首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Geobacillus thermodenitrificans AK53 xyl gene encoding xylanase was isolated, cloned and expressed in Escherichia coli. After purifying recombinant xylanase from G. thermodenitrificans AK53 (GthAK53Xyl) to homogeneity by ammonium sulfate precipitation and ion exchange chromatography, biochemical properties of the enzyme were determined. The kinetic studies for GthAK53Xyl showed KM value to be 4.34 mg/mL (for D-xylose) and Vmax value to be 2028.9 μmoles mg–1 min–1. The optimal temperature and pH for enzyme activity were found out to be 70°C and 5.0, respectively. The expressed protein showed the highest sequence similarity with the xylanases of G. thermodenitrificans JK1 (JN209933) and G. thermodenitrificans T-2 (EU599644). Metal cations Mg2+ and Mn2+ were found to be required for the enzyme activity, however, Co2+, Hg2+, Fe2+ and Cu2+ ions caused inhibitor effect on it. GthAK53Xyl had no cellulolytic activity and degraded xylan in an endo-fashion. The action of the enzyme on xylan from oat spelt produced xylobiose and xylopentose. The reported results are suggestive of a xylanase exhibiting desirable kinetics, stability parameters and metal resistance required for the efficient production of xylobiose at industrial scale.  相似文献   

2.
α-Amino-ε-caprolactam (ACL) racemizing activity was detected in a putative dialkylglycine decarboxylase (EC 4.1.1.64) from Citreicella sp. SE45. The encoding gene of the enzyme was cloned and transformed in Escherichia coli BL21 (DE3). The molecular mass of the enzyme was shown to be 47.4 kDa on SDS–polyacrylamide gel electrophoresis. The enzymatic properties including pH and thermal optimum and stabilities were determined. This enzyme acted on a broad range of amino acid amides, particularly unbranched amino acid amides including l-alanine amide and l-serine amide with a specific activity of 17.5 and 21.6 U/mg, respectively. The K m and V max values for d- and l-ACL were 5.3 and 2.17 mM, and 769 and 558 μmol/min.mg protein, respectively. Moreover, the turn over number (K cat) and catalytic efficiency (K cat/K m ) of purified ACL racemase from Citreicella sp. SE45 using l-ACL as a substrate were 465 S?1 and 214 S?1mM?1, respectively. The new ACL racemase from Citreicella sp. SE45 has a potential to be used as the biocatalytic application.  相似文献   

3.
In the present study, ethanolic extracts of ten cyanobacterial strains cultivated under different nitrogen conditions were assessed for the phenolic content and antioxidant activity. The amount of detected phenolic compounds ranged from 14.86 to 701.69 μg g?1 dry weight (dw) and HPLC-MS/MS analysis revealed gallic acid, chlorogenic acid, quinic acid, catechin, epicatechin, kaempferol, rutin and apiin. Only catechin, among the detected phenolics, was present in all the tested strains, while quinic acid was the most dominant compound in all the tested Nostoc strains. The results also indicated the possibility of increasing the phenolic content in cyanobacterial biomass by manipulating nitrogen conditions, such as in the case of quinic acid in Nostoc 2S7B from 70.83 to 594.43 μg g?1 dw. The highest radical scavenging activity in DPPH assay expressed Nostoc LC1B with IC50 value of 0.04?±?0.01 mg mL?1, while Nostoc 2S3B with IC50 =?9.47?±?3.61 mg mL?1 was the least potent. Furthermore, the reducing power determined by FRAP assay ranged from 8.36?±?0.08 to 21.01?±?1.66 mg AAE g?1, and it was significantly different among the tested genera. The Arthrospira strains exhibited the highest activity, which in the case of Arthrospira S1 was approximately twofold higher in comparison to those in nitrogen-fixing strains. In addition to this, statistical analysis has indicated that detected phenolics were not major contributor to antioxidant capacities of tested cyanobacteria. However, this study highlights cyanobacteria of the genera Nostoc, Anabaena, and Arthrospira as producers of antioxidants and phenolics with pharmacological and health-beneficial effects, i.e., quinic acid and catechin in particular.  相似文献   

4.

Objective

This study was aimed at cloning and characterizing a novel malic enzyme (ME) gene of Mortierella isabellina M6-22 and identifying its relation with lipid accumulation.

Methods

Mime2 was cloned from strain M6-22. Plasmid pET32aMIME2 was constructed to express ME of MIME2 in Escherichia coli BL21. After purification, the optimal pH and temperature of MIME2, as well as Km and Vmax for NADP+ were determined. The effects of EDTA or metal ions (Mn2+, Mg2+, Co2+, Cu2+, Ca2+, or Zn2+) on the enzymatic activity of MIME2 were evaluated. Besides, plasmid pRHMIME2 was created to express MIME2 in Rhodosporidium kratochvilovae YM25235, and its cell lipid content was measured by the acid-heating method. The optimal pH and temperature of MIME2 are 5.8 and 30 °C, respectively.

Results

The act ivity of MIME2 was significantly increased by Mg2+, Ca2+, or Mn2+ at 0.5 mM but inhibited by Cu2+ or Zn2+ (p?<?0.05). The optimal enzymatic activity of MIME2 is 177.46 U/mg, and the Km and Vmax for NADP+ are 0.703 mM and 156.25 μg/min, respectively. Besides, Mime2 transformation significantly increased the cell lipid content in strain YM25235 (3.15?±?0.24 vs. 2.17?±?0.31 g/L, p?<?0.01).

Conclusions

The novel ME gene Mime2 isolated from strain M6-22 contributes to lipid accumulation in strain YM25235.
  相似文献   

5.
The inactivation of Aspergillus niger glucose oxidase (GO) was studied in 0.02 M phosphate-citrate buffer (PCB) at various pH, temperatures of 37–59°C, and sonication with low frequency (27 kHz, LF-US) and high frequency (2.64 MHz, HF-US) ultrasound. The GO inactivation was characterized by the effective first-order inactivation rate constantsk in, k*in andk in(us), reflecting the total, thermal, and ultrasonic inactivation components. The constants strongly depended on the pH and temperature of solution, GO concentration, and the presence of acceptors of the free radicals HO·—DMF, DMSO, ethanol, butanol, octanol, and mannitol, confirming that the active radicals formed in the ultrasonic cavitation field played an important role in the GO inactivation. The activation energy in the loss of GO catalytic activity considerably decreased when the enzyme solution was treated with LF-US or HF-US. The dissociative scheme of GO inactivation is discussed. Mannitol can be used for protection of GO from inactivation with LF-US or HF-US in the food industry and immunobiotechnology.  相似文献   

6.
Dermacentor nitens tick is commonly found in the equine auditory canal, where it causes economic losses due to its direct damage, causing blood spoliation, stress, transmission of pathogens, and predisposition to myasis and secondary bacterial infection in its hosts. In this study we evaluated the effect of ethanolic extracts of Cerrado plants on biological parameters of engorged females of D. nitens. Ethanolic extracts were prepared from the leaves of Schinopsis brasiliensis, Piptadenia viridiflora, Ximenia americana, and Serjania lethalis at 25–150 mg mL?1. Groups of 10 engorged adult females were treated with these extracts and compared with a control containing distilled water and another control with organophosphate, using five replicates for each group. Compared with the control with water, S. lethalis and X. americana extracts at 100 and 150 mg mL?1 significantly inhibited the posture ability. Differently, extracts of S. brasiliensis and P. viridiflora were the most effective in inhibiting larval hatching. Extracts of X. americana and P. viridiflora showed effective inhibition of reproductive parameters of the tick, presenting dose-dependent effect with IC90 78.86 and 78.94 mg mL?1, respectively. Theses effective extracts contained low condensed tannin levels and their HPLC chromatograms revealed the presence of flavonoids. The efficacies of P. viridiflora and X. americana extracts were higher than 90% indicating that these extracts are promising as alternative agents for D. nitens control.  相似文献   

7.
A recombinant hybrid of manganese dependent-superoxide dismutase of Staphylococcus equorum and S. saprophyticus has successfully been overexpressed in Escherichia coli BL21(DE3), purified, and characterized. The recombinant enzyme suffered from degradation and aggregation upon storage at ?20 °C, but not at room temperature nor in cold. Chromatographic analysis in a size exclusion column suggested the occurrence of dimeric form, which has been reported to contribute in maintaining the stability of the enzyme. Effect of monovalent (Na+, K+), divalent (Ca2+, Mg2+), multivalent (Mn2+/4+, Zn2+/4+) cations and anions (Cl?, SO4 2?) to the enzyme stability or dimeric state depended on type of cation or anion, its concentration, and pH. However, tremendous effect was observed with 50 mM ZnSO4, in which thermostability of both the dimer and monomer was increased. Similar situation was not observed with MnSO4, and its presence was detrimental at 200 mM. Finally, chelating agent appeared to destabilize the dimer around neutral pH and dissociate it at basic pH. The monomer remained stable upon addition of ethylene diamine tetraacetic acid. Here we reported unique characteristics and stability of manganese dependent-superoxide dismutase from S. equorum/saprophyticus.  相似文献   

8.
Optimization of process parameters for phytase production by Enterobacter sp. ACSS led to a 4.6-fold improvement in submerged fermentation, which was enhanced further in fed-batch fermentation. The purified 62 kDa monomeric phytase was optimally active at pH 2.5 and 60 °C and retained activity over a wide range of temperature (40–80 °C) and pH (2.0–6.0) with a half-life of 11.3 min at 80 °C. The kinetic parameters K m, V max, K cat, and K cat/K m of the pure phytase were 0.21 mM, 131.58 nmol mg?1 s?1, 1.64 × 103 s?1, and 7.81 × 106 M?1 s?1, respectively. The enzyme was fairly stable in the presence of pepsin under physiological conditions. It was stimulated by Ca+2, Mg+2 and Mn+2, but inhibited by Zn+2, Cu+2, Fe+2, Pb+2, Ba+2 and surfactants. The enzyme can be applied in dephytinizing animal feeds, and the baking industry.  相似文献   

9.
L-Lactate cytochrome c oxidoreductase (flavocytochrome b 2, FC b 2) from the thermotolerant methylotrophic yeast Hansenula polymorpha (Pichia angusta) is, unlike the enzyme form baker’s yeast, a thermostable enzyme potentially important for bioanalytical technologies for highly selective assays of L-lactate in biological fluids and foods. This paper describes the construction of flavocytochrome b 2 producers with over-expression of the H. polymorpha CYB2 gene, encoding FC b 2. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in a plasmid for multicopy integration was transformed into the recipient strain H. polymorpha C-105 (grc1 catX), impaired in glucose repression and devoid of catalase activity. A method was developed for preliminary screening of the transformants with increased FC b 2 activity in permeabilized yeast cells. The optimal cultivation conditions providing for the maximal yield of the target enzyme were found. The constructed strain is a promising FC b 2 producer characterized by a sixfold increased (to 3 μmol min?1 mg?1 protein in cell-free extract) activity of the enzyme.  相似文献   

10.
Heparinases are widely used for production of clinically and therapeutically important bioactive oligosaccharides and in analyzing the polydisperse, heterogeneous, and complex structures of heparin/heparan sulfate. In the present study, the gene (1911 bp) encoding heparinase II/III of family 12 polysaccharide lyase (PsPL12a) from Pseudopedobacter saltans was cloned, expressed, and biochemically and functionally characterized. The purified enzyme PsPL12a of molecular size approximately 76 kDa exhibited maximum activity in the temperature range 45–50 °C and at pH 6.0. PsPL12a gave maximum activity at 1% (w/v) heparin under optimum conditions. The kinetic parameters, K m and Vmax, for PsPL12a were 4.6?±?0.5 mg/ml and 70?±?2 U/mg, respectively. Ten millimolars of each Mg2+ and Mn2+ ions enhanced PsPL12a activity by 80%, whereas Ni2+ inhibited by 75% and Co2+ by 10%, and EDTA completely inactivated the enzyme. Protein melting curve of PsPL12a gave a single peak at 55 °C and 10 mM Mg2+ ions and shifted the peak to 60 °C. The secondary structure analysis of PsPL12a by CD showed 65.12% α-helix, 11.84% β-strand, and 23.04% random coil. The degradation products of heparin by PsPL12a analyzed by ESI-MS spectra displayed peaks corresponding to heparin di-, tetra-, penta-, and hexa-saccharides revealing the endolytic mode of enzyme action. Heparinase II/III (PsPL12a) from P. saltans can be used for production of low molecular weight heparin oligosaccharides for their utilization as anticoagulants. This is the first report on heparinase cloned from P. saltans.  相似文献   

11.
A new α-glucosidase from Shiraia sp. SUPER-H168 under solid-state fermentation was purified by alcohol precipitation and anion-exchange and by gel filtration chromatography. The optimum pH and temperature of the purified α-glucosidase were 4.5 and 60 °C, respectively, using p-nitrophenyl-α-glucopyranoside (α-pNPG) as a substrate. Ten millimoles of sodium dodecyl sulfate, Fe2+, Cu2+, and Ag+ reduced the enzyme activity to 0.7, 7.6, 26.0, and 6.2 %, respectively, of that of the untreated enzyme. The K m, V max, and k cat/K m of the α-glucosidase were 0.52 mM, 3.76 U mg?1, and 1.3?×?104 L s?1 mol?1, respectively. K m with maltose was 0.62 mM. Transglycosylation activities were observed with maltose and sucrose as substrates, while there was no transglycosylation with trehalose. DNA and its corresponding full-length cDNA were cloned and analyzed. The α-glucosidase coding region consisted of a 2997-bp open reading frame encoding a 998-amino acid protein with a 22-amino acid signal peptide; one 48-bp intron was located. The α-glucosidase was a monomeric protein with a predicted molecular mass of 108.2 kDa and a predicted isoelectric point of 5.08. A neighbor-joining phylogenetic tree demonstrated that Shiraia sp. SUPER-H168 α-glucosidase is an ascomycetes α-glucosidase. This is the first report of α-glucosidase from a filamentous fungus that had good glycoside hydrolysis with maltose and α-pNPG, transglycosylation and conversion activity of maltose into trehalose.  相似文献   

12.
The objective was to understand the roles of multiple catechol dioxygenases in the type strain Sphingobium scionense WP01T (Liang and Lloyd-Jones in Int J Syst Evol Microbiol 60:413–416, 2010a) that was isolated from severely contaminated sawmill soil. The dioxygenases were identified by sequencing, examined by determining the substrate specificities of the recombinant enzymes, and by quantifying gene expression following exposure to model priority pollutants. Catechol dioxygenase genes encoding an extradiol xylE and two intradiol dioxygenases catA and clcA that are highly similar to sequences described in other sphingomonads are described in S. scionense WP01T. The distinct substrate specificities determined for the recombinant enzymes confirm the annotated gene functions and suggest different catabolic roles for each enzyme. The role of the three enzymes was evaluated by analysis of enzyme activity in crude cell extracts from cells grown on meta-toluate, benzoate, biphenyl, naphthalene and phenanthrene which revealed the co-induction of each enzyme by different substrates. This was corroborated by quantifying gene expression when cells were induced by biphenyl, naphthalene and pentachlorophenol. It is concluded that the ClcA and XylE enzymes are recruited in pathways that are involved in the degradation of chlorinated aromatic compounds such as pentachlorophenol, the XylE and ClcA enzymes will also play a role in degradation pathways that produce alkylcatechols, while the three enzymes ClcA, XylE and CatA will be simultaneously involved in pathways that generate catechol as a degradation pathway intermediate.  相似文献   

13.
The effect of supplementation of reduced glutathione (GSH) to cryoprotectant solution on the generation of reactive oxygen species (ROS) (e.g., H2O2, OH·, and O 2 ·? ) and antioxidants (e.g., SOD, POD, CAT, AsA, and GSH), as well as membrane lipid peroxidation (i.e., MDA content) mitigation in cryopreserving of embryogenic calli (EC) of Agapanthus praecox subsp. orientalis was investigated. The vitrification-based cryopreservation method was used in this study. The addition of GSH at a final concentration of 0.08 mM to the cryoprotectant solution has significantly improved cryotolerance of A. praecox EC. The EC post-thaw survival rate increased by 68.34 % using the cryoprotectant solution containing 0.08 mM GSH as compared to the control (GSH-free). EC treated with GSH displayed the reduction in  OH· generation activity and the contents of H2O2 and MDA, as well as enhancement in the inhibition of O 2 ·? generation and the antioxidant activity. Treatment with exogenous GSH also increased endogenous AsA and GSH contents after dehydration step. Expression of stress-responsive genes, e.g., peroxidase (POD), peroxiredoxin, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and glutathione peroxidase (GPX), was also increased during cryopreservation processes. The expression of DAD1 (Defender against apoptotic cell death) was elevated, while cell death-related protease SBT was suppressed. These results demonstrated that the addition of GSH to cryoprotectant solution affects the ROS level and could effectively improve survival of A. praecox EC through enhancing antioxidant enzyme activities and decreasing cell death.  相似文献   

14.
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10–20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2??, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p ?? (possible sources for O2??), the Rieske iron–sulfur cluster (possible source of O2?? and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2?? and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.  相似文献   

15.
Waterlogging stress disturbs plant metabolism through increased ion (manganese and iron) toxicity resulting from the changes in the soil redox potential under hypoxic conditions. Our previous study found a significant correlation between the tolerance to Mn2+ toxicity and waterlogging stress tolerance in barley, suggesting that waterlogging tolerance could be increased by improving the tolerance to Mn2+ toxicity. In this study, a doubled-haploid (DH) population from the cross between barley varieties Yerong and Franklin (waterlogging-tolerant and -sensitive, respectively) was used to identify QTL controlling tolerance to Mn2+ toxicity based on chlorophyll content and plant survival as selection criteria. Four significant QTL for plant survival under Mn2+ stress (QSur.yf.1H, QSur.yf.3H, QSur.yf.4H, and QSur.yf.6H) were identified in this population at the seedling stage. Two significant QTL (QLC.yf.3H and QLC.yf.6H) controlling leaf chlorosis under Mn2+ stress were identified on chromosomes 3H and 6H close to QSur.yf.3H and QSur.yf.6H. The major QTL QSur.yf.3H, located near the marker Bmag0013, explained 21% of the phenotypic variation. The major QTL for plant survival on 3H was validated in a different DH population (TX9425/Naso Nijo). This major QTL could potentially be used in breeding programmes to enhance tolerance to both manganese toxicity and waterlogging.  相似文献   

16.
The applicability of emission of the N 3Λσ triplet states of molecular hydrogen for spectral diagnostics of the positive column of a dc glow discharge in hydrogen at translational gas temperatures of 360–600 K, specific absorbed powers of 0.8–4.25 W/cm, gas pressures of p = 0.3–15.0 Torr, reduced fields of E/N = 30–130 Td, and electron densities of n e = 4.0 × 109–6.5 × 1010 cm–3 is analyzed by using an advanced level-based semi-empirical collisional?radiative model. It is found that secondary processes make the main contribution to the population and decay of the N 3Λσ = a 3Σ+ g , c 3Π u , g 3Σ+ g , h 3Σ+ g , and i 3Π g triplet states. The dipole-allowed transitions e 3Σ+ g a 3Σ+ g , f 3Σ+ g a 3Σ+ g , g 3Σ+ g and k 3Π u a 3Σ+ g can be used for spectral diagnostics of a dc discharge within a simplified coronal model.  相似文献   

17.
18.
In this study, a novel engineering Escherichia coli strain (CBMG111) with the expression of mgtCB gene was constructed for the enhanced fermentative production of succinic acid by utilizing the synergetic effect of mgtC gene to improve the growth of strains at the environment of low Mg2+ concentration and mgtB to enhance the transport of Mg2+ into cells. After the effect of the expression of the individual genes (mgtA, mgtB, mgtC) on the growth of E. coli was clarified, the fermentative production of succinic acid by CBMG111 was studied with the low-price mixture of Mg(OH)2 and NH3·H2O as the alkaline neutralizer and the biomass hydrolysates as the carbon sources, which demonstrated that the expression of mgtCB gene can significantly increase the productivity of succinic acid (2.97 g L?1 h?1) compared with that by using the engineering strain with the overexpression of mgtA gene.  相似文献   

19.
We conducted an experiment to assess the predictive capability of a leaf optical meter for determining leaf pigment status of Acer mono Maxim., A. ginnala Maxim., Quercus mongolica Fisch., and Cornus alba displaying a range of visually different leaf colors during senescence. Concentrations of chlorophyll (Chl) a, Chl b, and total Chl [i.e., Chl (a+b)] decreased while the concentration of carotenoids (Car) remained relatively static for all species as leaf development continued from maturity to senescence. C. alba exhibited the lowest average concentration of Chl (a+b), Chl a, and Car, but the highest relative anthocyanin concentration, while Q. mongolica exhibited the highest Chl (a+b), Chl b, and the lowest relative anthocyanin concentration. A. mono exhibited the highest Chl a and Car concentrations. The relationships between leaf pigments and the values measured by the optical meter generally followed an exponential function. The strongest relationships between leaf pigments and optical measurements were for A. mono, A. ginnala, and Q. mongolica (R 2 ranged from 0.64 to 0.95), and the weakest relationships were for C. alba (R 2 ranged from 0.13 to 0.67). Moreover, optical measurements were more strongly related to Chl a than to Chl b or Chl (a+b). Optical measurements were not related to Car or relative anthocyanin concentrations. We predicted that weak relationships between leaf pigments and optical measurements would occur under very low Chl concentrations or under very high anthocyanin concentrations; however, these factors could not explain the weak relationship between Chl and optical measurements observed in C. alba. Overall, our results indicated that an optical meter can accurately estimate leaf pigment concentrations during leaf senescence — a time when pigment concentrations are dynamically changing — but that the accuracy of the estimate varies across species. Future research should investigate how species-specific leaf traits may influence the accuracy of pigment estimates derived from optical meters.  相似文献   

20.
A novel actinomycete strain, designated TRM 49605T, was isolated from a desert soil sample from Lop Nur, Xinjiang, north-west China, and characterised using a polyphasic taxonomic approach. The strain exhibited antifungal activity against the following strains: Saccharomyces cerevisiae, Curvularia lunata, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Penicillium citrinum, Candida albicans and Candida tropicalis; Antibacterial activity against Bacillus subtilis, Staphylococcus epidermidis and Micrococcus luteus; and no antibacterial activity against Escherichia coli. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 49605T to the genus Streptomyces. Strain TRM 49605T shows high sequence similarities to Streptomyces roseolilacinus NBRC 12815T (98.62 %), Streptomyces flavovariabilis NRRL B-16367T (98.45 %) and Streptomyces variegatus NRRL B-16380T (98.45 %). Whole cell hydrolysates of strain TRM 49605T were found to contain ll-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, xylose and mannose as the major whole cell sugars. The major fatty acids in strain TRM 49605T were identified as iso C16:0, anteiso C15:0, C16:0 and Summed Feature 5 as defined by MIDI. The main menaquinones were identified as MK-9(H4), MK-9(H6), MK-9(H8) and MK-10(H6). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The G+C content of the genomic DNA was determined to be 71.2 %. The DNA–DNA relatedness between strain TRM 49605T and the phylogenetically related strain S. roseolilacinus NBRC 12815T was 60.12 ± 0.06 %, which is lower than the 70 % threshold value for delineation of genomic prokaryotic species. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain TRM 49605T (=CCTCC AA2015026T = KCTC 39666T) should be designated as the type strain of a novel species of the genus Streptomyces, for which the name Streptomyces luozhongensis sp. nov. is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号