首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pneumocystis, an AIDS-associated opportunistic pathogen of the lung has some unusual features. This article focuses on work done by my group to understand the organism's distinct sterols. Although Pneumocystis is closely related to fungi, it lacks the major fungal sterol, ergosterol. Several delta(7) 24-alkysterols synthesized by P. carinii are the same as those reported in some basidiomycete rust fungi. The 24-alkylsterols are synthesized by the action of S-adenosyl-L-methionine:C-24 sterol methyl transferase (SAM:SMT). Fungal SAM:SMT enzymes normally transfer only one methyl group to the C-24 position of the sterol side chain and the cells accumulate C28 24-alkylsterols. In contrast, the P. carinii SAM:SMT and those of some plants catalyze one or two methyl transfer reactions producing both C28 and C29 24-alkylsterols. However, unlike most fungi, plants, and the kinetoplastid flagellates Leishmania and Trypanosoma cruzi, P. carinii does not appear to form double bonds at C-5 of the sterol nucleus and C-22 of the sterol side chain. Furthermore, the P. carinii SAM:SMT substrate preference for C30 lanosterol differs from that of homologous enzymes in any other organisms studied. C31 24-Methylenelanosterol and C32 pneumocysterol, products of SAM:SMT activity on lanosterol, can accumulate in high amounts in some, but not all, human-derived Pneumocystis jiroveci populations.  相似文献   

2.
Pneumocystis , an opportunistic fungal protist, causes a type of pneumonia in immunocompromised individuals such as AIDS patients. Rat-derived P. carinii and human-derived P. jiroveci contain a large number of sterols with C-24 alkyl groups. S-Adenosyl-L-methionine:sterol C-24 methyl transferase (SAM:SMT) is the enzyme that transfers methyl groups from SAM to the C-24 position of the sterol side chain. An alkyl group at the C-24 sterol side chain position appears to be essential for the organism to proliferate. Thus SAM:SMT, which is absent in mammals, is an attractive target for chemotherapeutic attack against the pathogen. The P. carinii erg6 gene that codes for SAM:SMT has been sequenced, cloned, and the protein expressed in E. coli . Since bacteria do not synthesize sterols, and do not have SAM:SMT, the P. carinii erg6 gene product expressed in E. coli would only transmethylate exogenously provided sterol substrates. The P. carinii recombinant SAM:SMT is unique because lanosterol, a central intermediate in sterol biosynthesis, is its preferred substrate for enzyme activity. Most SAM:SMT from other organisms do not bind lanosterol and prefer other sterol substrates produced from lanosterol. Furthermore, it appears that this unusual P. carinii SAM:SMT can also methylate cholesterol, which is readily scavenged from the lungs of its rat host. The recombinant enzyme protein is being purified by affinity chromatography techniques, which will be used to obtain definitive structural analyses of the sterol compounds formed by the enzyme reaction using different sterols substrates and allow detailed structural analysis of this unusual SAM:SMT enzyme protein.  相似文献   

3.
Pneumocystis is an opportunistic pathogen that can cause pneumonitis in immunodeficient people such as AIDS patients. Pneumocystis remains difficult to study in the absence of culture methods for luxuriant growth. Recombinant protein technology now makes it possible to avoid some major obstacles. The P. carinii expressed sequence tag (EST) database contains 11 entries of a sequence encoding a protein homologous to S-adenosyl-L-methionine (SAM):C-24 sterol methyl transferase (SMT), suggesting high activity of this enzyme in the organism. We sequenced the erg6 cDNA, identified the putative peptide motifs for the sterol and SAM binding sites in the deduced amino acid sequence and expressed the protein in Escherichia coli. Unlike SAM:SMT from other organisms, the P. carinii enzyme had higher affinities for lanosterol and 24-methylenelanosterol than for zymosterol, the preferred substrate in other fungi. Cycloartenol was not a productive substrate. With lanosterol and 24-methylenelanosterol as substrates, the major reaction products were 24-methylenelanosterol and pneumocysterol respectively. Thus, the P. carinii SAM:SMT catalysed the transfer of both the first and the second methyl groups to the sterol C-24 position, and the substrate preference was found to be a unique property of the P. carinii SAM:SMT. These observations, together with the absence of SAM:SMT among mammals, further support the identification of sterol C-24 alkylation reactions as excellent targets for the development of drugs specifically directed against this pathogen.  相似文献   

4.
Pneumocystis causes a type of pneumonia in immunodeficient mammals, such as AIDS patients. Mammals cannot alkylate the C-24 position of the sterol side chain, nor can they desaturate C-22. Thus, the reactions leading to these sterol modifications are particularly attractive targets for the development of drugs against fungal and protozoan pathogens that make them. In the present study, the definitive structures of 43 sterol molecular species in rat-derived Pneumocystis carinii were elucidated by nuclear magnetic resonance spectroscopy. Ergosterol, Delta(5,7) sterols, trienes, and tetraenes were not among them. Most (32 of the 43) were 24-alkylsterols, products of S-adenosyl-L-methionine:C-24 sterol methyl transferase (SAM:SMT) enzyme activity. Their abundance is consistent with the suggestion that SAM:SMT is highly active in this organism and that the enzyme is an excellent anti-Pneumocystis drug target. In contrast, the comprehensive analysis strongly suggest that P. carinii does not form Delta(22) sterols, thus C-22 desaturation does not appear to be a drug target in this pathogen. The lanosterol derivatives, 24-methylenelanost-8-en-3 beta-ol and (Z)-24-ethylidenelanost-8-en-3 beta-ol (pneumocysterol), previously identified in human-derived Pneumocystis jiroveci, were also detected among the sterols of the rat-derived P. carinii organisms.  相似文献   

5.
Several drugs that interact with membrane sterols or inhibit their syntheses are effective in clearing a number of fungal infections. The AIDS-associated lung infection caused by Pneumocystis jirovecii is not cleared by many of these therapies. Pneumocystis normally synthesizes distinct C28 and C29 24-alkylsterols, but ergosterol, the major fungal sterol, is not among them. Two distinct sterol compositional phenotypes were previously observed in P. jirovecii. One was characterized by delta7 C28 and C29 24-alkylsterols with only low proportions of higher molecular mass components. In contrast, the other type was dominated by high C31 and C32 24-alkylsterols, especially pneumocysterol. In the present study, 28 molecular species were elucidated by nuclear magnetic resonance analysis of a human lung specimen containing P. jirovecii representing the latter sterol profile phenotype. Fifteen of the 28 had the methyl group at C-14 of the sterol nucleus and these represented 96% of the total sterol mass in the specimen (excluding cholesterol). These results strongly suggest that sterol 14alpha-demethylase was blocked in these organisms. Twenty-four of the 28 were 24-alkylsterols, indicating that methylation of the C-24 position of the sterol side chain by S-adenosyl-L-methionine:sterol C-24 methyl transferase was fully functional.  相似文献   

6.
The AIDS‐associated lung pathogen Pneumocystis is classified as a fungus although Pneumocystis has several distinct features such as the absence of ergosterol, the major sterol of most fungi. The Pneumocystis carinii S‐adenosylmethionine:sterol C24‐methyltransferase (SAM:SMT) enzyme, coded by the erg6 gene, transfers either one or two methyl groups to the C‐24 position of the sterol side chain producing both C28 and C29 24‐alkylsterols in approximately the same proportions, whereas most fungal SAM:SMT transfer only one methyl group to the side chain. The sterol compositions of wild‐type Sacchromyces cerevisiae, the erg6 knockout mutant (Δerg6), and Δerg6 expressing the P. carinii or the S. cerevisiae erg6 gene were analyzed by a variety of chromatographic and spectroscopic procedures to examine functional complementation in the yeast expression system. Detailed sterol analyses were obtained using high performance liquid chromatography and proton nuclear magnetic resonance spectroscopy (1H‐NMR). The P. carinii SAM:SMT in the Δerg6 restored its ability to produce the C28 sterol ergosterol as the major sterol, and also resulted in low levels of C29 sterols. This indicates that while the P. carinii SAM:SMT in the yeast Δerg6 cells was able to transfer a second methyl group to the side chain, the action of Δ24(28)‐sterol reductase (coded by the erg4 gene) in the yeast cells prevented the formation and accumulation of as many C29 sterols as that found in P. carinii.  相似文献   

7.
SUMMARY Two sterols in autopsied whole lung specimens obtained from Pneumocystis carinii pneumonia patients were detected by gas-liquid chromatography and their structures were elucidated by mass spectrometry and nuclear magnetic resonance spectrometry. Both were in the lanosterol series; the C31 sterol, with a methyl group at C-24, was identified as euphorbol, and the more abundant C32 sterol, with an ethyl group at C-24, is given the trivial name pnemocysterol.  相似文献   

8.
Under anaerobic growth conditions the isomeric 4,4′,14-trimethylcholestane derivatives lanosterol and, more efficiently, cycloartenol satisfy the sterol requirement of the yeast sterol auxotroph Saccharomyces cerevisiae strain GL7. Aerobic mutant growth is supported only by cycloartenol and not by lanosterol, suggesting different structural requirements for aerobic and anaerobic cells. It is proposed that the non-planar conformation imposed by the 9,19-cyclopropane ring of cycloartenol moderates the adverse membrane effects of the nuclear methyl groups at C-4 and C-14. Under both aerobic and anaerobic conditions cyclolaudenol, a C-24-methyl derivative of cycloartenol, is a significantly more effective sterol source for strain GL7 than cycloartenol. This result is in keeping with the predominance of C-24-methyl sterols (ergosterol) in wild-type yeast.  相似文献   

9.
In Saccharomyces cerevisiae, methylation of the principal membrane sterol at C-24 produces the C-28 methyl group specific to ergosterol and represents one of the few structural differences between ergosterol and cholesterol. C-28 in S. cerevisiae has been suggested to be essential for the sparking function (W. J. Pinto and W. R. Nes, J. Biol. Chem. 258:4472-4476, 1983), a cell cycle event that may be required to enter G1 (C. Dahl, H.-P. Biemann, and J. Dahl, Proc. Natl. Acad. Sci. USA 84:4012-4016, 1987). The sterol biosynthetic pathway in S. cerevisiae was genetically altered to assess the functional role of the C-28 methyl group of ergosterol. ERG6, the putative structural gene for S-adenosylmethionine: delta 24-methyltransferase, which catalyzes C-24 methylation, was cloned, and haploid strains containing erg6 null alleles (erg6 delta 1 and erg6 delta ::LEU2) were generated. Although erg6 delta cells are unable to methylate ergosterol precursors at C-24, they exhibit normal vegatative growth, suggesting that C-28 sterols are not essential in S. cerevisiae. However, erg6 delta cells exhibit pleiotropic phenotypes that include defective conjugation, hypersensitivity to cycloheximide, resistance to nystatin, a severely diminished capacity for genetic transformation, and defective tryptophan uptake. These phenotypes reflect the role of ergosterol as a regulator of membrane permeability and fluidity. Genetic mapping experiments revealed that ERG6 is located on chromosome XIII, tightly linked to sec59.  相似文献   

10.
Pneumocystis carinii is an unusual fungus that can cause pneumonitis in immunosuppressed laboratory rats. Reactions in sterol biosynthesis are attractive targets for development of antimycotic drugs. A key enzyme in sterol biosynthesis is sterol 14α-demethylase (14DM), which is coded by the erg11 gene. Here we describe detailed sterol analysis of wild-type Saccharomyces cerevisiae and in an erg11 knockout mutant expressing either P. carinii or S. cerevisiae 14DM from a plasmid-borne cDNA. Sterols of the three strains were qualitatively and quantitatively analyzed using thin-layer chromatography, high-performance liquid chromatography, and gas-liquid chromatography and mass spectrometry and nuclear magnetic resonance spectroscopy. Biochemical evidence for functional complementation was provided by detecting the same major sterols in all three strains with ergosterol being by far the most abundant. A total of 25 sterols was identified, 16 of which were identified in all three strains. The ratios of lanosterol:14-desmethyllanosterol in the three strains indicate that the mutant transformed with erg11 showed more 14DM activity than wild-type yeast. The sterol analyses also indicated that the P. carinii 14DM can utilize the sterol substrates used by the S. cerevisiae 14DM and suggested that the yeast 14DM in the yeast cell utilizes 4α-methyl sterols better than the P. carinii enzyme.  相似文献   

11.
S-Adenosylmethionine   总被引:10,自引:0,他引:10  
S-Adenosyl-Lmethionine (SAM) is an important molecule in normal cell function and survival. SAM is utilized by three key metabolic pathways: transmethylation; transsulfuration; and polyamine synthesis. In transmethylation reactions, the methyl group of SAM is donated to a large variety of acceptor substrates including DNA, phospholipids and proteins. Thus, interference of these reactions can affect a wide spectrum of processes ranging from gene expression to membrane fluidity. In transsulfuration, the sulfur atom of the SAM is converted via a series of enzymatic steps to cysteine, a precursor of taurine and glutathione, a major cellular anti-oxidant. Polyamines are required for normal cell growth. Given the importance of SAM in tissue function, it is not surprising that this molecule is being investigated as a possible therapeutic agent for the treatment of various clinical disorders.  相似文献   

12.
Mixed life cycle stages of rat-derived Pneumocystis carinii were isolated from host lungs and their sterols were compared with those present in lungs from normal and immunosuppressed uninfected rats. Gas-liquid chromatography consistently detected, resolved, and quantified 9, 10, and 20 sterol components in the total nonsaponifiable neutral lipid fraction of lungs from normal rats, lungs from immunosuppressed uninfected rats, and P. carinii preparations, respectively. In all samples, cholesterol was the most abundant sterol present, comprising 97%, 93%, and 78% of total sterols in lungs from normal rats, lungs from immunosuppressed uninfected rats, and P. carinii , respectively. Tentative identifications of several rat lung and P. carinii minor sterols were made based on gas-liquid chromatogram retention times and fragmentation patterns from mass spectral analyses. Campesterol (ergost-5-en-3-ol), cholest-5-en-3-one, and β -sitosterol (stigmast-5-en-3-ol) were among the minor components present in both types of lung controls, and were also components of P. carinii sterols. In contrast to lung controls, the sterols of P. carinii were enriched in C28 and C29 sterols with one or two double bonds, and a hydroxyl group at C-3 (ergost-5-en-3-ol, ergost-7-en-3-ol, ergosta-dien-3-ol, stigmast-5-en-3-ol, stigmast-7-en-3-ol and stigmasta-dien-3-ol). Steryl esters of P. carinii , probably stored in cytoplasmic lipid droplets, were dominated by those present in the host lung. In separate studies. 3-hydroxy-3-methylglutaryl coenzyme A activity, a key enzyme in the regulation of sterol biosynthesis, was detected in purified P. carinii preparations and incorporation of radiolabeled squalene and mevalonate was observed. Together, these results suggest that the parasite readily takes up and incorporates host sterols, and that the organism synthesizes some of its own "metabolic sterols"  相似文献   

13.
14.
We have investigated the metabolism of exogenously provided delta24-sterols by whole cell cultures of a polyene-resistant mutant (D10) of Candida albicans blocked at removal of the C-14 methyl group. Comparison of the relative efficiencies of transmethylation at C-24 of selected sterol substrates revealed the following substrate preferences of the Candida delta24-sterol methyltransferase (EC 2.1.1.41): zymosterol greater than 4alpha-methylzymosterol greater than 14alpha-methylzymosterol. Exogenous 4,4-dimethylzymosterol was not transmethylated by mutant D10. Incorporation of the 14C-labelled methyl group of S-adenosyl-L-[methyl-14C]methionine into the sterols of a D10 culture preloaded with zymosterol indicated that zymosterol was a better (40 X) substrate than endogenous lanosterolmfeeding zymosterol to D10 and a polyene-resistant strain of Saccharomyces cerevisiae (Nys-P100) that was also blocked at removal of the C-14 methyl group gave 24-methyl sterols possessing delta22 and ring B unsaturation. Mutant D10 was able to produce ergosterol from zymosterol whereas Nys-P100 produced ergosta-7,22-dienol. When grown in the presence of 3 micrometer 25-aza-24,25-dihydrozymosterol, a known inhibitor of the delta24-sterol methyltransferase, Nys-P100 accumulated 14alpha-methylzymosterol, a minor metabolite in this mutant under normal growth conditions and hitherto unidentified as a yeast sterol.  相似文献   

15.
As an important opportunistic pulmonary pathogen, Pneumocystis carinii has been the focus of extensive research over the decades. The use of laboratory animal models has permitted a detailed understanding of the host-parasite interaction but an understanding of the basic biology of P. carinii has lagged due in large part to the inability of the organism to grow well in culture and to the lack of a tractable genetic system. Molecular techniques have demonstrated extensive heterogeneity among P. carinii organisms isolated from different host species. Characterization of the genes and genomes of the Pneumocystis family has supported the notion that the family comprises different species rather than strains within the genus Pneumocystis and contributed to the understanding of the pathophysiology of infection. Many of the technical obstacles in the study of the organisms have been overcome in the past decade and the pace of research into the basic biology of the organism has accelerated. Biochemical pathways have been inferred from the presence of key enzyme activities or gene sequences, and attempts to dissect cellular pathways have been initiated. The Pneumocystis genome project promises to be a rich source of information with regard to the functional activity of the organism and the presence of specific biochemical pathways. These advances in our understanding of the biology of this organism should provide for future studies leading to the control of this opportunistic pathogen.  相似文献   

16.
The sterol biosynthesis pathway of Arabidopsis produces a large set of structurally related phytosterols including sitosterol and campesterol, the latter being the precursor of the brassinosteroids (BRs). While BRs are implicated as phytohormones in post-embryonic growth, the functions of other types of steroid molecules are not clear. Characterization of the fackel (fk) mutants provided the first hint that sterols play a role in plant embryogenesis. FK encodes a sterol C-14 reductase that acts upstream of all known enzymatic steps corresponding to BR biosynthesis mutants. Here we report that genetic screens for fk-like seedling and embryonic phenotypes have identified two additional genes coding for sterol biosynthesis enzymes: CEPHALOPOD (CPH), a C-24 sterol methyl transferase, and HYDRA1 (HYD1), a sterol C-8,7 isomerase. We describe genetic interactions between cph, hyd1 and fk, and studies with 15-azasterol, an inhibitor of sterol C-14 reductase. Our experiments reveal that FK and HYD1 act sequentially, whereas CPH acts independently of these genes to produce essential sterols. Similar experiments indicate that the BR biosynthesis gene DWF1 acts independently of FK, whereas BR receptor gene BRI1 acts downstream of FK to promote post-embryonic growth. We found embryonic patterning defects in cph mutants and describe a GC-MS analysis of cph tissues which suggests that steroid molecules in addition to BRs play critical roles during plant embryogenesis. Taken together, our results imply that the sterol biosynthesis pathway is not a simple linear pathway but a complex network of enzymes that produce essential steroid molecules for plant growth and development.  相似文献   

17.
Microsomes from sunflower seedlings were used to investigate the transition state coordinate for the C-24 methylation reaction that mediates phytosterol biosynthesis. They were then used to study structurally related cationic and uncharged compounds of the natural sterol substrate, which were designed to interfere with the reaction progress. The hypothetical reaction course is described to proceed through an Sn2 formation of an activated complex involving the initial production of a covalent structure with a dative bond (methyl from AdoMet attacks si-face of the 24,25-double bond of the sterol) and the secondary production of a series of high energy intermediates, the stabilization of which determines the final C-24 methylated product. Derivatives of lanosterol and cholesterol with a methyl, hydrogen, oxygen, or bromine atom introduced into the side chain and/or at C-3 in place of the natural nucleophile were studied as inhibitors that interfere with the formation of the hypothetical tertiary isopropylcarbinyl cation intermediate in the conversion of cycloartenal to 24(28)-methylene cycloartanol. The data indicate the most potent inhibitor is a sterol with an aziridine group attached to C-24(25), which mimics the bridged C-24(25) carbenium ion generated in the transition state, and the methyltransferase possesses two strategic sites: one that recognizes the proximal end of the sterol acting as a proton donor and the other that recognizes the distal end that acts as a proton acceptor. The best fit (binding/catalysis) involves a flat sterol (including substrate and inhibitor) with intact unsubstituted nucleophilic centers at C-3 and C-24 and a freely rotating side chain that can assume the pseudocyclic conformation.  相似文献   

18.
Abstract Study of the plasma membrane sterol composition in the yeasts Schizosaccharomyces pombe and Schizosaccharomyces octosporus revealed the presence of ergosterol, lanosterol, dehydroergosterol, fecosterol, episterol and 24-methylene-24,25-dihydrolanosterol (eburicol), a C-31 derivative. The growth of both yeasts in the presence of ketoconazole led to a decrease by 85% of the ergosterol content while the levels of lanosterol and eburicol increased. This suggests that in the biosynthetic pathway of ergosterol in Schizosaccharomyces species, the transmethylation process on the C-24 may occur directly on lanosterol and not only on zymosterol. On the other hand, it cannot be excluded that in the genus Schizosaccharomyces two routes exist from lanosterol to ergosterol: the classical one via a direct C-14, C-4 demethylation of lanosterol and the second one via the formation of a C-31 derivative followed by demethylations.  相似文献   

19.
A variety of sterols and stanols have been analyzed for their ability to satisfy bulk membrane and high-specificity (sparking) functions in three yeast sterol auxotrophs. While many sterols and stanols satisfied bulk membrane requirements, only those possessing a C-5,6 unsaturation or capable of being desaturated at C-5 fulfilled the high-specificity sparking requirement. Unsaturation of the A-ring or beta-saturation of a C-5,6 double bond rendered both sterol and stanol unsuitable for either function. The C-28 methyl group of ergosterol, while not required for growth, allowed for greater ease of desaturation at C-5 in vivo. As a result some sterols and stanols lacking the C-28 methyl were incapable of satisfying the sparking requirement while identical compounds possessing the C-28 methyl were able to fulfill the sparking function(s). These data are extended to hypothesize a role for the C-28 methyl group of ergosterol in yeast.  相似文献   

20.
Methanopterin (MPT) and its analogs are coenzymes required for methanogenesis and methylotrophy in specialized microorganisms. The methyl groups at C-7 and C-9 of the pterin ring distinguish MPT from all other pterin-containing natural products. However, the enzyme(s) responsible for the addition of these methyl groups has yet to be identified. Here we demonstrate that a putative radical S-adenosyl-l-methionine (SAM) enzyme superfamily member encoded by the MJ0619 gene in the methanogen Methanocaldococcus jannaschii is likely this missing methylase. When MJ0619 was heterologously expressed in Escherichia coli, various methylated pterins were detected, consistent with MJ0619 catalyzing methylation at C-7 and C-9 of 7,8-dihydro-6-hydroxymethylpterin, a common intermediate in both folate and MPT biosynthesis. Site-directed mutagenesis of Cys77 present in the first of two canonical radical SAM CX3CX2C motifs present in MJ0619 did not inhibit C-7 methylation, while mutation of Cys102, found in the other radical SAM amino acid motif, resulted in the loss of C-7 methylation, suggesting that the first motif could be involved in C-9 methylation, while the second motif is required for C-7 methylation. Further experiments demonstrated that the C-7 methyl group is not derived from methionine and that methylation does not require cobalamin. When E. coli cells expressing MJ0619 were grown with deuterium-labeled acetate as the sole carbon source, the resulting methyl group on the pterin was predominantly labeled with three deuteriums. Based on these results, we propose that this archaeal radical SAM methylase employs a previously uncharacterized mechanism for methylation, using methylenetetrahydrofolate as a methyl group donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号