首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Breadfruit (Artocarpus altilis, Moraceae), a traditional starch crop in Oceania, has enjoyed legendary status ever since its role in the infamous mutiny aboard the H.M.S. Bounty in 1789, yet its origins remain unclear. Breadfruit's closest relatives are A. camansi and A. mariannensis. DNA fingerprinting data (AFLP, amplified fragment length polymorphisms) from over 200 breadfruit cultivars, 30 A. camansi, and 24 A. mariannensis individuals were used to investigate the relationships among these species. Multivariate analyses and the identification of species-specific AFLP markers indicate at least two origins of breadfruit. Most Melanesian and Polynesian cultivars appear to have arisen over generations of vegetative propagation and selection from A. camansi. In contrast, most Micronesian breadfruit cultivars appear to be the result of hybridization between A. camansi-derived breadfruit and A. mariannensis. Because breadfruit depends on humans for dispersal, the data were compared to theories on the human colonization of Oceania. The results agree with the well-supported theory that humans settled Polynesia via Melanesia. Additionally, a long-distance migration from eastern Melanesia into Micronesia is supported.  相似文献   

2.
Deciphering host migrations and origins by means of their microbes   总被引:4,自引:0,他引:4  
Wirth T  Meyer A  Achtman M 《Molecular ecology》2005,14(11):3289-3306
Mitochondrial DNA and microsatellite sequences are powerful genetic markers for inferring the genealogy and the population genetic structure of animals but they have only limited resolution for organisms that display low genetic variability due to recent strong bottlenecks. An alternative source of data for deciphering migrations and origins in genetically uniform hosts can be provided by some of their microbes, if their evolutionary history correlates closely with that of the host. In this review, we first discuss how a variety of viruses, and the bacterium Helicobacter pylori, can be used as genetic tracers for one of the most intensively studied species, Homo sapiens. Then, we review statistical problems and limitations that affect the calculation of particular population genetic parameters for these microbes, such as mutation rates, with particular emphasis on the effects of recombination, selection and mode of transmission. Finally, we extend the discussion to other host-parasite systems and advocate the adoption of an integrative approach to both sampling and analysis.  相似文献   

3.
4.
The islands of Micronesia and Polynesia collectively comprise the last major region of the globe to be settled by humans. Both of these groups of islands were colonized within the last 4,000 years by Austronesian-speaking agriculturists. Based on biogeographic and linguistic patterns, central-eastern Micronesia and Polynesia are included by many in a single category called Remote Oceania. Similarities of biologic, linguistic, and cultural traits within Remote Oceania highlight a question central to Oceanic studies: Are similarities among islands due to a common origin of isolated communities, to ongoing interactions among islands, or both? Analyses of mitochondrial DNA (mtDNA) sequences reveal that most remote Oceanic populations are polyphyletic. These polyphyletic populations violate the assumptions of many genetic distance and population demography models and so are problematic to interpret. The majority of mtDNA sequences from Micronesian and Polynesian populations are derived from Asia, whereas others are inferred to have originated in New Guinea. These data support an Island Southeast Asian origin and a colonization route along the north coast of New Guinea. The Marianas and Yap proper (main island) appear to have been independently settled directly from Island Southeast Asia, and both have received migrants from Central-Eastern Micronesia since then. Palau clearly demonstrates a complex prehistory including a significant influx of lineages from New Guinea. Thus genetic similarities among Micronesian and Polynesian populations result, in some cases, from a common origin, and in others, from extensive gene flow.  相似文献   

5.
The amazing diversity of extant photosynthetic eukaryotes is largely a result of the presence of formerly free-living photosynthesizing organisms that have been sequestered by eukaryotic hosts and established as plastids in a process known as endosymbiosis. The evolutionary history of these endosymbiotic events was traditionally investigated by studying ultrastructural features and pigment characteristics but in recent years has been approached using molecular sequence data and gene trees. Two important developments, more detailed studies of members of the Cyanobacteria (from which plastids ultimately derive) and the availability of complete plastid genome sequences from a wide variety of plant and algal lineages, have allowed a more accurate reconstruction of plastid evolution.  相似文献   

6.
7.
When people learn that I study human evolution and we start talking about it, they sometimes ask me, “How long ago did the first humans live?” My answer is usually another question: “What do you mean by 'humans'?” That response seems as baffling and wrong‐headed to them as their question seems to me, and it usually takes us a while to straighten things out. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The recent application of such chronometric techniques as electron spin resonance (ESR), thermoluminescence (TL), and uranium series dating has had a significant impact on perceptions of modern human origins. Claims for the presence of anatomically modern humans in Africa prior to 100 ka and for the transition leading to modern Africans at an even earlier date have been made, partly based on results of these techniques. However, a careful examination of the pertinent record shows that these claims are not unequivocally supported by the available fossil and chronological evidence.  相似文献   

9.
Distribution, diversity, and latitude in African primates   总被引:2,自引:0,他引:2  
  相似文献   

10.
Rhamnolipids are glycolipidic biosurfactants produced by various bacterial species. They were initially found as exoproducts of the opportunistic pathogen Pseudomonas aeruginosa and described as a mixture of four congeners: α-L-rhamnopyranosyl-α-L-rhamnopyranosyl-β-hydroxydecanoyl-β-hydroxydecanoate (Rha-Rha-C10-C10), α-L-rhamnopyranosyl-α-L-rhamnopyranosyl-β-hydroxydecanoate (Rha-Rha-C10), as well as their mono-rhamnolipid congeners Rha-C10-C10 and Rha-C10. The development of more sensitive analytical techniques has lead to the further discovery of a wide diversity of rhamnolipid congeners and homologues (about 60) that are produced at different concentrations by various Pseudomonas species and by bacteria belonging to other families, classes, or even phyla. For example, various Burkholderia species have been shown to produce rhamnolipids that have longer alkyl chains than those produced by P. aeruginosa. In P. aeruginosa, three genes, carried on two distinct operons, code for the enzymes responsible for the final steps of rhamnolipid synthesis: one operon carries the rhlAB genes and the other rhlC. Genes highly similar to rhlA, rhlB, and rhlC have also been found in various Burkholderia species but grouped within one putative operon, and they have been shown to be required for rhamnolipid production as well. The exact physiological function of these secondary metabolites is still unclear. Most identified activities are derived from the surface activity, wetting ability, detergency, and other amphipathic-related properties of these molecules. Indeed, rhamnolipids promote the uptake and biodegradation of poorly soluble substrates, act as immune modulators and virulence factors, have antimicrobial activities, and are involved in surface motility and in bacterial biofilm development.  相似文献   

11.
12.
Snake diversity varies by at least two orders of magnitude among extant lineages, with numerous groups containing only one or two species, and several young clades exhibiting exceptional richness (>700 taxa). With a phylogeny containing all known families and subfamilies, we find that these patterns cannot be explained by background rates of speciation and extinction. The majority of diversity appears to derive from a radiation within the superfamily Colubroidea, potentially stemming from the colonization of new areas and the evolution of advanced venom-delivery systems. In contrast, negative relationships between clade age, clade size, and diversification rate suggest the potential for possible bias in estimated diversification rates, interpreted by some recent authors as support for ecologically mediated limits on diversity. However, evidence from the fossil record indicates that numerous lineages were far more diverse in the past, and that extinction has had an important impact on extant diversity patterns. Thus, failure to adequately account for extinction appears to prevent both rate- and diversity-limited models from fully characterizing richness dynamics in snakes. We suggest that clade-level extinction may provide a key mechanism for explaining negative or hump-shaped relationships between clade age and diversity, and the prevalence of ancient, species-poor lineages in numerous groups.  相似文献   

13.
This paper analyses how migrations, environment and epidemics interact to shape genetic variation in the moder human species. The gene mutation that makes humans resistant to malaria is a striking example of how disease can shape the human genome. In Europe malaria spread in coincidence with the arrival of populations from Asia Minor and eastern Mediterranean and was favoured by the spread of agriculture, by the sedentary conditions of life and the related demographic increase. Natural selection, generally, shape the gene pool of a population in order to fit a different environment. This is the reason because hemoglobinopathies and enzyme G6PD deficit are greatly spread in areas hit by malaria epidemic. These effects are particularly evident in isolated regions or in islands with low population density, e.g. Sardinia. Disasters such as epidemics may drastically reduced the size of a population, and the victims under such circumstances are not selected. As a result the survivors within this small population are unlikely to be representative of the original population in its genetic makeup, and this occurrence is known as “bottleneck effect”. Sardinia, for instance, was hit between 1300 and 1700 by several plague epidemics. Such events drastically reduced the total number of inhabitants; creating a local alteration in the gene frequencies, that have moulded the genetics of the population. This has brought about not only a differentiation with respect to other Mediterranean populations, but creating a variability inside the island.  相似文献   

14.
In The Origin of Species, Darwin proposed his principle of divergence of character (a process now termed "character displacement") to explain how new species arise and why they differ from each other phenotypically. Darwin maintained that the origin of species and the evolution of differences between them is ultimately caused by divergent selection acting to minimize competitive interactions between initially similar individuals, populations, and species. Here, we examine the empirical support for the various claims that constitute Darwin's principle, specifically that (1) competition promotes divergent trait evolution, (2) the strength of competitively mediated divergent selection increases with increasing phenotypic similarity between competitors, (3) divergence can occur within species, and (4) competitively mediated divergence can trigger speciation. We also explore aspects that Darwin failed to consider. In particular, we describe how (1) divergence can arise from selection acting to lessen reproductive interactions, (2) divergence is fueled by the intersection of character displacement and sexual selection, and (3) phenotypic plasticity may play a key role in promoting character displacement. Generally, character displacement is well supported empirically, and it remains a vital explanation for how new species arise and diversify.  相似文献   

15.
16.
This study investigates the GM genetic relationships of 82 human populations, among which 10 represent original data, within and among the main broad geographic areas of the world. Different approaches are used: multidimensional scaling analysis and test for isolation by distance, to assess the correlation between genetic variation and spatial distributions; analysis of variance, to investigate the genetic structure at different hierarchical levels of population subdivision; genetic similarity map (geographic map distorted by available genetic information), to identify regions of high and low genetic variation; and minimal spanning network, to point out possible migration routes across continental areas. The results show that the GM polymorphism is characterized by one of the highest amounts of genetic variation observed so far among populations of different continents (Fct=0.3915, P < 0.0001). GM diversity can be explained by a model of isolation by distance (IBD) at most continental levels, with a particularly significant fit to IBD for the Middle East and Europe. Five peripheral regions of the world (Europe, west and south sub-Saharan Africa, Southeast Asia, and America) exhibit a low level of genetic diversity both within and among populations. By contrast, East and North African, Southwest Asian, and Northeast Asian populations are highly diverse and interconnected genetically by large genetic distances. Therefore, the observed GM variation can be explained by a "centrifugal model" of modern humans peopling history, involving ancient dispersals across a large intercontinental area spanning from East Africa to Northeast Asia, followed by recent migrations in peripheral geographic regions.  相似文献   

17.
A diversity of organisms are endowed with the ability to emit light, and to display and control it in a variety of ways. Most of the luciferins (substrates) of the various phylogenetically distant systems fall into unrelated chemical classes, and, based on still limited data, the luciferases (enzymes) and reaction mechanisms are distinctly different. Based on its diversity and phylogenetic distribution, it is estimated that bioluminescence may have arisen independently as many as 30 times in the course of evolution. However, there are several examples of cross-phyletic similarities among the substrates; some of these may be accounted for nutritionally, but in other cases they may have evolved independently.  相似文献   

18.
Extant snake faunas have their origins in the mid-Cenozoic, when colubroids replaced booid-grade snakes as the dominant species. The timing of this faunal changeover in North America and Europe based on fossils is thought to have occurred in the early Neogene, after a period of global cooling opened environments and made them suitable for more active predators. However, new fossils from the late Oligocene of Tanzania have revealed an early colubroid-dominated fauna in Africa suggesting a different pattern of faunal turnover there. Additionally, molecular divergence times suggest colubroid diversification began sometime in the Paleogene, although the exact timing and driving forces behind the diversification are not clear. Here we present the first fossil snake referred to the African clade Lamprophiinae, and the oldest fossil known of Lamprophiidae. As such, this specimen provides the only potential fossil calibration point for the African snake radiation represented by Lamprophiidae, and is the oldest snake referred to Elapoidea. A molecular clock analysis using this and other previously reported fossils as calibration points reveals colubroid diversification minimally occurred in the earliest Paleogene, although a Cretaceous origin cannot be excluded. The elapoid and colubrid lineages diverged during the period of global warming near the Paleocene-Eocene boundary, with both clades diversifying beginning in the early Eocene (proximate to the Early Eocene Climate Optimum) and continuing into the cooler Miocene. The majority of subclades diverge well before the appearance of colubroid dominance in the fossil record. These results suggest an earlier diversification of colubroids than generally previously thought, with hypothesized origins of these clades in Asia and Africa where the fossil record is relatively poorly known. Further work in these regions may provide new insights into the timing of, and environmental influences contributing to, the rise of colubroid snakes.  相似文献   

19.
We synthesize African paleoclimate from 150 to 30 ka (thousand years ago) using 85 diverse datasets at a regional scale, testing for coherence with North Atlantic glacial/interglacial phases and northern and southern hemisphere insolation cycles. Two major determinants of circum-African climate variability over this time period are supported by principal components analysis: North Atlantic sea surface temperature (SST) variations and local insolation maxima. North Atlantic SSTs correlated with the variability found in most circum-African SST records, whereas the variability of the majority of terrestrial temperature and precipitation records is explained by local insolation maxima, particularly at times when solar radiation was intense and highly variable (e.g., 150-75 ka). We demonstrate that climates varied with latitude, such that periods of relatively increased aridity or humidity were asynchronous across the northern, eastern, tropical and southern portions of Africa. Comparisons of the archaeological, fossil, or genetic records with generalized patterns of environmental change based solely on northern hemisphere glacial/interglacial cycles are therefore imprecise.We compare our refined climatic framework to a database of 64 radiometrically-dated paleoanthropological sites to test hypotheses of demographic response to climatic change among African hominin populations during the 150-30 ka interval. We argue that at a continental scale, population and climate changes were asynchronous and likely occurred under different regimes of climate forcing, creating alternating opportunities for migration into adjacent regions. Our results suggest little relation between large scale demographic and climate change in southern Africa during this time span, but strongly support the hypothesis of hominin occupation of the Sahara during discrete humid intervals ∼135-115 ka and 105-75 ka. Hominin populations in equatorial and eastern Africa may have been buffered from the extremes of climate change by locally steep altitudinal and rainfall gradients and the complex and variable effects of increased aridity on human habitat suitability in the tropics. Our data are consistent with hominin migrations out of Africa through varying exit points from ∼140-80 ka.  相似文献   

20.
Historical origins and genetic diversity of wine grapes   总被引:3,自引:0,他引:3  
The genomic resources that are available to the grapevine research community have increased enormously during the past five years, in parallel with a renewed interest in grapevine (Vitis vinifera L.) germplasm resources and analysis of genetic diversity in grapes. Genetic variation, either natural or induced, is invaluable for crop improvement and understanding gene function, and the same is true for the grapevine. The history and vineyard cultural practices have largely determined the genetic diversity that exists today in grapevines. In this article, we provide a synopsis of what is known about the origin and genetics of grapes and how molecular genetics is helping us understand more about this plant: its evolution, historical development, genetic diversity and potential for genetic improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号