首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mammalian cells regulate iron levels tightly through the activity of iron-regulatory proteins (IRPs) that bind to RNA motifs called iron-responsive elements (IREs). When cells become iron-depleted, IRPs bind to IREs present in the mRNAs of ferritin and the transferrin receptor, resulting in diminished translation of the ferritin mRNA and increased translation of the transferrin receptor mRNA. Likewise, intestinal epithelial cells regulate iron absorption by a process that also depends on the intracellular levels of iron. Although intestinal epithelial cells have an active IRE/IRP system, it has not been proven that this system is involved in the regulation of iron absorption in these cells. In this study, we characterized the effect of overexpression of the ferritin IRE on iron absorption by Caco-2 cells, a model of intestinal epithelial cells. Cells overexpressing ferritin IRE had increased levels of ferritin, whereas the levels of the transferrin receptor were decreased. Iron absorption in IRE-transfected cells was deregulated: iron uptake from the apical medium was increased, but the capacity to retain this newly incorporated iron diminished. Cells overexpressing IRE were not able to control iron absorption as a function of intracellular iron, because both iron-deficient cells as well as iron-loaded cells absorbed similarly high levels of iron. The labile iron pool of IRE-transfected cell was extremely low. Likewise, the reduction of the labile iron pool in control cells resulted in cells having increased iron absorption. These results indicate that cells overexpressing IRE do not regulate iron absorption, an effect associated with decreased levels of the regulatory iron pool.  相似文献   

3.
Cocultures of two human cell lines, Caco-2 and HT29-MTX mucus-producing cells, have been incorporated into an in vitro digestion/cell culture model used to predict iron bioavailability. A range of different foods were subjected to in vitro digestion, and iron bioavailability from digests was assessed with Caco-2, Caco-2 overlaid with porcine mucin, HT29-MTX or cocultures of Caco-2 and HT29-MTX at varying ratios. It was found that increasing the ratio of HT29-MTX cells decreased the amount of ferritin formed and resulted in an overall decline in the ability of the model to detect differences in iron bioavailability. At the physiologically relevant ratios of 90% Caco-2/10% HT29-MTX and 75% Caco-2/25% HT29-MTX, however, a mucus layer completely covered the cell monolayer and the in vitro digestion model was nearly as responsive to changes in sample iron bioavailability as pure Caco-2 cultures. The in vitro digestion/Caco-2 cell culture model correlates well with human iron bioavailability studies, but, as mucus appears to play a role in iron absorption, the addition of a physiologically realistic mucus layer and goblet-type cells to this model may give more accurate iron bioavailability predictions.  相似文献   

4.
Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55) increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions.  相似文献   

5.
Patients with alcoholic liver disease (ALD) often display disturbed iron indices. Hepcidin, a key regulator of iron metabolism, has been shown to be down‐regulated by alcohol in cell lines and animal models. This down‐regulation led to increased duodenal iron transport and absorption in animals. In this study, we investigated gene expression of duodenal iron transport molecules and hepcidin in three groups of patients with ALD (with anaemia, with iron overload and without iron overload) and controls. Expression of DMT1, FPN1, DCYTB, HEPH, HFE and TFR1 was measured in duodenal biopsies by using real‐time PCR and Western blot. Serum hepcidin levels were measured by using ELISA. Serum hepcidin was decreased in patients with ALD. At the mRNA level, expressions of DMT1, FPN1 and TFR1 genes were significantly increased in ALD. This pattern was even more pronounced in the subgroups of patients without iron overload and with anaemia. Protein expression of FPN1 paralleled the increase at the mRNA level in the group of patients with ALD. Serum ferritin was negatively correlated with DMT1 mRNA. The down‐regulation of hepcidin expression leading to up‐regulation of iron transporters expression in the duodenum seems to explain iron metabolism disturbances in ALD. Alcohol consumption very probably causes suppression of hepcidin expression in patients with ALD.  相似文献   

6.
Iron is essential for life in almost all organisms and, in mammals, is absorbed through the villus cells of the duodenum. Using a human colonic carcinoma cell line that has many duodenal characteristics, HT29, we show that genes involved in intestinal iron transport are endogenously expressed. When stably transfected to express the hereditary hemochromatosis protein HFE these cells have increased ferritin levels. We demonstrate that this is not due to an effect on the transferrin (TF)-mediated iron uptake pathway but rather due to inhibition of iron efflux from the cell. The effect of HFE was independent of its interaction with TF receptor 1 as indicated by similar results using both the wild type HFE and the W81A mutant that binds TF receptor 1 with greatly reduced affinity. HFE expression did not affect the mRNA levels of most of the genes involved in iron absorption that were tested; however, it did correspond to a decrease in hephaestin message levels. These results point to a role for HFE in inhibition of iron efflux in HT29 cells. This is a distinct role from that in HeLa and human embryonic kidney 293 cells where HFE has been shown to inhibit TF-mediated iron uptake resulting in decreased ferritin levels. Such a distinction suggests a multifunctional role for HFE that is dependent upon expression levels of proteins involved in iron transport.  相似文献   

7.
Cells tightly regulate iron levels through the activity of iron regulatory proteins (IRPs) that bind to RNA motifs called iron responsive elements (IREs). When cells become iron-depleted, IRPs bind to IREs present in the mRNAs of ferritin and the transferrin receptor, resulting in diminished translation of the ferritin mRNA and increased translation of the transferrin receptor mRNA. Similarly, body iron homeostasis is maintained through the control of intestinal iron absorption. Intestinal epithelia cells sense body iron through the basolateral endocytosis of plasma transferrin. Transferrin endocytosis results in enterocytes whose iron content will depend on the iron saturation of plasma transferrin. Cell iron levels, in turn, inversely correlate with intestinal iron absorption. In this study, we examined the relationship between the regulation of intestinal iron absorption and the regulation of intracellular iron levels by Caco-2 cells. We asserted that IRP activity closely correlates with apical iron uptake and transepithelial iron transport. Moreover, overexpression of IRE resulted in a very low labile or reactive iron pool and increased apical to basolateral iron flux. These results show that iron absorption is primarily regulated by the size of the labile iron pool, which in turn is regulated by the IRE/IRP system.  相似文献   

8.
Molecular analysis of increased iron status in moderately exercised rats   总被引:5,自引:0,他引:5  
Although iron plays a critical role in exercise, the regulatory mechanism of iron metabolism remains poorly understood. The aims of the present study were to investigate the effects of different intensity exercise on body iron status and the regulatory mechanism of duodenal iron absorption. Thirty female Sprague-Dawley rats (90–100 g) were randomly divided into three groups: a control group (remained sedentary, CG), a moderately exercised group (swam 1.5 h/day, MG) and a strenuously exercised group (swam with different load, SG). Serum iron status, serum ferritin and Hct were examined after 10 weeks of swimming. Western blot was performed to detect the expression of iron transport proteins: divalent metal transporter1 (DMT1) and ferroportin 1 (FPN1) in duodenal epithelium. The expression of hepcidin mRNA in liver was examined by RT-PCR. The results showed: (1) the body iron status in MG was kept at a high level compared to that of CG and SG, (2) Western blot showed DMT1 with iron responsive element (IRE) and FPN1 in duodenal epithelium which were higher in MG than that of CG and (3) the expression of hepatic hepcidin mRNA was down regulated in MG (p < 0.05). The data suggested that moderate exercise improved iron status and that was likely regulated by increased DMT1 with IRE and FPN1 expression. Hepcidin signaling pathway may involve in the regulation of duodenal iron absorption proteins. Xiang Lin Duan and Yan Zhong Chang share Senior Authorship  相似文献   

9.
We hypothesized that vitamin A (VA) status may affect obesity development. Male Zucker lean (ZL) and fatty (ZF) rats after weaning were fed a synthetic VA deficient (VAD) or VA sufficient (VAS) diet for 8 weeks before their plasma parameters and hepatic genes' expression were analyzed. The body mass (BM) of ZL or ZF rats fed the VAD diet was lower than that of their corresponding controls fed the VAS diet at 5 or 2 weeks, respectively. The VAD ZL and ZF rats had less food intake than the VAS rats after 5 weeks. The VAD ZL and ZF rats had lower plasma glucose, triglyceride, insulin, and leptin levels, as well as lower liver glycogen content, net mass of epididymal fat, and liver/BM and epididymal fat/BM ratios (ZL only) than their respective VAS controls. VAD rats had lower hepatic Cyp26a1, Srebp-1c, Fas, Scd1, Me1, Gck, and Pklr (ZL and ZF); and higher Igfbp1 (ZL and ZF), Pck1(ZF only), and G6pc (ZF only) mRNA levels than their respective VAS controls. We conclude that ZL and ZF rats responded differently to dietary VA deficiency. VA status affected obesity development and altered the expression of hepatic genes for fuel metabolism in ZF rats. The mechanisms will help us to combat metabolic diseases.  相似文献   

10.
The divalent metal transporter (DMT1, Slc11a2) is an important molecule for intestinal iron absorption. In the Belgrade (b/b) rat, the DMT1 G185R mutation markedly decreases intestinal iron absorption. We used b/b rats as a model to examine the genes that could be compensatory for decreased iron absorption. When tissue hypoxia was assayed by detecting pimonidazole HCl adducts, the b/b liver and intestine exhibited more adducts than the +/+ rats, suggesting that hypoxia might signal altered gene expression. Total RNA in the crypt-villus bottom (C-pole) and villus top (V-pole) of +/+, b/b, and iron-fed b/b rats was isolated for gene array analyses. In addition, hepatic hepcidin and intestinal hypoxia-inducible factor-α (Hifα) expression were examined. The results showed that expression of hepatic hepcidin was significantly decreased and intestinal Hif2α was significantly increased in b/b and iron-fed b/b than +/+ rats. In b/b rats, the expression of Tfrc mRNA in the C-pole and of DMT1, Dcytb, FPN1, Heph, Hmox1, and ZIP14 mRNAs in the V-pole were markedly enhanced with increases occurring even in the C-pole. After iron feeding, the increased expression found in b/b rats persisted, except for Heph and ZIP14, which returned to normal levels. Thus in b/b rats depressed liver hepcidin production and activated intestinal Hif2α starting at the C-pole resulted in increasing expression of iron transport genes, including DMT1 G185R, in an attempt to compensate for the anemia in Belgrade rats.  相似文献   

11.
We sought to identify novel genes involved in intestinal iron absorption by inducing iron deficiency in rats during postnatal development from the suckling period through adulthood. We then performed comparative gene chip analyses (RAE230A and RAE230B chips; Affymetrix) with cRNA derived from duodenal mucosa. Real-time PCR was used to confirm changes in gene expression. Genes encoding the apical iron transport-related proteins [divalent metal transporter 1 (DMT1) and duodenal cytochrome b] were strongly induced at all ages studied, whereas increases in mRNA encoding the basolateral proteins iron-regulated gene 1 and hephaestin were observed only by real-time PCR. In addition, transferrin receptor 1 and heme oxygenase 1 were induced. We also identified induction of novel genes not previously associated with intestinal iron transport. The Menkes copper ATPase (ATP7a) and metallothionein were strongly induced at all ages studied, suggesting increased copper absorption by enterocytes during iron deficiency. We also found significantly increased liver copper levels in 7- to 12-wk-old iron-deficient rats. Also upregulated at most ages examined were the sodium-dependent vitamin C transporter, tripartite motif protein 27, aquaporin 4, lipocalin-interacting membrane receptor, and the breast cancer-resistance protein (ABCG2). Some genes also showed decreased expression with iron deprivation, including several membrane transporters, metabolic enzymes, and genes involved in the oxidative stress response. We speculate that dietary iron deprivation leads to increased intestinal copper absorption via DMT1 on the brush-border membrane and the Menkes copper ATPase on the basolateral membrane. These findings may thus explain copper loading in the iron-deficient state. We also demonstrate that many other novel genes may be differentially regulated in the setting of iron deprivation.  相似文献   

12.
Two iron transporters, divalent metal transporter1 (DMT1) and ferroportin1 (FPN1) have been identified; however, their role during infancy is unknown. We investigated DMT1, FPN1, ferritin, and transferrin receptor expression, iron absorption and tissue iron in iron-deficient rat pups, iron-deficient rat pups given iron supplements, and controls during early (day 10) and late infancy (day 20). With iron deficiency, DMT1 was unchanged and FPN1 was decreased (-80%) at day 10. Body iron uptake, mucosal iron retention, and total iron absorption were unchanged. At day 20, DMT1 increased fourfold and FPN1 increased eightfold in the low-Fe group compared with controls. Body iron uptake and total iron absorption were increased, and mucosal iron retention was decreased with iron deficiency. Iron supplementation normalized expression levels of the transporters, body iron uptake, mucosal iron retention, and total iron absorption of the low-Fe group to those of controls at day 20. In summary, the molecular mechanisms regulating iron absorption during early infancy differ from late infancy when they are similar to adult animals, indicating developmental regulation of iron absorption.  相似文献   

13.
The human intestinal epithelium is composed of several cell types, mainly enterocytes and goblet (mucin-secreting) cells. This study compares the cellular response of Fe transporters in Caco-2, HT29-MTX, and Caco-2/HT29-MTX co-culture models for Fe bioavailability. Caco-2 cells in vitro differentiate into enterocyte-like cells and HT29-MTX cell lineage into a mucin-secreting cellular population. Cell cultures were exposed to digests of Fe+3, Fe+3/ascorbic acid, cooked fish (high-available Fe) or white beans (low-available Fe). Cell responses as shown by mRNA expression of the main Fe transporters, DMT1 and DcytB, and cell ferritin formation were monitored. In Caco-2/HT29-MTX co-cultures, the mucin layer lowered the pool of free Fe to diffuse towards the cell brush border membrane of enterocytes, which was accompanied of an upregulation of DMT1 mRNA expression. In contrast, cultures exposed to digests of fish or white beans showed no significant differences in the regulation of Fe transporters.  相似文献   

14.
Ferroportin (FPN), the only iron exporter identified to date, participates in iron release from enterocytes and macrophages, regulating its absorption and recycling. We used a murine model of experimental hemolytic anemia to study adaptive changes in the localization of FPN in duodenum, liver, and spleen. FPN was assessed by IHC in healthy and anemic mice using rabbit anti-mouse FPN polyclonal antibodies. Goat-labeled polymer-horseradish peroxidase anti-rabbit Envision+System (DAB) was used as secondary antibody. Tissue iron was studied by Prussian blue iron staining. Anemia evolution and erythropoietic recovery was assessed using conventional hematological tests. Healthy mice showed mainly supranuclear expression of FPN in enterocytes and a weak basolateral expression, whereas in anemic mice, the expression was detected mainly at the basolateral membrane (days 4 and 5). Red pulp macrophages of healthy mice showed FPN-hemosiderin colocalization. In the liver of healthy mice, FPN was mainly cytoplasmic, whereas in anemic mice, it was redistributed to the cell membrane. Our findings clearly show that anemia induces adaptive changes in FPN expression, contributing to anemia restoration by increasing available iron. FPN expression in the membrane is the main pathway of iron release. Our data indicate that iron homeostasis in vivo is maintained through the coordinated expression of this iron exporter in both intestinal and phagocytic cells. (J Histochem Cytochem 57:9–16, 2009)  相似文献   

15.
Vitamin A and its derivatives have been shown to regulate the growth and differentiation of gastrointestinal epithelial cells; in addition, vitamin A deficiency has been convincingly shown to be associated with increased susceptibility to infection. The gastrointestinal mucosal barrier, which is a component of the innate immune system, is considered the first line of defense, as it provides a barrier between the external environment and the internal milieu. A disturbance in the integrity of the intestinal epithelium is one of the main factors involved in increased incidence of infections during vitamin A deficiency. In this study, the effects of vitamin A deficiency on microbial ecology and the expression of genes related to the intestinal mucosa's innate immunity were examined in a rat model. Using the 16s rDNA method, we demonstrate that a vitamin A-deficient (VAD) diet increases the total amount of bacteria in the gastrointestinal tract and alters the intestinal microflora. Results show a decrease in the relative proportion of Lactobacillus spp. and the simultaneous appearance of Escherichia coli strains. Lack of vitamin A significantly changed mucin (MUC) dynamics, as reflected by the enlarged goblet-cell "cup" area relative to controls; decreased MUC2 mRNA expression in the jejunum, ileum and colon of VAD rats and increased MUC3 mRNA expression in the ileum and colon of these rats. In addition, vitamin A deficiency down-regulated defensin 6 mRNA expression while up-regulating toll-like receptors 2 and 5 mRNA expressions. The current study indicates that vitamin A deficiency interferes with the integrity of the gastrointestinal mucosal barrier.  相似文献   

16.
目的:观察肥胖对小鼠十二指肠二价金属离子转运体(divalent metal transporter 1,DMT1)mRNA、膜铁转运蛋白(ferroportin1,FPN1)mRNA及蛋白表达的变化,探讨肥胖影响铁吸收的机制。方法 C57BL/6J小鼠随机分为正常对照组和肥胖模型组,每组6只,通过喂养高脂饲料喂养建立肥胖模型,对照组采用普通饲料饲养,实验干预期14周。建模完成后,采用实时荧光定量PCR方法检测小鼠十二指肠DMT1、FPN1 mRNA 的表达,用Western blot检测小鼠十二指肠FPN1蛋白表达。结果与对照组小鼠相比,肥胖模型组小鼠十二指肠DMT1、FPN1 mRNA表达以及FPN1蛋白表达水平降低,差异具有统计学意义( P <0.05)。结论肥胖会下调机体十二指肠DMT1、FPN1的表达,导致铁吸收不良,为进一步研究肥胖引起铁缺乏机制提供理论和实验依据。  相似文献   

17.
18.
19.
20.
Hepcidin has been implicated as the iron stores regulator: a hepatic signaling molecule that regulates intestinal iron absorption by undefined mechanisms. The possibility that hepcidin regulates the expression of ferroportin 1 (FPT1), the basolateral iron transporter, was examined in rats after administration of LPS, an iron chelator, or His-tagged recombinant hepcidin (His-rHepc). In the liver, LPS stimulated a biphasic increase of hepcidin mRNA with peaks of mRNA at 6 and 36 h. Concurrently, hepatic FPT1 mRNA expression decreased to minimal level at 6 h and then increased with a peak at 24-36 h. LPS also induced biphasic changes in intestinal FPT1 mRNA expression, with decreased levels at 6 h and increased expression at 48 h. Whereas the initial decrease of FPT1 coincides with an LPS-induced decrease in serum iron, both intestinal and hepatic FPT1 expression recovered, whereas serum iron concentration continued to decrease for at least 24 h. Dietary iron ingestion increased intestinal ferritin protein production but did not reduce intestinal FPT1 mRNA expression. The iron chelator pyrrolidinedithiocarbamate (PDTC) stimulated hepatic hepcidin without suppressing intestinal FPT1 expression. In PDTC-treated rats, LPS stimulated no additional hepatic hepcidin expression but did increase intestinal FPT1 expression. Administration of HisrHepc induced significant reduction of intestinal FPT1 expression. Taken together, these data suggest that hepcidin mediates LPS-induced downregulation of intestinal FPT1 expression and that the hepcidin signaling pathway involves a PDTC-sensitive step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号