首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of dodecylphosphocholine/myelin basic protein complexes   总被引:2,自引:0,他引:2  
The stoichiometry of myelin basic protein (MBP)/dodecylphosphocholine (DPC) complexes and the location of protein segments in the micelle have been investigated by electron paramagnetic resonance (EPR), ultracentrifugation, photon correlation light scattering, 31P, 13C, and 1H nuclear magnetic resonance (NMR), and electron microscopy. Ultracentrifugation measurements indicate that MBP forms stoichiometrically well-defined complexes consisting of 1 protein molecule and approximately 140 detergent molecules. The spin-labels 5-, 12-, and 16-doxylstearate have been incorporated into DPC/MBP aggregates. EPR spectral parameters and 13C and 1H NMR relaxation times indicate that the addition of MBP does not affect the environment and location of the labels or the organization of the micelles except for a slight increase in size. Previous results indicating that the protein lies primarily near the surface of the micelle have been confirmed by comparing 13C NMR spectra of the detergent with and without protein with spectra of protein/detergent aggregates containing spin-labels. Electron micrographs of the complexes taken by using the freeze-fracture technique confirm the estimated size obtained by light-scattering measurements. Overall, these results indicate that mixtures of MBP and DPC can form highly porous particles with well-defined protein and lipid stoichiometry. The structural integrity of these particles appears to be based on protein-lipid interactions. In addition, electron micrographs of aqueous DPC/MBP suspensions show the formation of a small amount of material consisting of large arrays of detergent micelles, suggesting that MBP is capable of inducing large changes in the overall organization of the detergent.  相似文献   

2.
CRAMP was identified from a cDNA clone derived from mouse femoral marrow cells as a member of cathelicidin-derived antimicrobial peptides. This peptide shows potent antimicrobial activity against gram-positive and gram-negative bacteria but no hemolytic activity against human erythrocytes. CRAMP was known to cause rapid permeabilization of the inner membrane of Escherichia coli. In this study, the structure of CRAMP in TFE/H2O (1 : 1, v/v) solution was determined by CD and NMR spectroscopy. CD spectra showed that CRAMP adopts a mainly alpha-helical conformation in TFE/H2O solution, DPC micelles, SDS micelles and liposomes, whereas it has a random structure in aqueous solution. The tertiary structure of CRAMP in TFE/H2O (1 : 1, v/v), as determined by NMR spectroscopy, consists of two amphipathic alpha-helices from Leu4 to Lys10 and from Gly16 to Leu33. These two helices are connected by a flexible region from Gly11 to Gly16. Previous analysis of series of fragments composed of various portion of CRAMP revealed that an 18-residue fragment with the sequence from Gly16 to Leu33 was found to retain antibacterial activity. Therefore, the amphipathic alpha-helical region from Gly16 to Leu33 of CRAMP plays important roles in spanning the lipid bilayers as well as its antibiotic activity. Based on this structure, novel antibiotic peptides having strong antibiotic activity, with no hemolytic effect will be developed.  相似文献   

3.
A peptide fragment from a protein hairpin turn region was modified by addition of isoleucine residues to both ends to enhance binding to lipid micelles; the resulting peptide (I(1)-I(2)-C(3)-N(4)-N(5)-P(6)-H(7)-I(8)-I(9)) contains the core sequence I-C-N-N-P-H from an antibody-binding region of hemagglutinin A. Nuclear magnetic resonance (NMR) diffusion measurements indicated partial binding (43-65%) of the peptide to micelles of n-octylglucoside and significantly stronger binding (85%) to dodecylphosphocholine (DPC) micelles. Simulated annealing and conformational analysis using nuclear Overhauser enhancement restraints revealed a type I or III hairpin turn between residues N(5) and I(8) of the DPC-bound peptide. Amide exchange experiments support the possibility that a hydrogen bond forms between N(5) and I(8), stabilizing the turn. In contrast, no discernable structure was observed for the peptide in aqueous solution by either NMR or circular dichroism. Molecular dynamics simulations of DPC micelles and peptide-micelle complexes suggested that the peptide lies flat on the micelle surface and showed rapid rearrangement of the lipids to accommodate the bound peptide. According to a search performed using the basic local alignment search tool (BLAST), the sequences N-P-H-I and N-P-H-V are present as hairpin turns in eight of the nine proteins whose crystal structures were available. The addition of isoleucine residues and the use of lipid micelles to stabilize hairpin conformations equivalent to those found in proteins generates new possibilities for reproducing biologically important hairpin turns from short, linear peptides.  相似文献   

4.
The role played by noncovalent interactions in inducing a stable secondary structure onto the sodium dodecyl sulfate (SDS) and dodecylphosphocholine (DPC) micelle-bound conformations of (Ala(8,13,18))magainin 2 amide and the DPC micelle bound conformation of magainin 1 were determined. Two-dimensional NMR and molecular modeling investigations indicated that (Ala(8,13,18))magainin 2 amide bound to DPC micelles adopts a alpha-helical secondary structure involving residues 2-16. The four C-terminal residues converge to a lose beta-turn structure. (Ala(8,13,18))magainin 2 amide bound to SDS miscelles adopts a alpha-helical secondary structure involving residues 7-18. The C- and N-terminal residues exhibited a great deal of conformational flexibility. Magainin 1 bound to DPC micelles adopts a alpha-helical secondary structure involving residues 4-19. The C-terminal residues converge to a lose beta-turn structure. The results of this investigation indicate hydrophobic interactions are the major contributors to stabilizing the induced helical structure of the micelle-bound peptides. Electrostatic interactions between the polar head groups of the micelle and the cationic side chains of the peptides define the positions along the peptide backbone where the helical structures begin and end.  相似文献   

5.
The stoichiometry of palmitoyllysophosphatidylcholine/myelin basic protein (PLPC/MBP) complexes, the location of the protein in the lysolipid micelles, and the conformational changes occurring in the basic protein and peptides derived from it upon interaction with lysolecithin micelles were investigated by circular dichroic spectropolarimetry, ultracentrifugation, electron paramagnetic resonance (EPR) and 31P, 13C, and 1H nuclear magnetic resonance spectroscopy (NMR), and electron microscopy. Ultracentrifugation measurements indicated that well-defined complexes were formed by the association of one protein molecule with approximately 141 lysolipid molecules. Small-angle X-ray scattering data indicated that the PLPC/MBP complexes form particles with a radius of gyration of 3.8 nm. EPR spectral parameters of the spin labels 5–, and 16-doxylstearate incorporated into lysolecithin/basic protein aggregates, and 13C- and 1H-NMR relaxation times of PLPC indicated that the addition of the protein did not affect the environment and location of the labels and the organization of the lysolipid micelles. The data suggested that MBP lies primarily near the surface of the micelles, with segments penetrating beyond the interfacial region into the hydrophobic interior, but without any part of the protein being protected against rapid exchange of its amide groups with the aqueous environment. The basic protein acquired about 20% -helix when bound to lysolipid micelles. Circular dichroic spectra of sequential peptides derived by cleavage of the protein revealed the formation of -helical regions in the association with lysolecithin. Specific residues in myelin basic protein that participated in binding to the micelles were identified from magnetic resonance data on changes in the chemical shifts and intensities of assigned resonances, and line broadening of peaks by fatty acid spin-labels incorporated into the micelles. Correspondence to: G. L. Mendz  相似文献   

6.
The broad spectrum of antibacterial activities of host defense cationic antimicrobial peptides (AMPs) arises from their ability to perturb membrane integrity of the microbes. The mechanisms are often thought to require assembly of AMPs on the membrane surface to form pores. However, three dimensional structures in the oligomeric form of AMPs in the context of lipid membranes are largely limited. Here, we demonstrate that a 22-residue antimicrobial peptide, termed VK22, derived from fowlicidin-1, a cathelicidin family of AMP from chicken oligomerizes into a predominantly tetrameric state in zwitterionic dodecylphosphocholine (DPC) micelles. An ensemble of NMR structures of VK22 determined in 200mM perdeuterated DPC, from 755 NOE constrains including 19 inter-helical NOEs, had revealed an assembly of four helices arranged in anti-parallel fashion. Hydrogen bonds, C(α)H-O=C types, and van der Waals interactions among the helical sub-units appear to be involved in the stabilization of the quaternary structures. The central region of the barrel shaped tetrameric bundle is non-polar with clusters of aromatic residues, whereas all the cationic residues are positioned at the termini. Paramagnetic spin labeled NMR experiments indicated that the tetrameric structure is embedded into micelles such that the non-polar region located inside the lipid acyl chains. Structure and micelle localization of a monomeric version, obtained from substitution of two Tyr residues with Ala, of the peptide is also compared. The mutated peptide VK22AA has been found be localized at the surface of the micelles. The tetrameric structure of VK22 delineates a small water pore that can be larger in the higher order oligomers. As these results provide structural insights, at atomic resolution, into the oligomeric states of a helical AMP in lipid environment, the structural details may be further utilized for the design of novel self-assembled membrane protein mimics.  相似文献   

7.
Pol peptide, an oligopeptide corresponding to the 27 C-terminal amino acids of DNA polymerase from herpes simplex virus type 1, has recently been suggested to translocate from endosomal compartments into the cytosol after being intracellularly delivered via a protein carrier. While an acidic environment was thought to be important for Pol peptide membrane translocation, the mechanism of translocation remains unclear. To investigate the influence of an acidic environment on the conformational properties of the peptide and on its propensity to interact with lipid bilayers, we characterized the structure of Pol peptide at different pH values by both circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. The influence of detergent micelles, which mimic biological lipid membranes, on the peptide secondary structure was also studied. Our CD results indicate that the peptide is in a random conformation in aqueous solution at both acidic and basic pH, whereas in the presence of dodecylphosphocholine (DPC) micelles, it assumes a partial alpha-helical structure which is significantly pH-dependent. An NMR study confirmed that, in the presence of DPC micelles, a short C-terminal alpha-helix is present at pH 6.5, whereas almost two-thirds of the peptide (residues 10-26) fold into an extended amphipathic alpha-helix at pH 4.0. The orientation of Pol peptide relative to the DPC micelle was investigated using paramagnetic probes at both pH 4.0 and 6.5. These studies show that the peptide inserts deeply into the micelle at pH 4.0, whereas it is more exposed to the aqueous environment at pH 6.5. On the basis of these results, a model which might explain the mechanism of translocation of Pol peptide from acidic endosomes to the cytosol is discussed.  相似文献   

8.
The three-dimensional structures of the two peptides plantaricin E (plnE; 33 residues) and plantaricin F (plnF; 34 residues) constituting the two-peptide bacteriocin plantaricin EF (plnEF) have been determined by nuclear magnetic resonance (NMR) spectroscopy in the presence of DPC micelles. PlnE has an N-terminal alpha-helix (residues 10-21), and a C-terminal alpha-helix-like structure (residues 25-31). PlnF has a long central alpha-helix (residues 7-32) with a kink of 38+/-7 degrees at Pro20. There is some flexibility in the helix in the kink region. Both helices in plnE are amphiphilic, while the helix in plnF is polar in its N-terminal half and amphiphilic in its C-terminal half. The alpha-helical content obtained by NMR spectroscopy is in agreement with CD studies. PlnE has two GxxxG motifs which are putative helix-helix interaction motifs, one at residues 5 to 9 and one at residues 20 to 24, while plnF has one such motif at residues 30 to 34. The peptides are flexible in these GxxxG regions. It is suggested that the two peptides lie parallel in a staggered fashion relative to each other and interact through helix-helix interactions involving the GxxxG motifs.  相似文献   

9.
Cluster determinant 4 (CD4) is a type I transmembrane glycoprotein of 58 kDa. It consists of an extracellular domain of 370 amino acids, a short transmembrane region, and a cytoplasmic domain of 40 amino acids at the C-terminal end. We investigated the structure of the 62 C-terminal residues of CD4, comprising its transmembrane and cytoplasmic domains. The five cysteine residues of this region have been replaced with serine and histidine residues in the polypeptide CD4mut. Uniformly 15N and 13C labeled protein was recombinantly expressed in E. coli and purified. Functional binding activity of CD4mut to protein VpU of the human immunodeficiency virus type 1 (HIV-1) was verified. Close to complete NMR resonance assignment of the 1H, 13C, and 15N spins of CD4mut was accomplished. The secondary structure of CD4mut in membrane simulating dodecylphosphocholine (DPC) micelles was characterized based on secondary chemical shift analysis, NOE-based proton-proton distances, and circular dichroism spectroscopy. A stable transmembrane helix and a short amphipathic helix in the cytoplasmic region were identified. The fractional helicity of the cytoplasmic helix appears to be stabilized in the presence of DPC micelles, although the extension of this helix is reduced in comparison to previous studies on synthetic peptides in aqueous solution. The role of the amphipathic helix and its potentially variable length is discussed with respect to the biological functions of CD4.  相似文献   

10.
Spinigerin is a linear antibacterial peptide derived from a termite insect. It consists of 25 amino acids and is devoid of cysteines. Spinigerin displays good lytic activities against Gram-positive and Gram-negative bacteria, but has no hemolytic activities against human erythrocytes. In this study, we present a three-dimensional solution structure of spinigerin in SDS micelles. According to CD data spinigerin has an alpha-helical conformation in the presence of TFE, DPC micelles, and SDS micelles. The three-dimensional structure of spinigerin as determined by NMR spectroscopy contains a stable alpha-helix from Lys4 to Thr23. Spinigerin (4-21), an 18-residue fragment from Lys4 to Leu21, contains a similar content of alpha-helical structure compared to native spinigerin and was found to retain antibacterial activity, too. Therefore, this alpha-helical structure and the strong electrostatic attraction between four Lys and three Arg residues in spinigerin and the negatively charged polar head groups of the phospholipids on the membrane surface play important roles in disrupting membrane and subsequent cell death.  相似文献   

11.
Ion channel-forming peptides enable us to study the conformational dynamics of a transmembrane helix as a function of sequence and environment. Molecular dynamics simulations are used to study the conformation and dynamics of three 22-residue peptides derived from the second transmembrane domain of the glycine receptor (NK4-M2GlyR-p22). Simulations are performed on the peptide in four different environments: trifluoroethanol/water; SDS micelles; DPC micelles; and a DMPC bilayer. A hierarchy of alpha-helix stabilization between the different environments is observed such that TFE/water < micelles < bilayers. Local clustering of trifluoroethanol molecules around the peptide appears to help stabilize an alpha-helical conformation. Single (S22W) and double (S22W,T19R) substitutions at the C-terminus of NK4-M2GlyR-p22 help to stabilize a helical conformation in the micelle and bilayer environments. This correlates with the ability of the W22 and R19 side chains to form H-bonds with the headgroups of lipid or detergent molecules. This study provides a first atomic resolution comparison of the structure and dynamics of NK4-M2GlyR-p22 peptides in membrane and membrane-mimetic environments, paralleling NMR and functional studies of these peptides.  相似文献   

12.
Cluster determinant 4 (CD4) is a type I transmembrane glycoprotein of 58 kDa. It consists of an extracellular domain of 370 amino acids, a short transmembrane region, and a cytoplasmic domain of 40 amino acids at the C-terminal end. We investigated the structure of the 62 C-terminal residues of CD4, comprising its transmembrane and cytoplasmic domains. The five cysteine residues of this region have been replaced with serine and histidine residues in the polypeptide CD4mut. Uniformly 15N and 13C labeled protein was recombinantly expressed in E. coli and purified. Functional binding activity of CD4mut to protein VpU of the human immunodeficiency virus type 1 (HIV-1) was verified. Close to complete NMR resonance assignment of the 1H, 13C, and 15N spins of CD4mut was accomplished. The secondary structure of CD4mut in membrane simulating dodecylphosphocholine (DPC) micelles was characterized based on secondary chemical shift analysis, NOE-based proton-proton distances, and circular dichroism spectroscopy. A stable transmembrane helix and a short amphipathic helix in the cytoplasmic region were identified. The fractional helicity of the cytoplasmic helix appears to be stabilized in the presence of DPC micelles, although the extension of this helix is reduced in comparison to previous studies on synthetic peptides in aqueous solution. The role of the amphipathic helix and its potentially variable length is discussed with respect to the biological functions of CD4.  相似文献   

13.
Structural changes for a series of antimicrobial peptides in various solvents were investigated by a combined approach of FTIR and CD spectroscopy. The well-characterized and potent antimicrobial peptides indolicidin and tritrpticin were studied along with several analogs of tritrpticin, including Tritrp1 (amidated analog of tritrpticin), Tritrp2 (analog of Tritrp1 with Arg-->Lys substitutions), Tritrp3 (analog of Tritrp1 with Pro-->Ala substitutions) and Tritrp4 (analog of Tritrp1 with Trp-->Tyr substitutions). All peptides were studied in aqueous buffer, ethanol and in the presence of dodecylphosphocholine (DPC) micelles. It was shown that tritrpticin and its analogs preferentially adopt turn structures in all solvents studied. The turn structures formed by the tritrpticin analogs bound to DPC micelles are more compact and more conformationally restricted compared to indolicidin. While several peptides showed a slight propensity for an alpha-helical conformation in ethanol, this trend was only strong for Tritrp3, which also adopted a largely alpha-helical structure with DPC micelles. Tritrp3 also demonstrated along with Tritrp1 the highest ability to interact with DPC micelles, while Tritrp2 and Tritrp4 showed the weakest interaction.  相似文献   

14.
The neurotoxicity of beta-amyloid protein (beta AP) fragments may be a result of their solution conformation, which is very sensitive to solution conditions. In this work we describe NMR and CD studies of the conformation of beta AP(12-28) in lipid (micelle) environments as a function of pH and lipid type. The interaction of beta AP(12-28) with zwitterionic dodecylphosphocholine (DPC) micelles is weak and alters the conformation when compared to water solution alone. By contrast, the interaction of the peptide with anionic sodium dodecylsulfate (SDS) micelles is strong: beta AP(12-28) is mostly bound, is alpha-helical from K16 to V24, and aggregates slowly. The pH-dependent conformation changes of beta AP(12-28) in solution occur in the pH range at which the side-chain groups of E22, D23, H13, and H14 are deprotonated (pKas ca. 4 and 6.5); the interaction of beta AP(12-28) with SDS micelles alters the pH-dependent conformational transitions of the peptide whereas the weak interaction with DPC micelles causes little change.  相似文献   

15.
Le Lan C  Neumann JM  Jamin N 《FEBS letters》2006,580(22):5301-5305
Circular dichroism (CD) and NMR spectroscopy were used to study the conformational properties of two synthetic peptides, D82-R101 and D82-I109, encompassing the caveolin scaffolding domain (D82-R101), in the presence of dodecylphosphocholine (DPC) micelles. Our data show that a stable helical conformation of the caveolin scaffolding domain in a membrane mimicking system is only obtained for the peptide including the L102-I109 hydrophobic stretch, a part of the caveolin intra-membrane domain. Through chemical shift variations, an ensemble of six residues of the D82-L109 peptide, mainly located in the V(94)TKYWFYR(101) motif were found to detect the presence of phosphatidylserine solubilized in DPC micelles. Our results constitute a first step for elucidating at a residue level the conformational properties of the central region of the caveolin-1 protein.  相似文献   

16.
S Park  S H Park  H C Ahn  S Kim  S S Kim  B J Lee  B J Lee 《FEBS letters》2001,507(1):95-100
Novel cationic antimicrobial peptides, named nigrocin 1 and 2, were isolated from the skin of Rana nigromaculata and their amino acid sequences were determined. These peptides manifested a broad spectrum of antimicrobial activity against various microorganisms with different specificity. By primary structural analysis, it was revealed that nigrocin 1 has high sequence homology with brevinin 2 but nigrocin 2 has low sequence homology with any other known antimicrobial peptides. To investigate the structure-activity relationship of nigrocin 2, which has a unique primary structure, circular dichroism (CD) and homonuclear nuclear magnetic resonance spectroscopy (NMR) studies were performed. CD investigation revealed that nigrocin 2 adopts mainly an alpha-helical structure in trifluoroethanol (TFE)/H(2)O solution, sodium dodecyl sulfate (SDS) micelles, and dodecylphosphocholine micelles. The solution structures of nigrocin 2 in TFE/H(2)O (1:1, v/v) solution and in SDS micelles were determined by homonuclear NMR. Nigrocin 2 consists of a typical amphipathic alpha-helix spanning residues 3-18 in both 50% TFE solution and SDS micelles. From the structural comparison of nigrocin 2 with other known antimicrobial peptides, nigrocin 2 could be classified into the family of antimicrobial peptides containing a single linear amphipathic alpha-helix that potentially disrupts membrane integrity, which would result in cell death.  相似文献   

17.
Topologically, platelet factor-4 kinocidins consist of distinct N-terminal extended, C-terminal helical, and interposing gamma-core structural domains. The C-terminal alpha-helices autonomously confer direct microbicidal activity, and the synthetic antimicrobial peptide RP-1 is modeled upon these domains. In this study, the structure of RP-1 was assessed using several complementary techniques. The high-resolution structure of RP-1 was determined by NMR in anionic sodium dodecyl sulfate (SDS) and zwitterionic dodecylphosphocholine (DPC) micelles, which approximate prokaryotic and eukaryotic membranes, respectively. NMR data indicate the peptide assumes an amphipathic alpha-helical backbone conformation in both micelle environments. However, small differences were observed in the side-chain orientations of lysine, tyrosine, and phenylalanine residues in SDS versus DPC environments. NMR experiments with a paramagnetic probe indicated differences in positioning of the peptide within the two micelle types. Molecular dynamics (MD) simulations of the peptide in both micelle types were also performed to add insight into the peptide/micelle interactions and to assess the validity of this technique to predict the structure of peptides in complex with micelles. MD independently predicted RP-1 to interact only peripherally with the DPC micelle, leaving its spherical shape intact. In contrast, RP-1 entered deeply into and significantly distorted the SDS micelle. Overall, the experimental and MD results support a preferential specificity of RP-1 for anionic membranes over zwitterionic membranes. This specificity likely derives from differences in RP-1 interaction with distinct lipid systems, including subtle differences in side chain orientations, rather than gross changes in RP-1 structure in the two lipid environments.  相似文献   

18.
Sodium dodecylsulfate (SDS) and dodecylphosphocholine (DPC) micelles are often used to mimic the membrane- or receptor-bound states of peptides in NMR studies. From the present examination of a 26-residue analog of exendin-4 (TrEX4) by NMR and CD in water, aqueous 30% trifluoroethanol (TFE), and bound to both SDS and DPC micelles, it is clear that these two lipid micelles can yield very different peptide structures. The Trp-cage fold (also observed in 30% TFE) is present when TrEX4 is bound to SDS micelles; however, tertiary structure is absent in the presence of DPC micelles. The loss of tertiary structure is attributed to an energetically favorable interaction (estimated as 2-3 kcal/mol) of the tryptophan side chain with the phosphocholine head groups. These dramatic structural differences suggest that care must be taken when using either SDS or DPC to mimic the membrane- or receptor-bound states.  相似文献   

19.
Recently, a novel 87-amino acid influenza A virus protein with proapoptotic properties, PB1-F2, has been reported that originates from an alternative reading frame in the PB1 polymerase gene and is encoded in most known human influenza A virus isolates. Here we characterize the molecular structure of a biologically active synthetic version of the protein (sPB1-F2). Western blot analysis, chemical cross-linking, and NMR spectroscopy afforded direct evidence of the inherent tendency of sPB1-F2 to undergo oligomerization mediated by two distinct domains located in the N and C termini, respectively. CD and (1)H NMR spectroscopic analyses indicate that the stability of structured regions in the molecule clearly depends upon the hydrophobicity of the solvent. In aqueous solutions, the behavior of sPB1-F2 is typical of a largely random coil peptide that, however, adopts alpha-helical structure upon the addition of membrane mimetics. (1)H NMR analysis of three overlapping peptides afforded, for the first time, direct experimental evidence of the presence of a C-terminal region with strong alpha-helical propensity comprising amino acid residues Ile(55)-Lys(85) connected via an essentially random coil structure to a much weaker helix-like region, located in the N terminus between residues Trp(9) and Lys(20). The C-terminal helix is not a true amphipathic helix and is more compact than previously predicted. It corresponds to a positively charged region previously shown to include the mitochondrial targeting sequence of PB1-F2. The consequences of the strong oligomerization and helical propensities of the molecule are discussed and used to formulate a hypothetical model of its interaction with the mitochondrial membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号