首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this review all recent field studies on the effects of UV-B radiation on bryophytes are discussed. In most of the studies fluorescent UV-B tubes are used to expose the vegetation to enhanced levels of UV-B radiation to simulate stratospheric ozone depletion. Other studies use screens to filter the UV-B part of the solar spectrum, thereby comparing ambient levels of UV-B with reduced UV-B levels, or analyse effects of natural variations in UV-B arising from stratospheric ozone depletion. Nearly all studies show that mosses are well adapted to ambient levels of UV-B radiation since UV-B hardly affects growth parameters. In contrast with outdoor studies on higher plants, soluble UV-B absorbing compounds in bryophytes are typically not induced by enhanced levels of UV-B radiation. A few studies have demonstrated that UV-B radiation can influence plant morphology, photosynthetic capacity, photosynthetic pigments or levels of DNA damage. However, there is only a limited number of outdoor studies presented in the literature. More additional, especially long-term, experiments are needed to provide better data for statistical meta-analyses. A mini UV-B supplementation system is described, especially designed to study effects of UV-B radiation at remote field locations under harsh conditions, and which is therefore suited to perform long-term studies in the Arctic or Antarctic. The first results are presented from a long-term UV-B supplementation experiment at Signy Island in the Maritime Antarctic.  相似文献   

2.
Square-wave (SQW) ultraviolet-B (UV-B: 280–315 nm) radiation supplementation systems continue to be used in outdoor experimental locations due to the economically restrictive installation and maintenance costs, and technical expertise required to effectively operate more advanced modulated (MOD) delivery systems. However, continued yet contentious criticisms of SQW delivery systems risk creating prejudices as to the validity of plant responses measured in these with potentially negative repercussions on future UV-B experimentation. Consequently, we quantified the magnitude of UV-B supplementation inaccuracies in our typical outdoor step-wise SQW delivery system using 7-year records of computer-modeled and instrument-measured solar UV-B irradiances and synchronous measurements of total solar (300–3000 nm) radiation and daily sunshine duration. Both broad- and narrow-band instrument measurements confirmed that our step-wise SQW delivery system rendered larger total daily supplemental UV-B exposures (time-integrated UV-B irradiances) than a MOD delivery system on only substantially overcast days (25% or less daily sunshine duration). These larger supplemental UV-B exposures were augmented with increased magnitude of the added artificial UV-B supplement. However, their ranges did not exceed those in a MOD delivery system by more than 10% for added UV-B supplements of realistic magnitude (30% or less above background), except on virtually completely overcast days (5% or less daily sunshine duration). Also, our step-wise SQW delivery system rendered higher photon flux ratios of UV-B/total solar radiation than a MOD delivery system on only substantially overcast days, the ranges of which were also augmented with increased magnitude of the added artificial UV-B supplement. However, these features were restricted to high solar angles, since with reduced solar angle these higher photon flux ratios also included progressively less overcast days. Nevertheless, ranges of photon flux ratio increases were well below reported thresholds inhibiting to plant growth at all solar angles for the added artificial UV-B supplements of realistic magnitude, except on virtually completely overcast days. Results point to an under-estimation of clear-sky UV-B irradiance by the computer-encoded semi-empirical model commonly utilized to predict background and supplemental UV-B irradiances for SQW delivery systems. They confirm the superiority of MOD delivery systems in providing more realistic conditions of UV-B increases but likewise demonstrate little justification on balance for branding results derived from all field-based SQW delivery systems as exaggerated where sensible irradiation protocols and realistic UV-B supplements are applied.  相似文献   

3.
Appropriate controls in outdoor UV-B supplementation experiments   总被引:7,自引:0,他引:7  
Quercus robur L. saplings were exposed in an outdoor experiment to supplemental levels of UV-8 (280–315 nm) radiation using treatment arrays of cellulose diacetate-filtered fluorescent lamps that also produce UV-A (315–400 nm) radiation. Saplings were also exposed to UV-A radiation alone using control arrays of the same lamps filtered with polyester and to ambient levels of radiation, using arrays of unenergized lamps. The UV-B treatment was modulated to maintain a 30% elevation above the ambient level of UV-B radiation, measured by a broad-band sensor weighted with an erythemal action spectrum. Saplings exposed to UV-B radiation beneath treatment arrays developed thicker leaves than those beneath ambient and control arrays. Despite the fact that supplemental levels of UV-A radiation were only a small percentage of ambient levels, apparent UV-A effects were also recorded. Significant increases in sapling height, lammas shoot length and herbivory by chewing insects were observed under treatment and control arrays, relative to ambient, but there were no differences between the responses of saplings under treatment and control. These data imply that supplemental UV-A radiation or other effects associated with energised lamps can significantly affect plant growth parameters and herbivory in outdoor studies. We conclude that the results from current outdoor UV-B supplementation experiments that lack control exposures using polyester-filtered lamps need to be interpreted with caution and that future supplementation experiments should include appropriate controls.  相似文献   

4.
The release of certain man-made chemicals has led to recurrent, seasonal destruction of ozone in the upper atmosphere, allowing more solar radiation in the UV-B waveband to reach the Earth. Consequently, many amphibians may suffer increased exposure to UV-B at various stages in their lives. Embryonic stages of species which spawn in the spring, in shallow, open water, are at high risk of increased exposure. We exposed newly fertilized eggs of one such species, Rana temporaria L., to sunlight with and without supplemental UV-B. We used outdoor arrays of lamps to simulate the increase in UV-B which might result from previously documented ozone depletion. From immediately after fertilization to when hatchlings began feeding, ambient solar UV-B, weighted for DNA-damaging potential, was supplemented by ≈ 81% in 1995 and 113% in 1996. These levels of supplementation approximated the increase in solar UV-B expected to result from losses of 21% and 25%, respectively, of the total amount of ozone in the atmospheric column, relative to pre-ozone-depletion values. We found no evidence that these additions of UV-B radiation increased the incidence of mortality or overt developmental abnormality among embryos. We stress the need for appropriate dosimetry in studies of effects of UV-B on organisms.  相似文献   

5.
In greenhouse experiments, selenium (Se) has been shown to defend plants against detrimental effects of heavy UV-B radiation stress. The aim of this study was to investigate whether this positive effect can be found in open-field conditions with enhancement of UV-B radiation. In the experiment, conducted with strawberry (Fragaria×ananassa, cultivars “Jonsok” and “Polka”) over two growing seasons, plants were exposed to UV-B radiation (including UV-A) and cultivated without Se or supplied with Se added at two levels (0.1 and 1.0 mg kg−1). The plants were monitored for growth, flavonoids, chlorophyll fluorescence, net photosynthesis as well as tissue and cell structure. Photosystem II was observed to be sensitive to UV-B stress under field conditions. In the leaves, a decrease in Fv/Fm was seen at the end of the growing season, implying a cumulative effect of UV-B stress. Several parameters, especially cell and tissue structures, were affected by UV-B and UV-A treatments, which proves the need for UV-A control in outdoor UV-B supplementation studies. Addition of Se did not ameliorate the harmful effects of UV-B but the lower Se-increment level increased leaf growth. The effects of UV-B and Se differed during the two experimental years, indicating the need to repeat experiments during several growing seasons.  相似文献   

6.
An open-air experiment was performed in Pistoia (Italy) to investigate the possible protective role played by different contents of UV-B absorbing compounds to realistic UV-B supplementation and to study its effect on plant fruit production. A mutant line and its normal counterpart of Lycopersicon esculentum Mill, which differ in the content of UV-B absorbing compounds, were used. Additional UV-B radiation in the field was supplied to simulate a 20% stratospheric ozone depletion. Two groups of plants were grown: ‘control’, where plants received only natural solar UV-B radiation, and ‘UV-B’ treatment, where plants were grown under supplemental UV-B. The results of the experiment showed that the content of UV-B absorbing compounds of treated plants did not differ from that of the control in both lines. This indicates that natural sunlight, in Mediterranean areas, is saturating for synthesis of these compounds also in plants with normal content of UV-B absorbing compounds. Consequently, plants are not able to produce significant additional amounts of them, in response to a realistic UV-B supplementation, in order to protect the plant from additional UV-B radiation. No different responses to the UV-B supplementation were found between the two lines. The most significant UV-B effect was an earlier reddening of fruits in comparison with the ‘control’ accompanied by a reduction in the size of mature fruits. No significant effects of UV-B treatment were observed in biomass accumulation, leaf ontogeny, flowering or productivity.  相似文献   

7.
 Growth patterns and nitrogen economy were studied in pot-grown seedlings of mountain birch subjected to different ultraviolet radiation under both laboratory and outdoor conditions at Abisko in northern Sweden. In the laboratory, nutrient supply, temperature, humidity, ultraviolet radiation-A (UV-A, 320–400 nm) and B (UV-B, 280–320 nm) were controlled, while photosynthetically active radiation (PAR, 400–700 nm) and photoperiod varied naturally. Under outdoor conditions nutrient supply was controlled, and the irradiation treatments were ambient and above-ambient UV-B using additional fluorescent lamps. Mountain birch nitrogen economy was affected by increased ultraviolet radiation, as reflected by a changed relationship between plant growth and plant nitrogen both in the laboratory and outdoors. In the laboratory enhanced UV-A decreased leaf area per unit plant biomass (leaf area ratio) but increased biomass productivity, both per unit leaf area (leaf area productivity) and per unit leaf nitrogen (leaf nitrogen productivity). Low levels of UV-B affected growth patterns and nitrogen economy in a similar way to enhanced UV-A. High levels of UV-B clearly decreased relative growth rate and nitrogen productivity, as leaf area ratio, leaf area productivity and leaf nitrogen productivity were all decreased. Under outdoor conditions above-ambient levels of UV-B did not alter growth or biomass allocation traits of the seedlings, whilst nitrogen productivity was increased. Mountain birch seedlings originating from different mother trees varied significantly in their responses to different ultraviolet radiation. Received: 10 April 1997 / Accepted: 19 September 1997  相似文献   

8.
Solar UV-B radiation reaching the Earth's surface is continually increased due to the stratospheric ozone layer depletion. UV-B radiation has been shown to have mutagenic effects damaging DNA, proteins and membranes. During evolution plants developed systems for UV-B perception and effective defense mechanisms. In this review the main UV-B effects, cytophysiological responses of plants and their interactions with microorganisms are analyzed. UV-B-induced signal transduction pathways in plant cells are discussed.  相似文献   

9.
This study investigated whether increased solar UV-B radiation (280-315 nm) could suppress the growth of marine microalgae through effects on their antioxidant systems. Two marine microalgae species, Platymonas subcordiformis (Wille) Hazen and Nitzschia closterium (Ehrenb.) W. Sm, were exposed to a range of UV-B radiation and both showed reductions in their growth rates, and the chlorophyll a (Chl a) and carotenoid (Car) contents when UV-B radiation dose increased. Superoxide anion radical (O2)production and the concentration of hydrogen peroxide (H2O2) and malodiadehyde (MDA) also increased with the increasing of UV-B radiation. Antioxidant systems, non-enzymic components (Car and glutathione content) and enzymic components (superoxide dismutase (SOD) and catalase (CAT) activity), decreased as a result of enhanced UV-B radiation. When the exogenous glutathione (GSH) was added, the effects of UVB radiation on the growth of the two species were alleviated. These results suggest that enhanced UV-B radiation suppressed the antioxidant systems and caused some active oxygen species to accumulate, which in turns retarded the development of the marine microalgae.  相似文献   

10.
The response of tundra plants to enhanced UV-B radiation simulating 15 and 30% ozone depletion was studied at two high arctic sites (Isdammen and Adventdalen, 78° N, Svalbard).The set-up of the UV-B supplementation systems is described, consisting of large and small UV lamp arrays, installed in 1996 and 2002. After 7 years of exposure to enhanced UV-B radiation, plant cover, density, morphological (leaf fresh and dry weight, leaf thickness, leaf area, reproductive and ecophysiological parameters leaf UV-B absorbance, leaf phenolic content, leaf water content) were not affected by enhanced UV-B radiation. DNA damage in the leaves was not increased with enhanced UV-B in Salix polaris and Cassiope tetragona. DNA damage in Salix polaris leaves was higher than in leaves of C. tetragona. The length of male gametophyte moss plants of Polytrichum hyperboreum was reduced with elevated UV-B as well as the number of Pedicularis hirsuta plants per plot, but the inflorescence length of Bistorta vivipara was not significantly affected. We discuss the possible causes of tolerance of tundra plants to UV-B (absence of response to enhanced UV-B) in terms of methodology (supplementation versus exclusion), ecophysiological adaptations to UV-B and the biogeographical history of polar plants  相似文献   

11.
We examined the effect of ultraviolet-B radiation (UV-B, 290–320 nm) on the growth rate of the intertidal marine alga Ulva expansa (Setch.) S. & G. (Chlorophyta). Segments of thallus collected from a natural population were grown in outdoor seawater tanks. Combinations of UV-B-opaque screens, UV-B-transparent screens, and UV-B lamps were used to investigate the effects of solar UV-B and solar plus supplemental UV-B on the growth of these segments. Growth was measured by changes in segment surface area, damp weight, and dry weight. Growth rates of segments were inhibited under both solar UV-B and solar plus supplemental UV-B treatments. Growth rates were also inhibited by high levels of photosynthetically active radiation, independent of UV-B fluence. These results indicate that increases in UV-B resulting from further ozone depletion will have a negative impact on the growth of this alga.  相似文献   

12.
We studied the effects of elevated ultraviolet-B radiation on interactions between insect herbivores and their host plants by exposing two species of phytochemically different willows, Salix myrsinifolia and S. phylicifolia, to a modulated increase in ultraviolet radiation in an outdoor experiment and monitoring the colonisation of insect herbivores on these willows. We examined the effect of increased ultraviolet-B (UV-B) radiation on (1) the quality of willow leaves, (2) the distribution and abundance of insect herbivores feeding on these willows, (3) the resulting amount of damage, and (4) the performance of insect larvae feeding on the exposed plant tissue. Six clones of each of the two willow species were grown in eight blocks for 12 weeks in the UV-B irradiation field. The clones were exposed to a constant 50% increase in UV-B radiation (simulating 20-25% ozone depletion), to a small increase in UV-A radiation or to ambient solar irradiation. We allowed colonisation on the willows by naturally occurring insects, but also introduced adults of a leaf beetle, Phratora vitellinae, a specialist herbivore on S. myrsinifolia. Increased UV-B radiation did not affect any of the measured indices of plant quality. However, numbers of P. vitellinae on S. myrsinifolia were higher in plants with UV-B treatment compared with UV-A and shade controls. In laboratory tests, growth of the second-instar larva of P. vitellinae was not affected by UV-B treatment of S. myrsinifolia, but was retarded on UV-B treated leaves of S. phylicifolia. In addition, naturally occurring insect herbivores were more abundant on willows exposed to elevated UV-B radiation compared to those grown under control treatments. In spite of the increased abundance of insect herbivores, willows treated with elevated UV-B did not suffer more herbivore damage than willows exposed to ambient solar radiation (shade control). The observed effects of UV-B on herbivore abundance, feeding and growth varied significantly due to spatial variation in environment quality, as indicated by the UV-treatment x block interaction. The results suggest that (1) environmental variation modifies the effects of UV-B radiation on plant-insect interactions and (2) specialist herbivores might be more sensitive to chemical changes in their secondary host plants (S. phylicifolia) than to changes in their primary hosts (S. myrsinifolia).  相似文献   

13.
Gaberščik  Alenka  Novak  Mateja  Trošt  Tadeja  Mazej  Zdenka  Germ  Mateja  Björn  Lars-Olof 《Plant Ecology》2001,154(1-2):49-56
Pulmonaria officinalis is an understorey spring geophyte, which starts its vegetative period before full foliation of the tree storey. During its early growth phase it is exposed to full solar radiation, therefore the enhanced UV-B radiation could present a threat to this species. An outdoor experiment in which potted plants were exposed to below ambient, ambient, and above ambient (corresponding to 17% ozone reduction) UV-B radiation, was conducted in order to evaluate the radiation effects. The amount of photosynthetic pigments and photochemical efficiency of PSII were not affected, but the amount of UV-B absorbing compounds was lower in plants grown under reduced UV-B. This change was measurable after only fourteen days in reproductive shoots, while in the vegetative shoots, it was not detectable until after three months. The leaves of P. officinalis are variegated and the light green spots became less transparent to PAR under enhanced UV-B. The results reveal that under simulated 17% ozone depletion the harmful effects of UV-B on the measured parameters were negligible.  相似文献   

14.
Oudejans  A.M.C.  Nijssen  A.  Huls  J.S.  Rozema  J. 《Plant Ecology》2001,154(1-2):37-48
Since early May 1997 dune-grassland vegetation in the Netherlands has been exposed to enhanced levels of ultraviolet-B (UV-B) radiation. Expected increases in the amount of biologically effective UV-B (UV-BBE) upon a reduction of the stratospheric ozone layer with 15% were calculated and artificially supplemented.In June and September 1998, above- and belowground vegetation samples were taken. Of the dominant species Calamagrostis epigeios and Carex arenaria aboveground mass accumulation, leaf weight (LW), leaf area (LA), specific leaf area (SLA) and tiller number were assessed separate from the remaining vegetation.The results of our study indicate alterations in the vegetation structure due to UV-B supplementation. In June, a significant reduction due to UV-B supplementation in number of tillers and aboveground dry weight per soil area unit was found for C. epigeios. As C. epigeios is the most dominant species of the dune-grassland, these effects indicate a change in vegetation structure due to UV-B enhancement. Indications of UV-B effects on other parameters, such as the number of tillers of C. arenaria and aboveground plant dry weight of the group of species other than C. epigeios and C. arenaria, may also represent changes in vegetation structure. The LA and LW data show the same patterns as the mass accumulation trends. No significant UV-B effects on the SLA of the species or of the total vegetation could be found.Trends in patterns of species dry weight accumulation and partitioning of dry weight between species groups are different in June and September. This may indicate seasonal dependence of UV-B responses. Also, the consistently reducing trend in total and aboveground plant dry weight may indicate deleterious effects of UV-B on total plant matter accumulation. Possible causes of observed trends and effects are discussed.  相似文献   

15.
Enhanced UV-B irradiation is one of the most important abiotic stresses that can influence various aspects of plant morphology, biochemistry and physiology. Silicon as a beneficial element can increase the plant’s tolerance against different abiotic stresses, including UV-B stress. In this work, the effect of silicon supplementation on the sensitivity of young maize (Zea mays L.) seedlings exposed to short-term UV-B radiation was studied. The seedlings were grown with 0 or 5 mM silicon in cultivation medium and on the fifth day of cultivation, they were exposed for 15 and 30 min to UV-B (302 nm) radiation. No significant changes in growth and content of assimilation pigments and the chlorophyll a/b ratio were observed in any of tested irradiation periods in control or Si-treated plants. Under UV-B stress, the content of ROS (hydrogen peroxide and superoxide radical) and TBARS increased in control plants. The oxidative status of Si-treated plants was only slightly affected even after 30 min. Phenolic metabolites (total phenols and flavonoids), important for their screening function under radiation stress, slightly increased after UV-B exposure in control plants, however, only flavonoids increased after 30 min in Si-treated plants. The measured parameters indicated that to some extent silicon supplementation contributes to higher UV-B tolerance of maize seedlings.  相似文献   

16.
Antonelli  F.  Grifoni  D.  Sabatini  F.  Zipoli  G. 《Plant Ecology》1997,128(1-2):127-136
During the last few decades many experiments have been performed to evaluate the responses of plants to enhanced solar UV-B radiation (280–320 nm) that may occur because of stratospheric ozone depletion; most of them were performed in controlled environment conditions where plants were exposed to low photosynthetically active radiation (PAR) levels and high UV-B irradiance. Since environmental radiative regimes can play a role in the response of plants to UV-B enhancement, it appears doubtful whether it is valid to extrapolate the results from these experiments to plants grown in natural conditions. The objective of this work was to evaluate the effects on physiology and morphology of a bean (Phaseolus vulgaris L.) cultivar Nano Bobis, exposed to supplemental UV radiation in the open-air. UV-B radiation was supplied by fluorescent lamps to simulate a 20% stratospheric ozone reduction. Three groups of plants were grown: control (no supplemental UV), UV-A treatment (supplementation in the UV-A band) and UV-B treatment (supplemental UV-B and UV-A radiation). Each group was replicated three times. After 33 days of treatment plants grown under UV-B treatment had lower biomass, leaf area and reduced leaf elongation compared to UV-A treatment. No significant differences were detected in photosynthetic parameters, photosynthetic pigments and UV-B absorbing compounds among the three groups of plants. However, plants exposed to UV-A treatment showed a sort of 'stimulation' of their growth when compared to the control. The results of this experiment showed that plants may be sensitive to UV-A radiation, thus it is difficult to evaluate the specific effects of UV-B (280–320 nm) radiation from fluorescent lamps and it is important to choose the appropriate control. Environmental conditions strongly affect plant response to UV radiation so further field studies are necessary to assess the interaction between UV-B exposure and meteorological variability.  相似文献   

17.
The objective of this study was to determine the effects of UV-B radiation on charophycean algae under natural conditions, since charophytes enhance water transparency in freshwater systems and levels of UV-B radiation have increased by ozone depletion. Potential and actual UV-B effects were studied by combining a glasshouse experiment in which plants were exposed to various levels of UV-B radiation and field measurements in two freshwater systems dominated by charophytes in the Netherlands. The glasshouse experiment showed that charophytes were sensitive to UV-B radiation. UV-B radiation negatively affected growth, while it increased levels of DNA damage in Chara aspera. Moreover, the charophytes did not seem to develop UV-B screens to protect against UV-B radiation since no increase in UV-B absorbing compounds was found. At field conditions, both spectroradiometrical measurements and DNA dosimeters showed that UV-B radiation was attenuated quickly in both freshwater systems, indicating that UV-B does not reach the submerged charophyte vegetation. However, specific conditions, like fluctuating water tables, may result in UV-B exposure to charophytes for certain periods annually.  相似文献   

18.
Very few studies have evaluated the effects of UV-B radiation on trees. especially deciduous species. In this study we evaluate the effects of supplemental UV-B radiation on the growth and photosynthetic capacity of sweetgum (Liquidambar styraciflua L.). Sweetgum seedlings were grown for 2 years in the field under either ambient or supplemental UV-B radiation. Artificial UV-B radiation was supplied by fluorescent lamps at a maximum daily supplementation of either 3.1 or 5.0 kJ of biologically effective UV-B radiation. Over the 2-year period, supplemental UV-B radiation had little effect on total plant biomass or photosynthetic capacity. However, subtle changes in leaf physiology, carbon allocation, and growth were observed. Supplemental UV-B radiation reduced photosynthetic capacity only during the first year, while leaf area and biomass were reduced in the second year. Alterations in carbon allocation included an increase in branch number and root to shoot ratio. While these data do not indicate that the productivity of sweetgum would likely be compromised by an increase in solar UV-B radiation, they do suggest that the UV-B portion of the solar spectrum contributes to the regulation of sweetgum growth and development. Therefore the possibility of significant consequences to sweetgum due to possible increases in UV-B radiation cannot be ruled out.  相似文献   

19.
The responses of Norway spruce [Picea abies (L.) Karst.] to enhanced UV-B radiation during the 5-year treatment performed outdoors have been subjected to ecophysiological and growth analysis. The plants were exposed to UV-B radiation, simulating 17% ozone depletion. Ecophysiological parameters were monitored three times a year on three needle age classes, while growth was analysed at the end of each growth season. Spruce exhibited great variability in the amounts of photosynthetic pigments and methanol-soluble UV-B absorbing compounds, light use efficiency, photosynthesis and respiratory potential. The needle, branch and plant biomass production was not significantly affected during the 5-year treatment. The repeated-measures procedure comparing growth parameters through subsequent seasons, revealed a decrease of branch diameter under enhanced UV-B, which could be interpreted as a cumulative UV-B effect. The effects of UV-B radiation depended on needle development stage, interaction with environmental conditions and stresses. A reduced negative effect of UV-B radiation was observed during the prolonged drought in 2003, which was hypothesised as an alleviating effect. The tolerance of Norway spruce to elevated UV-B was to a large extent due to the high content of methanol-soluble UV-B absorbing compounds that was related neither to environmental conditions, including UV-B dose, nor to the developmental stage of the needles. The current year needles exhibited a tendency to increased production of UV-B absorbing compounds under elevated UV-B radiation. The outdoor study performed under variable environmental conditions showed great complexity of spruce response to enhanced UV-B.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号