首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
《Genomics》1995,29(3)
The BRCA1 gene is in large part responsible for hereditary human breast and ovarian cancer. Here we report the isolation of the murineBrca1homologue cDNA clones. In addition, we identified genomic P1 clones that contain most, if not all, of the mouseBrca1locus. DNA sequence analysis revealed that the mouse and human coding regions are 75% identical at the nucleotide level while the predicted amino acid identity is only 58%. A DNA sequence variant in theBrca1locus was identified and used to map this gene on a (Mus m. musculusCzech II × C57BL/KsJ)F1 × C57BL/KsJ intersubspecific backcross to distal mouse chromosome 11. The mapping of this gene to a region highly syntenic with human chromosome 17, coupled with Southern and Northern analyses, confirms that we isolated the murineBrca1homologue rather than a related RING finger gene. The isolation of the mouseBrca1homologue will facilitate the creation of mouse models for germline BRCA1 defects.  相似文献   

10.
The eukaryotic replisome disassembles parental chromatin at DNA replication forks, but then plays a poorly understood role in the re‐deposition of the displaced histone complexes onto nascent DNA. Here, we show that yeast DNA polymerase α contains a histone‐binding motif that is conserved in human Pol α and is specific for histones H2A and H2B. Mutation of this motif in budding yeast cells does not affect DNA synthesis, but instead abrogates gene silencing at telomeres and mating‐type loci. Similar phenotypes are produced not only by mutations that displace Pol α from the replisome, but also by mutation of the previously identified histone‐binding motif in the CMG helicase subunit Mcm2, the human orthologue of which was shown to bind to histones H3 and H4. We show that chromatin‐derived histone complexes can be bound simultaneously by Mcm2, Pol α and the histone chaperone FACT that is also a replisome component. These findings indicate that replisome assembly unites multiple histone‐binding activities, which jointly process parental histones to help preserve silent chromatin during the process of chromosome duplication.  相似文献   

11.
12.
13.
The humanNBR1cDNA has previously been identified using polyclonal sera to CA125, an ovarian tumor antigen used in monitoring ovarian cancer. The gene was mapped to theBRCA1region on chromosome 17q21 and subsequently found to lie in close proximity to the recently identifiedBRCA1gene. The NBR1 protein has a B-box motif but the function of the protein is as yet unknown. To investigate the function and importance of this gene, we have studied the conservation of this gene in other species and in particular in the mouse. We have isolated murineNbr1cDNA and genomic clones. Translation of the cDNA sequence indicates that the protein is highly conserved, being 89% similar and 84% identical to the human. Analysis of the murineNbr1genomic clones indicates that it maps less than 1 kb from theBrca1gene and that, unlike that in human, this region is not duplicated.  相似文献   

14.
Histone lysine methylation is a dynamic process that plays an important role in regulating chromatin structure and gene expression. Recent studies have identified Jhd2, a JmjC domain-containing protein, as an H3K4-specific demethylase in budding yeast. However, important questions regarding the regulation and functions of Jhd2 remain unanswered. In this study, we show that Jhd2 has intrinsic activity to remove all three states of H3K4 methylation in vivo and can dynamically associate with chromatin to modulate H3K4 methylation levels on both active and repressed genes and at the telomeric regions. We found that the plant homeodomain (PHD) finger of Jhd2 is important for its chromatin association in vivo. However, this association is not dependent on H3K4 methylation and the H3 N-terminal tail, suggesting the presence of an alternative mechanism by which Jhd2 binds nucleosomes. We also provide evidence that the JmjN domain and its interaction with the JmjC catalytic domain are important for Jhd2 function and that Not4 (an E3 ligase) monitors the structural integrity of this interdomain interaction to maintain the overall protein levels of Jhd2. We show that the S451R mutation in human SMCX (a homolog of Jhd2), which has been linked to mental retardation, and the homologous T359R mutation in Jhd2 affect the protein stability of both of these proteins. Therefore, our findings provide a mechanistic explanation for the observed defects in patients harboring this SMCX mutant and suggest the presence of a conserved pathway involving Not4 that modulates the protein stability of both yeast Jhd2 and human SMCX.  相似文献   

15.
16.
17.
18.
19.
20.
Defining the protein factors that directly recognize post-translational, covalent histone modifications is essential toward understanding the impact of these chromatin "marks" on gene regulation. In the current study, we identify human CHD1, an ATP-dependent chromatin remodeling protein, as a factor that directly and selectively recognizes histone H3 methylated on lysine 4. In vitro binding studies identified that CHD1 recognizes di- and trimethyl H3K4 with a dissociation constant (Kd) of approximately 5 microm, whereas monomethyl H3K4 binds CHD1 with a 3-fold lower affinity. Surprisingly, human CHD1 binds to methylated H3K4 in a manner that requires both of its tandem chromodomains. In vitro analyses demonstrate that unlike human CHD1, yeast Chd1 does not bind methylated H3K4. Our findings indicate that yeast and human CHD1 have diverged in their ability to discriminate covalently modified histones and link histone modification-recognition and non-covalent chromatin remodeling activities within a single human protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号