首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partial meniscectomy is believed to change the biomechanics of the knee joint through alterations in the contact of articular cartilages and menisci. Although fluid pressure plays an important role in the load support mechanism of the knee, the fluid pressurization in the cartilages and menisci has been ignored in the finite element studies of the mechanics of meniscectomy. In the present study, a 3D fibril-reinforced poromechanical model of the knee joint was used to explore the fluid flow dependent changes in articular cartilage following partial medial and lateral meniscectomies. Six partial longitudinal meniscectomies were considered under relaxation, simple creep, and combined creep loading conditions. In comparison to the intact knee, partial meniscectomy not only caused a substantial increase in the maximum fluid pressure but also shifted the location of this pressure in the femoral cartilage. Furthermore, these changes were positively correlated to the size of meniscal resection. While in the intact joint, the location of the maximum fluid pressure was dependent on the loading conditions, in the meniscectomized joint the location was predominantly determined by the site of meniscal resection. The partial meniscectomy also reduced the rate of the pressure dissipation, resulting in even larger difference between creep and relaxation times as compared to the case of the intact knee. The knee joint became stiffer after meniscectomy because of higher fluid pressure at knee compression followed by slower pressure dissipation. The present study indicated the role of fluid pressurization in the altered mechanics of meniscectomized knees.  相似文献   

2.
Knee osteoarthritis (OA) is believed to result from high levels of contact stresses on the articular cartilage and meniscus after meniscal damage. This study investigated the effect of meniscal tears and partial meniscectomies on the peak compressive and shear stresses in the human knee joint. An elaborate three-dimensional finite element model of knee joint including bones, articular cartilages, menisci and main ligaments was developed from computed tomography and magnetic resonance imaging images. This model was used to model four types of meniscal tears and their resultant partial meniscectomies and analysed under an axial 1150 N load at 0° flexion. Three different conditions were compared: a healthy knee joint, a knee joint with medial meniscal tears and a knee joint following partial meniscectomies. The numerical results showed that each meniscal tear and its resultant partial meniscectomy led to an increase in the peak compressive and shear stresses on the articular cartilages and meniscus in the medial knee compartment, especially for partial meniscectomy. Among the four types of meniscal tears, the oblique tear resulted in the highest values of the peak compressive and shear stresses. For the four partial meniscectomies, longitudinal meniscectomy led to the largest increase in these two stresses. The lateral compartment was minimally affected by all the simulations. The results of this study demonstrate meniscal tear and its resultant partial meniscectomy has a positive impact on the maintenance of high levels of contact stresses, which may improve the progression of knee OA, especially for partial meniscectomy. Surgeons should adopt a prudent strategy to preserve the greatest amount of meniscus possible.  相似文献   

3.
The menisci play an important role in load distribution, load bearing, joint stability, lubrication, and proprioception. Partial meniscectomy has been shown to result in changes in the kinematics and kinetics at the knee during gait that can lead to progressive meniscal degeneration. This study examined changes in the strains within the menisci associated with kinematic and kinetic changes during the gait cycle. The gait changes considered were a 5 deg shift toward external rotation of the tibia with respect to the femur and an increased medial-lateral load ratio representing an increased adduction moment. A finite element model of the knee was developed and tested using a cadaveric specimen. The cadaver was placed in positions representing heel-strike and midstance of the normal gait, and magnetic resonance images were taken. Comparisons of the model predictions to boundaries digitized from images acquired in the loaded states were within the errors produced by a 1 pixel shift of either meniscus. The finite element model predicted that an increased adduction moment caused increased strains of both the anterior and posterior horns of the medial meniscus. The lateral meniscus exhibited much lower strains and had minimal changes under the various loading conditions. The external tibial rotational change resulted in a 20% decrease in the strains in the posterior medial horn and increased strains in the anterior medial horn. The results of this study suggest that the shift toward external tibial rotation seen clinically after partial medial meniscectomy is not likely to cause subsequent degenerative medial meniscal damage, but the consequence of this kinematic shift on the pathogenesis of osteoarthritis following meniscectomy requires further consideration.  相似文献   

4.
Medial meniscus tears and medial partial meniscectomies can damage or remove mechanoreceptors in the meniscus; this inevitably affects knee joint proprioception. Few studies have addressed this subject and none has examined balance in response to sudden perturbation, which requires complex coordination. This study investigated changes in balance in response to sudden unidirectional perturbations after a medial meniscus tear and medial partial meniscectomy in the 3rd and 12th postoperative months. We compared balancing capacity after sudden unidirectional (horizontal) perturbation in 20 control subjects and 20 patients with a medial meniscus tear. Patients were re-examined 3 and 12 months postoperatively. Balancing ability after unidirectional perturbation was assessed by the Lehr's damping ratio in provocation tests. Meniscus tear significantly reduced the Lehr's damping ratio while standing on the affected leg (p=0.0001) and impaired the posture while standing on both legs (p=0.0007). After partial medial meniscectomy, the Lehr's damping ratio was only significantly reduced while standing on the affected side compared to controls (p<0.01). The results indicated that meniscus tears reduced patients' ability to respond to unidirectional perturbation and adapt to environmental changes. Even 1 year postoperatively, balance after sudden unidirectional perturbation on the affected side was weaker than that of controls.  相似文献   

5.
Studies of the load transfer role of the meniscus have been limited to static experimental and analytical approaches. The objective of this study was to develop an experimental technique to allow the contact pressures on the tibial plateau of cadaveric knees to be measured under dynamic physiological loads. Accordingly, we adapted a load-controlled knee joint simulator to accept a cadaveric sheep knee, programmed the simulator with sheep gait kinematics data, and utilized a pressure sensor array to measure the contact pressure distribution on the lateral tibial plateau during gait. The technique was applied to six sheep knees that were tested intact and after meniscectomy. Meniscectomy resulted in a 267% increase in average contact pressure, a 117% increase in peak contact pressure, and an 80% decrease in contact area, all measured at the point of maximum peak contact stress in the gait cycle. It is envisaged that the experimental model herein developed will allow for the screening of candidate materials prior to more expensive and time-consuming animal models.  相似文献   

6.
In an effort to prevent degeneration of articular cartilage associated with meniscectomies, both meniscal allografts and synthetic replacements are subjects of current interest and investigation. The objectives of the current study were to (1) determine whether a transversely isotropic, linearly elastic, homogeneous material model of the meniscal tissue is necessary to achieve a normal contact pressure distribution on the tibial plateau, (2) determine which material and boundary condition (attachments) parameters affect the contact pressure distribution most strongly, and (3) set tolerances on these parameters to restore the contact pressure distribution to within a specified error. To satisfy these objectives, a finite element model of the tibio-femoral joint of a human cadaveric knee (including both menisci) was used to study the contact pressure distribution on the tibial plateau. To validate the model, the contact pressure distribution on the tibial plateau was measured experimentally in the same knee used to create the model. Within physiologically reasonable bounds on five material parameters and four attachment parameters associated with a meniscal replacement, an optimization was performed under 1200 N of compressive load on the set of nine parameters to minimize the difference between the experimental and model results. The error between the experimental and model contact variables was minimized to 5.4%. The contact pressure distribution of the tibial plateau was sensitive to the circumferential modulus, axial/radial modulus, and horn stiffness, but relatively insensitive to the remaining six parameters. Consequently, both the circumferential and axial/radial moduli are important determinants of the contact pressure distribution, and hence should be matched in the design and/or selection of meniscal replacements. In addition, during surgical implantation of a meniscal replacement, the horns should be attached with high stiffness bone plugs, and the attachments of the transverse ligament and deep medial collateral ligament should be restored to minimize changes in the contact pressure distribution, and thereby possibly prevent the degradation of articular cartilage.  相似文献   

7.
The spatial distribution and pattern of local contact stresses within the knee joint during activities of daily living have not been fully investigated. The objective of this study was to determine if common contact stress patterns exist on the tibial plateaus of human knees during simulated gait. To test this hypothesis, we developed a novel normalized cross-correlation (NCC) algorithm and applied it to the contact stresses on the tibial plateaus of 12 human cadaveric knees subjected to multi-directional loads mimicking gait. The contact stress profiles at different locations on the tibial plateaus were compared, where regions with similar contact stress patterns were identified across specimens. Three consistent regional patterns were found, among them two most prominent contact stress patterns were shared by 9–12 of all the knees and the third pattern was shared by 6–8 knees. The first pattern was located at the posterior aspect of the medial tibial plateau and had a single peak stress that occurred during the early stance phase. The second pattern was located at the central-posterior aspects of the lateral plateau and consisted of two peak stresses coincident with the timing of peak axial force at early and late stance. The third pattern was found on the anterior aspect of cartilage-to-cartilage contact region on the medial plateau consisted of double peak stresses. The differences in the location and profile of the contact stress patterns suggest that the medial and lateral menisci function to carry load at different points in the gait cycle: with the posterior aspect of the medial meniscus consistently distributing load only during the early phase of stance, and the posterior aspect of the lateral meniscus consistently distributing load during both the early and late phases of stance. This novel approach can help identify abnormalities in knee contact mechanics and provide a better understanding of the mechanical pathways leading to post-traumatic osteoarthritis.  相似文献   

8.
In this first part of a two-part paper, the results of measurement of static pressure distribution on the tibial surface of the knee are presented. Results with intact menisci have been obtained from 18 specimens. Eight of these specimens were the subject of further measurements following medial meniscectomy. The study has been carried out at various flexion angles of the knee with the joint subjected to a compressive force, with or without an initial passive relative displacement between the joint members. The results indicate that a significant fraction of the joint compressive load is transmitted through the menisci and that total meniscectomy causes a drastic alteration in the pressure distribution on the tibial surface. Clinical implications of these results, in terms of post-meniscectomy degenerative changes and mechanism of meniscal lesions, have been discussed.  相似文献   

9.
Spontaneous cartilage degeneration of the femorotibial joint of male Hartley guinea pigs, 61 to 365 days old, was studied by light microscopy (LM) and scanning electron microscopy (SEM) to determine the incidence, age at onset, and to characterize the early changes. Knee joints of 61 day old animals were histologically and ultrastructurally normal. Focal minimal degeneration characterized by cell and proteoglycan loss with surface fibrillation was first observed by LM on the medial tibial plateau (MTP) in two of five 89 day old animals. Mild lesions characterized by focal surface disruption, primarily in the area of medial tibial plateau not covered by the meniscus, were observed in three of five 89 day old animals by SEM. Light microscopic alterations in knee joints of 4, 5, and 6 month old animals consisted of varying degrees of focal chondrocyte death, decreased toluidine blue matrix staining, and surface fibrillation. Small chondrocytic clones were first observed in medial tibial cartilage of 6 month old animals with moderate focal degeneration. Ultrastructurally, 4, 5, and 6 month old animals generally had moderate to severe fibrillation involving primarily the area of the medial tibial plateau not covered by the meniscus. Tibial osteophyte formation, mild synovial hyperplasia, medial femoral and meniscal cartilage degeneration, were first seen by LM in 9 month old animals. Lesions in 1 year old animals were similar, but more severe and included subchondral sclerosis of medial tibial and femoral bone. Bilateral fibrillation of greater than 50% of the medial tibial articular surface was observed in all 1 year old animals by SEM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
As a step towards developing a finite element model of the knee that can be used to study how the variables associated with a meniscal replacement affect tibio-femoral contact, the goals of this study were 1) to develop a geometrically accurate three-dimensional solid model of the knee joint with special attention given to the menisci and articular cartilage, 2) to determine to what extent bony deformations affect contact behavior, and 3) to determine whether constraining rotations other than flexion/extension affects the contact behavior of the joint during compressive loading. The model included both the cortical and trabecular bone of the femur and tibia, articular cartilage of the femoral condyles and tibial plateau, both the medial and lateral menisci with their horn attachments, the transverse ligament, the anterior cruciate ligament, and the medial collateral ligament. The solid models for the menisci and articular cartilage were created from surface scans provided by a noncontacting, laser-based, three-dimensional coordinate digitizing system with an root mean squared error (RMSE) of less than 8 microns. Solid models of both the tibia and femur were created from CT images, except for the most proximal surface of the tibia and most distal surface of the femur which were created with the three-dimensional coordinate digitizing system. The constitutive relation of the menisci treated the tissue as transversely isotropic and linearly elastic. Under the application of an 800 N compressive load at 0 degrees of flexion, six contact variables in each compartment (ie., medial and lateral) were computed including maximum pressure, mean pressure, contact area, total contact force, and coordinates of the center of pressure. Convergence of the finite element solution was studied using three mesh sizes ranging from an average element size of 5 mm by 5 mm to 1 mm by 1 mm. The solution was considered converged for an average element size of 2 mm by 2 mm. Using this mesh size, finite element solutions for rigid versus deformable bones indicated that none of the contact variables changed by more than 2% when the femur and tibia were treated as rigid. However, differences in contact variables as large as 19% occurred when rotations other than flexion/extension were constrained. The largest difference was in the maximum pressure. Among the principal conclusions of the study are that accurate finite element solutions of tibio-femoral contact behavior can be obtained by treating the bones as rigid. However, unrealistic constraints on rotations other than flexion/extension can result in relatively large errors in contact variables.  相似文献   

11.
The menisci are important biomechanical components of the knee. We developed and validated a finite element model of meniscal replacement to assess the effect of surgical fixation technique on contact behavior and knee stability. The geometry of femoral and tibial articular cartilage and menisci was segmented from magnetic resonance images of a normal cadaver knee using MIMICS (Materialise, Leuven, Belgium). A finite element mesh was generated using HyperWorks (Altair Inc, Santa Ana, CA). A finite element solver (Abaqus v6.9, Simulia, Providence, RI) was used to compute contact area and stresses under axial loading and to assess stability (reaction force generated during anteroposterior translation of the femur). The natural and surgical attachments of the meniscal horns and peripheral rim were simulated using springs. After total meniscectomy, femoral contact area decreased by 26% with a concomitant increase in average contact stresses (36%) and peak contact stresses (33%). Replacing the meniscus without suturing the horns did little to restore femoral contact area. Suturing the horns increased contact area and reduced peak contact stresses. Increasing suture stiffness correlated with increased meniscal contact stresses as a greater proportion of tibiofemoral load was transferred to the meniscus. A small incremental benefit was seen of simulated bone plug fixation over the suture construct with the highest stiffness (50 N/mm). Suturing the rim did little to change contact conditions. The nominal anteroposterior stiffness reduced by 3.1 N/mm after meniscectomy. In contrast to contact area and stress, stiffness of the horn fixation sutures had a smaller effect on anteroposterior stability. On the other hand suturing the rim of the meniscus affected anteroposterior stability to a much larger degree. This model emphasizes the importance of the meniscus in knee biomechanics. Appropriate meniscal replacement fixation techniques are likely to be critical to the clinical success of meniscal replacement. While contact conditions are mainly sensitive to meniscus horn fixation, the stability of the knee under anteroposterior shear loads appeared to be more sensitive to meniscal rim fixation. This model may also be useful in predicting the effect of biomaterial mechanical properties and meniscal replacement shape on knee contact conditions.  相似文献   

12.
The aim of our study was to develop a 3-D MR-based technique for the analysis of meniscal and femoral translations during flexion of the knee, and under the influence of antagonistic muscle forces in healthy subjects. In an open MR system, 5 knees were examined at 30 degrees and 90 degrees flexion using a T1-weighted 3-D gradient echo sequence. A force of 30 Newtons, first in the extending and then in the flexing direction, was applied to the distal lower leg. After three-dimensional reconstruction, the minimal distances between the centre of the tibial plateau and the posterior edge of the menisci and femoral condyles were determined. At 30 degrees flexion, the minimum distance for the meniscus was larger medially than laterally (23.2 +/- 1.8 mm vs. 16.2 +/- 3.3 mm), and this also applied to the condyles (25.1 +/- 1.5 vs. 19.0 +/- 3.0 mm). During flexion to 90 degrees, a posterior translation of 0.5 +/- 0.2 mm was observed for the lateral, and of 3.4 +/- 1.2 mm for the medial, meniscus. The condyles demonstrated a different posterior translation (lateral 2.2 +/- 0.56 mm; medial 1.8 +/- 1.9 mm). No obvious differences were found between extension and flexion muscle activity for the different positions of the knee. In the present study, a new 3-D technique is presented for the analysis of the femoral and meniscal translation at various positions of the knee, and under muscle activity. The results suggest different translation for the menisci and condyles.  相似文献   

13.
Despite significant advances in scaffold design, manufacture, and development, it remains unclear what forces these scaffolds must withstand when implanted into the heavily loaded environment of the knee joint. The objective of this study was to fully quantify the dynamic contact mechanics across the tibial plateau of the human knee joint during gait and stair climbing. Our model consisted of a modified Stanmore knee simulator (to apply multi-directional dynamic forces), a two-camera motion capture system (to record joint kinematics), an electronic sensor (to record contact stresses on the tibial plateau), and a suite of post-processing algorithms. During gait, peak contact stresses on the medial plateau occurred in areas of cartilage–cartilage contact; while during stair climb, peak contact stresses were located in the posterior aspect of the plateau, under the meniscus. On the lateral plateau, during gait and in early stair-climb, peak contact stresses occurred under the meniscus, while in late stair-climb, peak contact stresses were experienced in the zone of cartilage–cartilage contact. At 45% of the gait cycle, and 20% and 48% of the stair-climb cycle, peak stresses were simultaneously experienced on both the medial and lateral compartment, suggesting that these phases of loading warrant particular consideration in any simulation intended to evaluate scaffold performance. Our study suggests that in order to design a scaffold capable of restoring ‘normal’ contact mechanics to the injured knees, the mechanics of the intended site of implantation should be taken into account in any pre-clinical testing regime.  相似文献   

14.
Site-specific and depth-dependent properties of cartilage were implemented within a finite element (FE) model to determine if compositional or structural changes in the tissue could explain site-specific alterations of chondrocyte deformations due to cartilage loading in rabbit knee joints 3 days after a partial meniscectomy (PM). Depth-dependent proteoglycan (PG) content, collagen content and collagen orientation in the cartilage extracellular matrix (ECM), and PG content in the pericellular matrix (PCM) were assessed with microscopic and spectroscopic methods. Patellar, femoral groove and samples from both the lateral and medial compartments of the femoral condyle and tibial plateau were extracted from healthy controls and from the partial meniscectomy group. For both groups and each knee joint site, axisymmetric FE models with measured properties were generated. Experimental cartilage loading was applied in the simulations and chondrocyte volumes were compared to the experimental values. ECM and PCM PG loss occurred within the superficial cartilage layer in the PM group at all locations, except in the lateral tibial plateau. Collagen content and orientation were not significantly altered due to the PM. The FE simulations predicted similar chondrocyte volume changes and group differences as obtained experimentally. Loss of PCM fixed charge density (FCD) decreased cell volume loss, as observed in the medial femur and medial tibia, whereas loss of ECM FCD increased cell volume loss, as seen in the patella, femoral groove and lateral femur. The model outcome, cell volume change, was also sensitive to applied tissue geometry, collagen fibril orientation and loading conditions.  相似文献   

15.
Loss of charged proteoglycans in the knee meniscus, which aid in the support of compressive loads by entraining water, is an effect of degeneration and is often associated with osteoarthritis. In healthy menisci, proteoglycan content is highest in the inner white zone and decreases towards the peripheral red zone. We hypothesized that loss of proteoglycans would reduce both osmotic swelling and compressive stiffness, spatially localized to the avascular white zone of the meniscus. This hypothesis was tested by targeted enzymatic digestion of proteoglycans using hyaluronidase in intact cervine medial menisci. Mechanics were quantified by creep indentation on the femoral surface. Osmotic swelling changes were assessed by measuring collagen fiber crimp period in the radial-axial plane in the lamellar layer along both the tibial and femoral contacting surfaces. All measurements were made in the inner, middle, and outer zones of the anterior, central, and posterior regions. Mechanical measurements showed variation in creep behavior with anatomical location, along with spatially uniform decreases in viscosity (average of 21%) and creep stiffness (average of 15%) with hyaluronidase treatment. Lamellar collagen crimp period was significantly decreased (average of 27%) by hyaluronidase, indicating a decrease in osmotic swelling, with the largest decreases seen in locations with the highest proteoglycan content. Taken together, these results suggest that while proteoglycans have localized effects on meniscus swelling, the resulting effect on compressive properties is distributed throughout the tissue.  相似文献   

16.
Results of both clinical and animal studies show that meniscectomy often leads to osteoarthritic degenerative changes in articular cartilage. It is generally assumed that this process of cartilage degeneration is due to changes in mechanical loading after meniscectomy. It is, however, not known why and where this cartilage degeneration starts. Load induced cartilage damage is characterized as either type (1)--damage without disruption of the underlying bone or calcified cartilage layer--or type (2), subchondral fracture with or without damage to the overlying cartilage. We asked the question whether cartilage degeneration after meniscectomy is likely to be initiated by type (1) and/or type (2) cartilage damage. To investigate that we applied an axisymmetric biphasic finite element analysis model of the knee joint. In this model the articular cartilage layers of the tibial and the femoral condyles, the meniscus and the bone underlying the articular cartilage of the tibia plateau were included. The model was validated with data from clinical studies, in which the effects of meniscectomy on contact areas and pressures were measured. It was found that both the maximal values and the distributions of the shear stress in the articular cartilage changed after meniscectomy, and that these changes could lead to both type (1) and type (2) cartilage damage. Hence it likely that the cartilage degeneration seen after meniscectomy is initiated by both type (1) and type (2) cartilage damage.  相似文献   

17.
18.
Injuries to the anterior cruciate ligament (ACL) and menisci commonly lead to early onset osteoarthritis. Treatments that can restore normative cartilage loading patterns may mitigate the risk of osteoarthritis, though it is unclear whether such a goal is achievable through conservative rehabilitation. We used musculoskeletal simulation to predict cartilage and ligament loading patterns during walking in intact, ACL deficient, menisci deficient, and ACL-menisci deficient knees. Stochastic simulations with varying coordination strategies were then used to test whether neuromuscular control could be modulated to restore normative knee mechanics in the pathologic conditions. During early stance, a 3 mm increase in anterior tibial translation was predicted in the ACL deficient knee. Mean cartilage contact pressure increased by 18% and 24% on the medial and lateral plateaus, respectively, in the menisci deficient knee. Variations in neuromuscular coordination were insufficient to restore normative cartilage contact patterns in either the ACL or menisci deficient knees. Elevated cartilage contact pressures in the pathologic knees were observed in regions where cartilage wear patterns have previously been reported. These results suggest that altered cartilage tissue loading during gait may contribute to region-specific degeneration patterns, and that varying neuromuscular coordination in isolation is unlikely to restore normative knee mechanics.  相似文献   

19.
Loss of meniscal function due to injury or partial meniscectomy is common and represents a significant risk factor for premature osteoarthritis. The menisci can influence the transverse plane movements (anterior–posterior (AP) translation and internal–external (IE) rotation) of the knee during walking. While walking is the most frequent activity of daily living, the kinematic differences at the knee during walking associated with the meniscal injury are not well understood. This study examined the influence of partial medial meniscectomy (PMM) on the kinematics and kinetics of the knee during the stance phase of gait by testing the differences in anterior–posterior translation, internal–external rotation, knee flexion range of movement, peak flexion/extension moments, and adduction moments between the PMM and healthy contralateral limbs. Ten patients (45±9 years old, height 1.75±0.06 m, weight 76.7±13.5 kg) who had undergone partial medial meniscectomy (33±100 months post-op) in one limb with a healthy contralateral limb were tested during normal walking. The contralateral limb was compared to a matched control group and no differences were found. The primary kinematic difference was a significantly greater external rotation (3.2°) of the tibia that existed through stance phase, with 8 of 10 subjects demonstrating the same pattern. The PMM subjects also exhibited significantly lower peak flexion and extension moments in their PMM limbs. The altered rotational position found likely results in changes of tibio-femoral contact during walking and could cause the type of degenerative changes found in the articular cartilage following meniscal injury.  相似文献   

20.
It has been suggested that the repetitive nature of altered joint tissue loading which occurs after anterior cruciate ligament (ACL) rupture can contribute to the development of osteoarthritis (OA). However, changes in dynamic knee joint contact stresses after ACL rupture have not been quantified for activities of daily living. Our objective was to characterize changes in dynamic contact stress profiles that occur across the tibial plateau immediately after ACL transection. By subjecting sensor-augmented cadaveric knees to simulated gait, and analyzing the resulting contact stress profiles using a normalized cross-correlation algorithm, we tested the hypothesis that common changes in dynamic contact stress profiles exist after ACL injury. Three common profiles were identified in intact knees, occurring on the: (I) posterior lateral plateau, (II) posterior medial plateau, and (III) central region of the medial plateau. In ACL-transected knees, the magnitude and shape of the common dynamic stress profiles did not change, but their locations on the tibial plateau and the number of knees identified for each profile changed. Furthermore, in the ACL transected knees, a unique common contact stress profile was identified in the posterior region of the lateral plateau near the tibial spine. This framework can be used to understand the regional and temporal changes in joint mechanics after injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号