首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial communities associated with a variety of hydrothermal emissions at the Yonaguni Knoll IV hydrothermal field, the southernmost Okinawa Trough, were analyzed by culture-dependent and -independent techniques. In this hydrothermal field, dozens of vent sites hosting physically and chemically distinct hydrothermal fluids were observed. Variability in the gas content and formation in the hydrothermal fluids was observed and could be controlled by the potential subseafloor phase-separation and -partition processes. The hydrogen concentration in the hydrothermal fluids was also variable (0.8–3.6 mmol kg−1) among the chimney sites, but was unusually high as compared with those in other Okinawa Trough hydrothermal fields. Despite the physical and chemical variabilities of the hydrothermal fluids, the microbial communities were relatively similar among the habitats. Based on both culture-dependent and -independent analyses of the microbial community structures, members of Thermococcales, Methanococcales and Desulfurococcales likely represent the predominant archaeal components, while members of Nautiliaceae and Thioreductoraceae are considered to dominate the bacterial population. Most of the abundant microbial components appear to be chemolithotrophs sustained by hydrogen oxidation. The relatively consistent microbial communities found in this study could have been because of the sufficient input of hydrogen from the hydrothermal fluids rather than other chemical properties.  相似文献   

2.
Hydrothermal vent systems harbor rich microbial communities ranging from aerobic mesophiles to anaerobic hyperthermophiles. Among these, members of the archaeal domain are prevalent in microbial communities in the most extreme environments, partly because of their temperature‐resistant and robust membrane lipids. In this study, we use geochemical and molecular microbiological methods to investigate the microbial diversity in black smoker chimneys from the newly discovered Loki's Castle hydrothermal vent field on the Arctic Mid‐Ocean Ridge (AMOR) with vent fluid temperatures of 310–320 °C and pH of 5.5. Archaeal glycerol dialkyl glycerol tetraether lipids (GDGTs) and H‐shaped GDGTs with 0–4 cyclopentane moieties were dominant in all sulfide samples and are most likely derived from both (hyper)thermophilic Euryarchaeota and Crenarchaeota. Crenarchaeol has been detected in low abundances in samples derived from the chimney exterior indicating the presence of Thaumarchaeota at lower ambient temperatures. Aquificales and members of the Epsilonproteobacteria were the dominant bacterial groups detected. Our observations based on the analysis of 16S rRNA genes and biomarker lipid analysis provide insight into microbial communities thriving within the porous sulfide structures of active and inactive deep‐sea hydrothermal vents. Microbial cycling of sulfur, hydrogen, and methane by archaea in the chimney interior and bacteria in the chimney exterior may be the prevailing biogeochemical processes in this system.  相似文献   

3.

Over the last decades, there has been growing interest about the ecological role of hydrothermal sulfide chimneys, their microbial diversity and associated biotechnological potential. Here, we performed dual-index Illumina sequencing of bacterial and archaeal communities on active and inactive sulfide chimneys collected from the Kolumbo hydrothermal field, situated on a geodynamic convergent setting. A total of 15,701 OTUs (operational taxonomic units) were assigned to 56 bacterial and 3 archaeal phyla, 133 bacterial and 16 archaeal classes. Active chimney communities were dominated by OTUs related to thermophilic members of Epsilonproteobacteria, Aquificae and Deltaproteobacteria. Inactive chimney communities were dominated by an OTU closely related to the archaeon Nitrosopumilus sp., and by members of Gammaproteobacteria, Deltaproteobacteria, Planctomycetes and Bacteroidetes. These lineages are closely related to phylotypes typically involved in iron, sulfur, nitrogen, hydrogen and methane cycling. Overall, the inactive sulfide chimneys presented highly diverse and uniform microbial communities, in contrast to the active chimney communities, which were dominated by chemolithoautotrophic and thermophilic lineages. This study represents one of the most comprehensive investigations of microbial diversity in submarine chimneys and elucidates how the dissipation of hydrothermal activity affects the structure of microbial consortia in these extreme ecological niches.

  相似文献   

4.
Distribution of Archaea in a Black Smoker Chimney Structure   总被引:18,自引:5,他引:13       下载免费PDF全文
Archaeal community structures in microhabitats in a deep-sea hydrothermal vent chimney structure were evaluated through the combined use of culture-independent molecular analyses and enrichment culture methods. A black smoker chimney was obtained from the PACMANUS site in the Manus Basin near Papua New Guinea, and subsamples were obtained from vertical and horizontal sections. The elemental composition of the chimney was analyzed in different subsamples by scanning electron microscopy and energy-dispersive X-ray spectroscopy, indicating that zinc and sulfur were major components while an increased amount of elemental oxygen in exterior materials represented the presence of oxidized materials on the outer surface of the chimney. Terminal restriction fragment length polymorphism analysis revealed that a shift in archaeal ribotype structure occurred in the chimney structure. Through sequencing of ribosomal DNA (rDNA) clones from archaeal rDNA clone libraries, it was demonstrated that the archaeal communities in the chimney structure consisted for the most part of hyperthermophilic members and extreme halophiles and that the distribution of such extremophiles in different microhabitats of the chimney varied. The results of the culture-dependent analysis supported in part the view that changes in archaeal community structures in these microhabitats are associated with the geochemical and physical dynamics in the black smoker chimney.  相似文献   

5.
Distribution of archaea in a black smoker chimney structure   总被引:10,自引:0,他引:10  
Archaeal community structures in microhabitats in a deep-sea hydrothermal vent chimney structure were evaluated through the combined use of culture-independent molecular analyses and enrichment culture methods. A black smoker chimney was obtained from the PACMANUS site in the Manus Basin near Papua New Guinea, and subsamples were obtained from vertical and horizontal sections. The elemental composition of the chimney was analyzed in different subsamples by scanning electron microscopy and energy-dispersive X-ray spectroscopy, indicating that zinc and sulfur were major components while an increased amount of elemental oxygen in exterior materials represented the presence of oxidized materials on the outer surface of the chimney. Terminal restriction fragment length polymorphism analysis revealed that a shift in archaeal ribotype structure occurred in the chimney structure. Through sequencing of ribosomal DNA (rDNA) clones from archaeal rDNA clone libraries, it was demonstrated that the archaeal communities in the chimney structure consisted for the most part of hyperthermophilic members and extreme halophiles and that the distribution of such extremophiles in different microhabitats of the chimney varied. The results of the culture-dependent analysis supported in part the view that changes in archaeal community structures in these microhabitats are associated with the geochemical and physical dynamics in the black smoker chimney.  相似文献   

6.
Lipid biomarkers were investigated to reveal the microbial life preserved in sulfide and Si-rich chimney from the 49.6°E hydrothermal vent field. In sulfide chimney, iso-/anteiso-fatty acids and H-shaped glycerol dialkyl glycerol tetraethers are the main microbial biomarkers. In Si-rich chimney, monounsaturated fatty acids (C16:1n7, C18:1n7) are the main bacterial biomarkers detected, and crenarchaeol and its isomer are relatively abundant (up to 25% of glycerol dialkyl glycerol tetraethers) archaeol biomarkers. Composition of lipid biomarkers reveals the diversity of microbial communities in different types of chimney structures. Sulfate-reducing bacteria and hyperthermophilic archaea were considered to be the majority microbial life in sulfide chimney, and sulfur-oxidizing bacteria were abundant in Si-rich chimney while archaea in Si-rich chimney and mainly attributed to Thaumarchaeota, which were predominately ammonia oxidizers. Our result suggested that fluid temperature and gaseous components could be the main constraints for the diversity of microbial communities in hydrothermal chimney structures in 49.6°E hydrothermal vent field.  相似文献   

7.
The distribution of Archaea and methanogenic, methanotrophic and sulfate-reducing communities in three Atlantic ultramafic-hosted hydrothermal systems (Rainbow, Ashadze, Lost City) was compared using 16S rRNA gene and functional gene (mcrA, pmoA and dsrA) clone libraries. The overall archaeal community was diverse and heterogeneously distributed between the hydrothermal sites and the types of samples analyzed (seawater, hydrothermal fluid, chimney and sediment). The Lost City hydrothermal field, characterized by high alkaline warm fluids (pH>11; T<95 °C), harbored a singular archaeal diversity mostly composed of unaffiliated Methanosarcinales. The archaeal communities associated with the recently discovered Ashadze 1 site, one of the deepest active hydrothermal fields known (4100 m depth), showed significant differences between the two different vents analyzed and were characterized by putative extreme halophiles. Sequences related to the rarely detected Nanoarchaeota phylum and Methanopyrales order were also retrieved from the Rainbow and Ashadze hydrothermal fluids. However, the methanogenic Methanococcales was the most widely distributed hyper/thermophilic archaeal group among the hot and acidic ultramafic-hosted hydrothermal system environments. Most of the lineages detected are linked to methane and hydrogen cycling, suggesting that in ultramafic-hosted hydrothermal systems, large methanogenic and methanotrophic communities could be fuelled by hydrothermal fluids highly enriched in methane and hydrogen.  相似文献   

8.
Deep-sea hydrothermal vent chimneys harbor a high diversity of largely unknown microorganisms. Although the phylogenetic diversity of these microorganisms has been described previously, the adaptation and metabolic potential of the microbial communities is only beginning to be revealed. A pyrosequencing approach was used to directly obtain sequences from a fosmid library constructed from a black smoker chimney 4143-1 in the Mothra hydrothermal vent field at the Juan de Fuca Ridge. A total of 308 034 reads with an average sequence length of 227 bp were generated. Comparative genomic analyses of metagenomes from a variety of environments by two-way clustering of samples and functional gene categories demonstrated that the 4143-1 metagenome clustered most closely with that from a carbonate chimney from Lost City. Both are highly enriched in genes for mismatch repair and homologous recombination, suggesting that the microbial communities have evolved extensive DNA repair systems to cope with the extreme conditions that have potential deleterious effects on the genomes. As previously reported for the Lost City microbiome, the metagenome of chimney 4143-1 exhibited a high proportion of transposases, implying that horizontal gene transfer may be a common occurrence in the deep-sea vent chimney biosphere. In addition, genes for chemotaxis and flagellar assembly were highly enriched in the chimney metagenomes, reflecting the adaptation of the organisms to the highly dynamic conditions present within the chimney walls. Reconstruction of the metabolic pathways revealed that the microbial community in the wall of chimney 4143-1 was mainly fueled by sulfur oxidation, putatively coupled to nitrate reduction to perform inorganic carbon fixation through the Calvin–Benson–Bassham cycle. On the basis of the genomic organization of the key genes of the carbon fixation and sulfur oxidation pathways contained in the large genomic fragments, both obligate and facultative autotrophs appear to be present and contribute to biomass production.  相似文献   

9.
Barite chimneys are known to form in hydrothermal systems where barium‐enriched fluids generated by leaching of the oceanic basement are discharged and react with seawater sulfate. They also form at cold seeps along continental margins, where marine (or pelagic) barite in the sediments is remobilized because of subseafloor microbial sulfate reduction. We test the possibility of using multiple sulfur isotopes (δ34S, Δ33S, ?36S) of barite to identify microbial sulfate reduction in a hydrothermal system. In addition to multiple sulfur isotopes, we present oxygen (δ18O) and strontium (87Sr/86Sr) isotopes for one of numerous barite chimneys in a low‐temperature (~20 °C) venting area of the Loki's Castle black smoker field at the ultraslow‐spreading Arctic Mid‐Ocean Ridge (AMOR). The chemistry of the venting fluids in the barite field identifies a contribution of at least 10% of high‐temperature black smoker fluid, which is corroborated by 87Sr/86Sr ratios in the barite chimney that are less radiogenic than in seawater. In contrast, oxygen and multiple sulfur isotopes indicate that the fluid from which the barite precipitated contained residual sulfate that was affected by microbial sulfate reduction. A sulfate reduction zone at this site is further supported by the multiple sulfur isotopic composition of framboidal pyrite in the flow channel of the barite chimney and in the hydrothermal sediments in the barite field, as well as by low SO4 and elevated H2S concentrations in the venting fluids compared with conservative mixing values. We suggest that the mixing of ascending H2‐ and CH4‐rich high‐temperature fluids with percolating seawater fuels microbial sulfate reduction, which is subsequently recorded by barite formed at the seafloor in areas where the flow rate is sufficient. Thus, low‐temperature precipitates in hydrothermal systems are promising sites to explore the interactions between the geosphere and biosphere in order to evaluate the microbial impact on these systems.  相似文献   

10.
Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments.  相似文献   

11.
During Integrated Ocean Drilling Program Expedition 301, we obtained a sample of black rust from a circulation obviation retrofit kit (CORK) observatory at a borehole on the eastern flank of Juan de Fuca Ridge. Due to overpressure, the CORK had failed to seal the borehole. Hot fluids from oceanic crust had discharged to the overlying bottom seawater and resulted in the formation of black rust analogous to a hydrothermal chimney deposit. Both culture-dependent and culture-independent analyses indicated that the black-rust-associated community differed from communities reported from other microbial habitats, including hydrothermal vents at seafloor spreading centers, while it shared phylotypes with communities previously detected in crustal fluids from the same borehole. The most frequently retrieved sequences of bacterial and archaeal 16S rRNA genes were related to the genera Ammonifex and Methanothermococcus, respectively. Most phylotypes, including phylotypes previously detected in crustal fluids, were isolated in pure culture, and their metabolic traits were determined. Quantification of the dissimilatory sulfite reductase (dsrAB) genes, together with stable sulfur isotopic and electron microscopic analyses, strongly suggested the prevalence of sulfate reduction, potentially by the Ammonifex group of bacteria. Stable carbon isotopic analyses suggested that the bulk of the microbial community was trophically reliant upon photosynthesis-derived organic matter. This report provides important insights into the phylogenetic, physiological, and trophic characteristics of subseafloor microbial ecosystems in warm ridge flank crusts.  相似文献   

12.
A large, intact sulfide chimney, designated Finn, was recovered from the Mothra Vent Field on the Juan de Fuca Ridge in 1998. Finn was venting 302 degrees C fluids on the seafloor and contained complex mineralogical zones surrounding a large open central conduit. Examination of microorganisms within these zones, followed by community analysis with oligonucleotide probes, showed that there were variations in the abundance and diversity of eubacteria and archaea from the exterior to the interior of the chimney. The microbial abundance based upon epifluorescence microscopy and quantitative fatty acid analyses varied from >10(8) cells/g of sulfide 2 to 10 cm within the chimney wall to <10(5) cells/g in interior zones. Direct microscopic observation indicated that microorganisms were attached to mineral surfaces throughout the structure. Whole-cell hybridization results revealed that there was a transition from a mixed community of eubacteria and archaea near the cool exterior of the chimney to primarily archaea near the warm interior. Archaeal diversity was examined in three zones of Finn by cloning and sequencing of the 16S rRNA gene. The majority of sequences from the exterior of the chimney were related to marine group I of the Crenarchaeota and uncultured Euryarchaeota from benthic marine environments. In contrast, clone libraries from interior regions of the chimney contained sequences closely related to methanogens, Thermococcales, and Archaeoglobales, in addition to uncultured crenarchaeal phylotypes obtained from deep subsurface sites. These observations of microbial communities within an active hydrothermal chimney provide insight into the microbial ecology within such structures and may facilitate follow-up exploration into expanding the known upper temperature limits of life.  相似文献   

13.
During Integrated Ocean Drilling Program Expedition 301, we obtained a sample of black rust from a circulation obviation retrofit kit (CORK) observatory at a borehole on the eastern flank of Juan de Fuca Ridge. Due to overpressure, the CORK had failed to seal the borehole. Hot fluids from oceanic crust had discharged to the overlying bottom seawater and resulted in the formation of black rust analogous to a hydrothermal chimney deposit. Both culture-dependent and culture-independent analyses indicated that the black-rust-associated community differed from communities reported from other microbial habitats, including hydrothermal vents at seafloor spreading centers, while it shared phylotypes with communities previously detected in crustal fluids from the same borehole. The most frequently retrieved sequences of bacterial and archaeal 16S rRNA genes were related to the genera Ammonifex and Methanothermococcus, respectively. Most phylotypes, including phylotypes previously detected in crustal fluids, were isolated in pure culture, and their metabolic traits were determined. Quantification of the dissimilatory sulfite reductase (dsrAB) genes, together with stable sulfur isotopic and electron microscopic analyses, strongly suggested the prevalence of sulfate reduction, potentially by the Ammonifex group of bacteria. Stable carbon isotopic analyses suggested that the bulk of the microbial community was trophically reliant upon photosynthesis-derived organic matter. This report provides important insights into the phylogenetic, physiological, and trophic characteristics of subseafloor microbial ecosystems in warm ridge flank crusts.  相似文献   

14.
We have used two-dimensional (1)H NMR spectroscopy obtained at 750 MHz to determine a high-resolution solution structure of the double-stranded DNA oligonucleotide d(5'-CGCTAGCG-3')(2) complexed with the bis-intercalating dye 1,1'-(5,5,9,9-tetramethyl-5, 9-diazatridecamethylene)-bis-4-[3-ethyl-2,3-dihydro(benzo-1, 3-thiazolyl)-2-methylidene]quino-linium tetraiodide (TOTO11Et). The determination of the structure was based on a complete relaxation matrix analysis of the NOESY cross-peaks followed by restrained molecular dynamics calculations. Forty final structures were generated for the TOTO11Et complex from A-form and B-form dsDNA starting structures. The root-mean-square (rms) deviation of the coordinates for the 40 structures of the complex was 0.52 A. A conformational analysis of the deoxyribose rings based on coupling constants obtained from selective DQF-COSY spectra revealed that all ring conformations were almost pure S-type. The structure of the TOTO11Et complex was compared with the structure of a similar DNA complex with a dye containing a shorter linker (TOTOEt). Substantial differences were observed between the two structures because of the difference in the length of the linker. Most prominent was a large difference in the degree of unwinding of the dsDNA part in the two complexes. Unwinding of 73 degrees and 22 degrees relative to the free dsDNA was observed for the complexes with TOTOEt and TOTO11Et, respectively. The AMBER94 force field together with the GB/SA solvation model was used for energy calculations on both of the two complexes. In the calculations, the complex formation was divided into two steps: (i) unwinding of the free oligonucleotide and (ii) association of the bis-intercalators to the unwound oligonucleotide. The complex formation was in favor of TOTO11Et, mainly because the dsDNA is distorted less in the complex with TOTO11Et than in the complex with TOTOEt.  相似文献   

15.
The phylogenetic diversity of sulfate-reducing prokaryotes occurring in active deep-sea hydrothermal vent chimney structures was characterized based on the deduced amino acid sequence analysis of the polymerase chain reaction-amplified dissimilatory sulfite reductase (DSR) gene. The DSR genes were successfully amplified from microbial assemblages of the chimney structures, derived from three geographically and geologically distinct deep-sea hydrothermal systems in the Central Indian Ridge (CIR), in the Izu-Bonin Arc (IBA), and the Okinawa Trough (OT), respectively. Phylogenetic analysis revealed seven major phylogenetic groups. More than half of the clones from the CIR chimney structure were related to DSR amino acid sequences of the hyperthermophilic archaeal members of the genus Archaeoglobus, and those of environmental DSR clones within the class Thermodesulfobacteria. From the OT chimney structure, a different group was obtained, which comprised a novel, deep lineage associated with the DSRs of the thermophilic sulfate-reducing bacterium Thermodesulfovibrio. Most of the DSR clones from the IBA chimney structure were phylogenetically associated with the delta-proteobacterial sulfate-reducing bacteria represented by the genus Desulfobulbus. Sequence analysis of DSR clones demonstrated a diverse sulfate-reducing prokaryotic community in the active deep-sea hydrothermal chimney structures.  相似文献   

16.
Recent molecular characterizations of microbial communities from deep-sea hydrothermal sites indicate the predominance of bacteria belonging to the epsilon subdivision of Proteobacteria (epsilon Proteobacteria). Here, we report the first enrichments and characterizations of four epsilon Proteobacteria that are directly associated with Alvinella pompejana, a deep sea hydrothermal vent polychete, or with hydrothermal vent chimney samples. These novel bacteria were moderately thermophilic sulfur-reducing heterotrophs growing on formate as the energy and carbon source. In addition, two of them (Am-H and Ex-18.2) could grow on sulfur lithoautrotrophically using hydrogen as the electron donor. Optimal growth temperatures of the bacteria ranged from 41 to 45 degrees C. Phylogenetic analysis of the small-subunit ribosomal gene of the two heterotrophic bacteria demonstrated 95% similarity to Sulfurospirillum arcachonense, an epsilon Proteobacteria isolated from an oxidized marine surface sediment. The autotrophic bacteria grouped within a deeply branching clade of the epsilon Proteobacteria, to date composed only of uncultured bacteria detected in a sample from a hydrothermal vent along the mid-Atlantic ridge. A molecular survey of various hydrothermal vent environments demonstrated the presence of two of these bacteria (Am-N and Am-H) in more than one geographic location and habitat. These results suggest that certain epsilon Proteobacteria likely fill important niches in the environmental habitats of deep-sea hydrothermal vents, where they contribute to overall carbon and sulfur cycling at moderate thermophilic temperatures.  相似文献   

17.
Lost City is a unique off-axis hydrothermal vent field characterized by highly alkaline and relatively low-temperature fluids that harbours huge carbonate chimneys. We have carried out a molecular survey based on 18S rDNA sequences of the eukaryotic communities associated with fluid-seawater interfaces and with carbonates from venting areas and the chimney wall. Our study reveals a variety of lineages belonging to eight major taxa: Metazoa, Fungi, Heterokonta (Stramenopiles), Alveolata, Radiolaria, Cercozoa, Heterolobosea and Euglenozoa. We detected one fungal lineage that appears to be widespread in hydrothermal systems both submarine and continental. Alveolates were the most abundant and diverse group in Lost City samples, although their distribution was very different in carbonate, where ciliates dominated, and in fluid-seawater libraries, where dinoflagellates, Group I and Group II (Syndiniales) marine alveolates were profuse. Similarly, Euglenozoa also displayed a differential distribution, kinetoplastids being present on carbonates and a novel group of diplonemids so far exclusively observed in the deep sea being dominant in fluid-seawater libraries. Protist lineages identified in this ecosystem likely correspond to grazers, decomposers and parasites, playing key roles in the food web of the Lost City ecosystem.  相似文献   

18.
A large, intact sulfide chimney, designated Finn, was recovered from the Mothra Vent Field on the Juan de Fuca Ridge in 1998. Finn was venting 302°C fluids on the seafloor and contained complex mineralogical zones surrounding a large open central conduit. Examination of microorganisms within these zones, followed by community analysis with oligonucleotide probes, showed that there were variations in the abundance and diversity of eubacteria and archaea from the exterior to the interior of the chimney. The microbial abundance based upon epifluorescence microscopy and quantitative fatty acid analyses varied from >108 cells/g of sulfide 2 to 10 cm within the chimney wall to <105 cells/g in interior zones. Direct microscopic observation indicated that microorganisms were attached to mineral surfaces throughout the structure. Whole-cell hybridization results revealed that there was a transition from a mixed community of eubacteria and archaea near the cool exterior of the chimney to primarily archaea near the warm interior. Archaeal diversity was examined in three zones of Finn by cloning and sequencing of the 16S rRNA gene. The majority of sequences from the exterior of the chimney were related to marine group I of the Crenarchaeota and uncultured Euryarchaeota from benthic marine environments. In contrast, clone libraries from interior regions of the chimney contained sequences closely related to methanogens, Thermococcales, and Archaeoglobales, in addition to uncultured crenarchaeal phylotypes obtained from deep subsurface sites. These observations of microbial communities within an active hydrothermal chimney provide insight into the microbial ecology within such structures and may facilitate follow-up exploration into expanding the known upper temperature limits of life.  相似文献   

19.
Recent molecular characterizations of microbial communities from deep-sea hydrothermal sites indicate the predominance of bacteria belonging to the epsilon subdivision of Proteobacteria (epsilon Proteobacteria). Here, we report the first enrichments and characterizations of four epsilon Proteobacteria that are directly associated with Alvinella pompejana, a deep sea hydrothermal vent polychete, or with hydrothermal vent chimney samples. These novel bacteria were moderately thermophilic sulfur-reducing heterotrophs growing on formate as the energy and carbon source. In addition, two of them (Am-H and Ex-18.2) could grow on sulfur lithoautrotrophically using hydrogen as the electron donor. Optimal growth temperatures of the bacteria ranged from 41 to 45°C. Phylogenetic analysis of the small-subunit ribosomal gene of the two heterotrophic bacteria demonstrated 95% similarity to Sulfurospirillum arcachonense, an epsilon Proteobacteria isolated from an oxidized marine surface sediment. The autotrophic bacteria grouped within a deeply branching clade of the epsilon Proteobacteria, to date composed only of uncultured bacteria detected in a sample from a hydrothermal vent along the mid-Atlantic ridge. A molecular survey of various hydrothermal vent environments demonstrated the presence of two of these bacteria (Am-N and Am-H) in more than one geographic location and habitat. These results suggest that certain epsilon Proteobacteria likely fill important niches in the environmental habitats of deep-sea hydrothermal vents, where they contribute to overall carbon and sulfur cycling at moderate thermophilic temperatures.  相似文献   

20.
Hydrothermal venting and the formation of carbonate chimneys in the Lost City hydrothermal field (LCHF) are driven predominantly by serpentinization reactions and cooling of mantle rocks, resulting in a highly reducing, high-pH environment with abundant dissolved hydrogen and methane. Phylogenetic and terminal restriction fragment length polymorphism analyses of 16S rRNA genes in fluids and carbonate material from this site indicate the presence of organisms similar to sulfur-oxidizing, sulfate-reducing, and methane-oxidizing Bacteria as well as methanogenic and anaerobic methane-oxidizing Archaea. The presence of these metabolic groups indicates that microbial cycling of sulfur and methane may be the dominant biogeochemical processes active within this ultramafic rock-hosted environment. 16S rRNA gene sequences grouping within the Methylobacter and Thiomicrospira clades were recovered from a chemically diverse suite of carbonate chimney and fluid samples. In contrast, 16S rRNA genes corresponding to the Lost City Methanosarcinales phylotype were found exclusively in high-temperature chimneys, while a phylotype of anaerobic methanotrophic Archaea (ANME-1) was restricted to lower-temperature, less vigorously venting sites. A hyperthermophilic habitat beneath the LCHF may be reflected by 16S rRNA gene sequences belonging to Thermococcales and uncultured Crenarchaeota identified in vent fluids. The finding of a diverse microbial ecosystem supported by the interaction of high-temperature, high-pH fluids resulting from serpentinization reactions in the subsurface provides insight into the biogeochemistry of what may be a pervasive process in ultramafic subseafloor environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号