential inhibition was obtained for the various singly modified forms allowing mapping of the binding site on plastocyanin. The greatest inhibition was found for forms modified at negatively charged residues Nos. 42–45 and Nos. 59–61 which comprise a negative patch surrounding Tyr-83. In contrast, the form modified at residue No. 68, on the opposite side of the globular plastocyanin molecule, showed the least inhibition. It can be concluded that the binding site for cytochrome f is located in the vicinity of residues Nos. 42–45 and Nos. 59–61. Modification of plastocyanin at residues Nos. 42–45 showed no effect on the rate of P-700+ reduction, suggesting that these residues are not involved in the binding of Photosystem I. However, an increase in the rate of P-700+ reduction was observed for plastocyanins modified at residue No. 68 or Nos. 59–61, which is consistent with the idea that the reaction domain of Photosystem I is negatively charged and Photosystem I binds at the top of the molecule and accepts electrons via His-87 in plastocyanin. These results raise the possibility that plastocyanin can bind both cytochrome f and Photosystem I simultaneously. The effect of ethylenediamine modification on the formal potential of plastocyanin was also examined. The formal potential of control plastocyanin was found to be +372 ± 5 mV vs. normal hydrogen electrode at pH 7. All modified forms showed a positive shift in formal potential. Singly modified forms showed increases in formal potentials between +8 and +18 mV with the largest increases being observed for plastocyanins modified at residues Nos. 42–45 or Nos. 59–61.  相似文献   

15.
EmrE is a small multidrug transporter (110 amino acids long) from Escherichia coli that extrudes various drugs in exchange with protons, thereby rendering bacteria resistant to these compounds. Glu-14 is the only charged membrane-embedded residue in EmrE and is evolutionarily highly conserved. This residue has an unusually high pK and is an essential part of the binding domain, shared by substrates and protons. The occupancy of the binding domain is mutually exclusive, and, as such, this provides the molecular basis for the coupling between substrate and proton fluxes. Systematic cysteine-scanning mutagenesis of the residues in the transmembrane segment (TM1), where Glu-14 is located, reveals an amino acid cluster on the same face of TM1 as Glu-14 that is part of the substrate- and proton-binding domain. Substitutions at most of these positions yielded either inactive mutants or mutants with modified affinity to substrates. Substitutions at the Ala-10 position, one helix turn away from Glu-14, yielded mutants with modified affinity to protons and thereby impaired in the coupling of substrate and proton fluxes. Taken as a whole, the results strongly support the concept of a common binding site for substrate and protons and stress the importance of one face of TM1 in substrate recognition, binding, and H(+)-coupled transport.  相似文献   

16.
Plastocyanin cytochrome f interaction   总被引:2,自引:0,他引:2  
Spinach plastocyanin and turnip cytochrome f have been covalently linked by using a water-soluble carbodiimide to yield an adduct of the two proteins. The redox potential of cytochrome f in the adduct was shifted by -20 mV relative to that of free cytochrome f, while the redox potential of plastocyanin in the adduct was the same as that of free plastocyanin. Solvent perturbation studies showed the degree of heme exposure in the adduct to be less than in free cytochrome f, indicating that plastocyanin was linked in such a way as to bury the exposed heme edge. Small changes were also observed when the resonance Raman spectrum of the adduct was compared to that of free cytochrome f. The adduct was incapable of interacting with or donating electrons to photosystem I. Peptide mapping and sequencing studies revealed two sites of linkage between the two proteins. In one site of linkage, Asp-44 of plastocyanin is covalently linked to Lys-187 of cytochrome f. This represents the first identification of a group on cytochrome f that is involved in the interaction with plastocyanin. The other site of linkage involves Glu-59 and/or Glu-60 of plastocyanin to as yet unidentified amino groups on cytochrome f. Euglena cytochrome c-552 could also be covalently linked to turnip cytochrome f, although with a lower efficiency than spinach plastocyanin. In contrast, a variety of cyanobacterial cytochrome c-553's and a cyanobacterial plastocyanin could not be covalently linked to turnip cytochrome f.  相似文献   

17.
Spinach plastocyanin binds to both electrically neutral and positively charged lipid bilayer vesicles, whereas cytochrome c only binds electrostatically to negatively charged vesicles. Laser flash photolysis using lumiflavin semiquinone as a reductant demonstrates that the reactivity of plastocyanin is increased as much as 6-fold when it is membrane bound whereas the rate constant for cytochrome c reduction is decreased by approximately a factor of 3. Membrane-bound plastocyanin reduction occurs via a two-step mechanism, probably involving prior association of lumiflavin semiquinone with the bilayer. In contrast, cytochrome c reduction in the membrane-bound state follows simple second-order kinetics, implying that the redox site in the bound state is still accessible to lumiflavin semiquinone in solution, although the rate constant is decreased by approximately 3-fold. These results are interpreted as indicating that the bilayer-protein interaction with plastocyanin leads to a steric blockage of the electron-transfer site from the aqueous phase. Little or no hindrance of the redox site occurs with cytochrome c, suggesting a high degree of mobility of this protein on the bilayer surface. Although the increase in plastocyanin reactivity upon binding to the bilayer is quite interesting, its cause remains unclear and requires further study. The results illustrate the utility of laser flash photolysis as a probe of membrane-protein interactions.  相似文献   

18.
The reactions of Rhodopseudomonas viridis cytochrome c2 and horse cytochrome c with Rps. viridis photosynthetic reaction centers were studied by using both single- and double-flash excitation. Single-flash excitation of the reaction centers resulted in rapid photooxidation of cytochrome c-556 in the cytochrome subunit of the reaction center. The photooxidized cytochrome c-556 was subsequently reduced by electron transfer from ferrocytochrome c2 present in the solution. The rate constant for this reaction had a hyperbolic dependence on the concentration of cytochrome c2, consistent with the formation of a complex between cytochrome c2 and the reaction center. The dissociation constant of the complex was estimated to be 30 microM, and the rate of electron transfer within the 1:1 complex was 270 s-1. Double-flash experiments revealed that ferricytochrome c2 dissociated from the reaction center with a rate constant of greater than 100 s-1 and allowed another molecule of ferrocytochrome c2 to react. When both cytochrome c-556 and cytochrome c-559 were photooxidized with a double flash, the rate constant for reduction of both components was the same as that observed for cytochrome c-556 alone. The observed rate constant decreased by a factor of 14 as the ionic strength was increased from 5 mM to 1 M, indicating that electrostatic interactions contributed to binding. Molecular modeling studies revealed a possible cytochrome c2 binding site on the cytochrome subunit of the reaction center involving the negatively charged residues Glu-93, Glu-85, Glu-79, and Glu-67 which surround the heme crevice of cytochrome c-554.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The oxidation of cytochrome f by the soluble cupredoxin plastocyanin is a central reaction in the photosynthetic electron transfer chain of all oxygenic organisms. Here, two different computational approaches are used to gain new insights into the role of molecular recognition and protein-protein association processes in this redox reaction. First, a comparative analysis of the computed molecular electrostatic potentials of seven single and multiple point mutants of spinach plastocyanin (D42N, E43K, E43N, E43Q/D44N, E59K/E60Q, E59K/E60Q/E43N, Q88E) and the wt protein was carried out. The experimentally determined relative rates (k(2)) for the set of plastocyanin mutants are found to correlate well (r(2) = 0.90 - 0.97) with the computed measure of the similarity of the plastocyanin electrostatic potentials. Second, the effects on the plastocyanin/cytochrome f association rate of these mutations in the plastocyanin "eastern site" were evaluated by simulating the association of the wild type and mutant plastocyanins with cytochrome f by Brownian dynamics. Good agreement between the computed and experimental relative rates (k(2)) (r(2) = 0.89 - 0.92) was achieved for the plastocyanin mutants. The results obtained by applying both computational techniques provide support for the fundamental role of the acidic residues at the plastocyanin eastern site in the association with cytochrome f and in the overall electron-transfer process.  相似文献   

20.
Cytochrome f and plastocyanin are redox partners in the photosynthetic electron-transfer chain. Electron transfer from cytochrome f to plastocyanin occurs in a specific short-lived complex. To obtain detailed information about the binding interface in this transient complex, the effects of binding on the backbone and side-chain protons of plastocyanin have been analyzed by mapping NMR chemical-shift changes. Cytochrome f was added to plastocyanin up to 0.3 M equiv, and the plastocyanin proton chemical shifts were measured. Out of approximately 500 proton resonances, 86% could be observed with this method. Nineteen percent demonstrate significant chemical-shift changes and these protons are located in the hydrophobic patch (including the copper ligands) and the acidic patches of plastocyanin, demonstrating that both areas are part of the interface in the complex. This is consistent with the recently determined structure of the complex [Ubbink, M., Ejdeb?ck, M., Karlsson, B. G., and Bendall, D. S. (1998) Structure 6, 323-335]. The largest chemical-shift changes are found around His87 in the hydrophobic patch, which indicates tight contacts and possibly water exclusion from this part of the protein interface. These results support the idea that electron transfer occurs via His87 to the copper in plastocyanin and suggest that the hydrophobic patch determines the specificity of the binding. The chemical-shift changes in the acidic patches are significant but small, suggesting that the acidic groups are involved in electrostatic interactions but remain solvent exposed. The existence of small differences between the present data and those used for the structure may imply that the redox state of the metals in both proteins slightly affects the structure of the complex. The chemical-shift mapping is performed on unlabeled proteins, making it an efficient way to analyze effects of mutations on the structure of the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号