首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
Flagellar dynein activity is regulated by phosphorylation. One critical phosphoprotein substrate in Chlamydomonas is the 138-kDa intermediate chain (IC138) of the inner arm dyneins (Habermacher, G., and Sale, W. S. (1997) J. Cell Biol. 136, 167-176). In this study, several approaches were used to determine that casein kinase I (CKI) is physically anchored in the flagellar axoneme and regulates IC138 phosphorylation and dynein activity. First, using a videomicroscopic motility assay, selective CKI inhibitors rescued dynein-driven microtubule sliding in axonemes isolated from paralyzed flagellar mutants lacking radial spokes. Rescue of dynein activity failed in axonemes isolated from these mutant cells lacking IC138. Second, CKI was unequivocally identified in salt extracts from isolated axonemes, whereas casein kinase II was excluded from the flagellar compartment. Third, Western blots indicate that within flagella, CKI is anchored exclusively to the axoneme. Analysis of multiple Chlamydomonas motility mutants suggests that the axonemal CKI is located on the outer doublet microtubules. Finally, CKI inhibitors that rescued dynein activity blocked phosphorylation of IC138. We propose that CKI is anchored on the outer doublet microtubules in position to regulate flagellar dynein.  相似文献   

2.
Among the major challenges in understanding ciliary and flagellar motility is to determine how the dynein motors are assembled and localized and how dynein-driven outer doublet microtubule sliding is controlled. Diverse studies, particularly in Chlamydomonas, have determined that the inner arm dynein I1 is targeted to a unique structural position and is critical for regulating the microtubule sliding required for normal ciliary/flagellar bending. As described in this review, I1 dynein offers additional opportunities to determine the principles of assembly and targeting of dyneins to cellular locations and for studying the mechanisms that regulate dynein activity and control of motility by phosphorylation.  相似文献   

3.
Our goal is to understand the assembly and regulation of flagellar dyneins, particularly the Chlamydomonas inner arm dynein called I1 dynein. Here, we focus on the uncharacterized I1-dynein IC IC97. The IC97 gene encodes a novel IC without notable structural domains. IC97 shares homology with the murine lung adenoma susceptibility 1 (Las1) protein—a candidate tumor suppressor gene implicated in lung tumorigenesis. Multiple, independent biochemical assays determined that IC97 interacts with both α- and β-tubulin subunits within the axoneme. I1-dynein assembly mutants suggest that IC97 interacts with both the IC138 and IC140 subunits within the I1-dynein motor complex and that IC97 is part of a regulatory complex that contains IC138. Microtubule sliding assays, using axonemes containing I1 dynein but devoid of IC97, show reduced microtubule sliding velocities that are not rescued by kinase inhibitors, revealing a critical role for IC97 in I1-dynein function and control of dynein-driven motility.  相似文献   

4.
To understand the mechanisms that regulate the assembly and activity of flagellar dyneins, we focused on the I1 inner arm dynein (dynein f) and a null allele, bop5-2, defective in the gene encoding the IC138 phosphoprotein subunit. I1 dynein assembles in bop5-2 axonemes but lacks at least four subunits: IC138, IC97, LC7b, and flagellar-associated protein (FAP) 120—defining a new I1 subcomplex. Electron microscopy and image averaging revealed a defect at the base of the I1 dynein, in between radial spoke 1 and the outer dynein arms. Microtubule sliding velocities also are reduced. Transformation with wild-type IC138 restores assembly of the IC138 subcomplex and rescues microtubule sliding. These observations suggest that the IC138 subcomplex is required to coordinate I1 motor activity. To further test this hypothesis, we analyzed microtubule sliding in radial spoke and double mutant strains. The results reveal an essential role for the IC138 subcomplex in the regulation of I1 activity by the radial spoke/phosphorylation pathway.  相似文献   

5.
I1 dynein, or dynein f, is a highly conserved inner arm isoform that plays a key role in the regulation of flagellar motility. To understand how the IC138 IC/LC subcomplex modulates I1 activity, we characterized the molecular lesions and motility phenotypes of several bop5 alleles. bop5-3, bop5-4, and bop5-5 are null alleles, whereas bop5-6 is an intron mutation that reduces IC138 expression. I1 dynein assembles into the axoneme, but the IC138 IC/LC subcomplex is missing. bop5 strains, like other I1 mutants, swim forward with reduced swimming velocities and display an impaired reversal response during photoshock. Unlike mutants lacking the entire I1 dynein, however, bop5 strains exhibit normal phototaxis. bop5 defects are rescued by transformation with the wild-type IC138 gene. Analysis of flagellar waveforms reveals that loss of the IC138 subcomplex reduces shear amplitude, sliding velocities, and the speed of bend propagation in vivo, consistent with the reduction in microtubule sliding velocities observed in vitro. The results indicate that the IC138 IC/LC subcomplex is necessary to generate an efficient waveform for optimal motility, but it is not essential for phototaxis. These findings have significant implications for the mechanisms by which IC/LC complexes regulate dynein motor activity independent of effects on cargo binding or complex stability.  相似文献   

6.
Ciliary and flagellar motility is regulated by changes in intraflagellar calcium. However, the molecular mechanism by which calcium controls motility is unknown. We tested the hypothesis that calcium regulates motility by controlling dynein-driven microtubule sliding and that the central pair and radial spokes are involved in this regulation. We isolated axonemes from Chlamydomonas mutants and measured microtubule sliding velocity in buffers containing 1 mM ATP and various concentrations of calcium. In buffers with pCa > 8, microtubule sliding velocity in axonemes lacking the central apparatus (pf18 and pf15) was reduced compared with that of wild-type axonemes. In contrast, at pCa4, dynein activity in pf18 and pf15 axonemes was restored to wild-type level. The calcium-induced increase in dynein activity in pf18 axonemes was inhibited by antagonists of calmodulin and calmodulin-dependent kinase II. Axonemes lacking the C1 central tubule (pf16) or lacking radial spoke components (pf14 and pf17) do not exhibit calcium-induced increase in dynein activity in pCa4 buffer. We conclude that calcium regulation of flagellar motility involves regulation of dynein-driven microtubule sliding, that calmodulin and calmodulin-dependent kinase II may mediate the calcium signal, and that the central apparatus and radial spokes are key components of the calcium signaling pathway.  相似文献   

7.
Previous structural and biochemical studies have revealed that the inner arm dynein I1 is targeted and anchored to a unique site located proximal to the first radial spoke in each 96-nm axoneme repeat on flagellar doublet microtubules. To determine whether intermediate chains mediate the positioning and docking of dynein complexes, we cloned and characterized the 140-kDa intermediate chain (IC140) of the I1 complex. Sequence and secondary structural analysis, with particular emphasis on β-sheet organization, predicted that IC140 contains seven WD repeats. Reexamination of other members of the dynein intermediate chain family of WD proteins indicated that these polypeptides also bear seven WD/β-sheet repeats arranged in the same pattern along each intermediate chain protein. A polyclonal antibody was raised against a 53-kDa fusion protein derived from the C-terminal third of IC140. The antibody is highly specific for IC140 and does not bind to other dynein intermediate chains or proteins in Chlamydomonas flagella. Immunofluorescent microscopy of Chlamydomonas cells confirmed that IC140 is distributed along the length of both flagellar axonemes. In vitro reconstitution experiments demonstrated that the 53-kDa C-terminal fusion protein binds specifically to axonemes lacking the I1 complex. Chemical cross-linking indicated that IC140 is closely associated with a second intermediate chain in the I1 complex. These data suggest that IC140 contains domains responsible for the assembly and docking of the I1 complex to the doublet microtubule cargo.  相似文献   

8.
The Chlamydomonas I1 dynein is a two-headed inner dynein arm important for the regulation of flagellar bending. Here we took advantage of mutant strains lacking either the 1α or 1β motor domain to distinguish the functional role of each motor domain. Single- particle electronic microscopic analysis confirmed that both the I1α and I1β complexes are single headed with similar ringlike, motor domain structures. Despite similarity in structure, however, the I1β complex has severalfold higher ATPase activity and microtubule gliding motility compared to the I1α complex. Moreover, in vivo measurement of microtubule sliding in axonemes revealed that the loss of the 1β motor results in a more severe impairment in motility and failure in regulation of microtubule sliding by the I1 dynein phosphoregulatory mechanism. The data indicate that each I1 motor domain is distinct in function: The I1β motor domain is an effective motor required for wild-type microtubule sliding, whereas the I1α motor domain may be responsible for local restraint of microtubule sliding.  相似文献   

9.
Increased phosphorylation of dynein IC IC138 correlates with decreases in flagellar microtubule sliding and phototaxis defects. To test the hypothesis that regulation of IC138 phosphorylation controls flagellar bending, we cloned the IC138 gene. IC138 encodes a novel protein with a calculated mass of 111 kDa and is predicted to form seven WD-repeats at the C terminus. IC138 maps near the BOP5 locus, and bop5-1 contains a point mutation resulting in a truncated IC138 lacking the C terminus, including the seventh WD-repeat. bop5-1 cells display wild-type flagellar beat frequency but swim slower than wild-type cells, suggesting that bop5-1 is altered in its ability to control flagellar waveform. Swimming speed is rescued in bop5-1 transformants containing the wild-type IC138, confirming that BOP5 encodes IC138. With the exception of the roadblock-related light chain, LC7b, all the other known components of the I1 complex, including the truncated IC138, are assembled in bop5-1 axonemes. Thus, the bop5-1 motility phenotype reveals a role for IC138 and LC7b in the control of flagellar bending. IC138 is hyperphosphorylated in paralyzed flagellar mutants lacking radial spoke and central pair components, further indicating a role for the radial spokes and central pair apparatus in control of IC138 phosphorylation and regulation of flagellar waveform.  相似文献   

10.
Generating the complex waveforms characteristic of beating cilia requires the coordinated activity of multiple dynein isoforms anchored to the axoneme. We previously identified a complex associated with the C1d projection of the central apparatus that includes primary ciliary dyskinesia protein 1 (Pcdp1). Reduced expression of complex members results in severe motility defects, indicating that C1d is essential for wild-type ciliary beating. To define a mechanism for Pcdp1/C1d regulation of motility, we took a functional and structural approach combined with mutants lacking C1d and distinct subsets of dynein arms. Unlike mutants completely lacking the central apparatus, dynein-driven microtubule sliding velocities are wild type in C1d- defective mutants. However, coordination of dynein activity among microtubule doublets is severely disrupted. Remarkably, mutations in either outer or inner dynein arm restore motility to mutants lacking C1d, although waveforms and beat frequency differ depending on which isoform is mutated. These results define a unique role for C1d in coordinating the activity of specific dynein isoforms to control ciliary motility.  相似文献   

11.
To investigate the role of axonemal components in the mechanics and regulation of flagellar movement, we have generated a series of monoclonal antibodies (mAb) against sea urchin (Lytechinus pictus) sperm axonemal proteins, selected for their ability to inhibit the motility of demembranated sperm models. One of these antibodies, mAb D1, recognizes an antigen of 142 kDa on blots of sea urchin axonemal proteins and of purified outer arm dynein, suggesting that it acts by binding to the heaviest intermediate chain (IC1) of the dynein arm. mAb D1 blocks the motility of demembranated sea urchin spermatozoa by modifying the beating amplitude and shear angle without affecting the ATPase activity of purified dynein or of demembranated immotile spermatozoa. Furthermore, mAb D1 had only a marginal effect on the velocity of sliding microtubules in trypsin-treated axonemes. This antibody was also capable of inhibiting the motility of flagella of Oxyrrhis marina, a primitive dinoflagellate, and those of demembranated human spermatozoa. Localization of the antigen recognized by mAb D1 by immunofluorescence reveals its presence on the axonemes of flagella from sea urchin spermatozoa and O. marina but not on the cortical microtubule network of the dinoflagellate. These results are consistent with a dynamic role for the dynein intermediate chain IC1 in the bending and/or wave propagation of flagellar axonemes.  相似文献   

12.
Motility in the protozoan parasite Trypanosoma brucei is conferred by a single flagellum, attached alongside the cell, which moves the cell forward using a beat that is generated from tip-to-base. We are interested in characterizing components that regulate flagellar beating, in this study we extend the characterization of TbIC138, the ortholog of a dynein intermediate chain that regulates axonemal inner arm dynein f/I1. TbIC138 was tagged In situ-and shown to fractionate with the inner arm components of the flagellum. RNAi knockdown of TbIC138 resulted in significantly reduced protein levels, mild growth defect and significant motility defects. These cells tended to cluster, exhibited slow and abnormal motility and some cells had partially or fully detached flagella. Slight but significant increases were observed in the incidence of mis-localized or missing kinetoplasts. To document development of the TbIC138 knockdown phenotype over time, we performed a detailed analysis of flagellar detachment and motility changes over 108 hours following induction of RNAi. Abnormal motility, such as slow twitching or irregular beating, was observed early, and became progressively more severe such that by 72 hours-post-induction, approximately 80% of the cells were immotile. Progressively more cells exhibited flagellar detachment over time, but this phenotype was not as prevalent as immotility, affecting less than 60% of the population. Detached flagella had abnormal beating, but abnormal beating was also observed in cells with no flagellar detachment, suggesting that TbIC138 has a direct, or primary, effect on the flagellar beat, whereas detachment is a secondary phenotype of TbIC138 knockdown. Our results are consistent with the role of TbIC138 as a regulator of motility, and has a phenotype amenable to more extensive structure-function analyses to further elucidate its role in the control of flagellar beat in T. brucei.  相似文献   

13.
Dyneins are minus end directed microtubule motors that play a critical role in ciliary and flagellar movement. Ciliary dyneins, also known as axonemal dyneins, are characterized based on their location on the axoneme, either as outer dynein arms or inner dynein arms. The I1 dynein is the best-characterized subspecies of the inner dynein arms; however the interactions between many of the components of the I1 complex and the axoneme are not well defined. In an effort to elucidate the interactions in which the I1 components are involved, we performed zero-length crosslinking on axonemes and studied the crosslinked products formed by the I1 intermediate chains, IC138 and IC140. Our data indicate that IC138 and IC140 bind directly to microtubules. Mass-spectrometry analysis of the crosslinked product identified both α- and β-tubulin as the IC138 and IC140 binding partners. This was further confirmed by crosslinking experiments carried out on purified I1 fractions bound to Taxol-stabilized microtubules. Furthermore, the interaction between IC140 and tubulin is lost when IC138 is absent. Our studies support previous findings that intermediate chains play critical roles in the assembly, axonemal targeting and regulation of the I1 dynein complex.  相似文献   

14.
To identify new loci that are involved in the assembly and targeting of dynein complexes, we have screened a collection of motility mutants that were generated by insertional mutagenesis. One such mutant, 5B10, lacks the inner arm isoform known as the I1 complex. This isoform is located proximal to the first radial spoke in each 96-nm axoneme repeat and is an important target for the regulation of flagellar motility. Complementation tests reveal that 5B10 represents a new I1 locus, IDA7. Biochemical analyses confirm that ida7 axonemes lack at least five I1 complex subunits. Southern blots probed with a clone containing the gene encoding the 140-kDa intermediate chain (IC) indicate that the ida7 mutation is the result of plasmid insertion into the IC140 gene. Transformation with a wild-type copy of the IC140 gene completely rescues the mutant defects. Surprisingly, transformation with a construct of the IC140 gene lacking the first four exons of the coding sequence also rescues the mutant phenotype. These studies indicate that IC140 is essential for assembly of the I1 complex, but unlike other dynein ICs, the N-terminal region is not critical for its activity.  相似文献   

15.
Tctex1 and Tctex2 were originally described in mice as putative distorters/sterility factors involved in the non-Mendelian transmission of t haplotypes. Subsequently, these proteins were found to be light chains of both cytoplasmic and axonemal dyneins. We have now identified a novel Tctex2-related protein (Tctex2b) within the Chlamydomonas flagellum. Tctex2b copurifies with inner arm I1 after both sucrose gradient centrifugation and anion exchange chromatography. Unlike the Tctex2 homologue within the outer dynein arm, analysis of a Tctex2b-null strain indicates that this protein is not essential for assembly of inner arm I1. However, a lack of Tctex2b results in an unstable dynein particle that disassembles after high salt extraction from the axoneme. Cells lacking Tctex2b swim more slowly than wild type and exhibit a reduced flagellar beat frequency. Furthermore, using a microtubule sliding assay we observed that dynein motor function is reduced in vitro. These data indicate that Tctex2b is required for the stability of inner dynein arm I1 and wild-type axonemal dynein function.  相似文献   

16.
ABSTRACT. Tetrahymena thermophila mutants homozygous for the oad mutation become nonmotile when grown at the restrictive temperature of 39° C. Axonemes isolated from nonmotile oad mutants ( oad 39° C axonemes) lack approximately 90% of their outer dynein arms and are deficient in 22S dynein. Here we report that oad 39° C axonemes contain 40% of the 22S dynein heavy chains that wild-type axonemes contain and that oad axonemes do not undergo ATP-induced microtubule sliding in vitro. Wild-type 22S dynein will bind to the outer arm position in oad axonemes and restore ATP-induced microtubule sliding in those axonemes. Unlike wild-type 22S dynein, oad 22S dynein does not bind to the outer arm position in oad axonemes. These data indicate that the oad mutation affects some component of the outer arm dynein itself rather than the outer arm dynein binding site. These data also indicate that oad axonemes can be used to assay outer dynein arm function.  相似文献   

17.
《The Journal of cell biology》1994,127(6):1683-1692
Genetic, biochemical, and structural data support a model in which axonemal radial spokes regulate dynein-driven microtubule sliding in Chlamydomonas flagella. However, the molecular mechanism by which dynein activity is regulated is unknown. We describe results from three different in vitro approaches to test the hypothesis that an axonemal protein kinase inhibits dynein in spoke-deficient axonemes from Chlamydomonas flagella. First, the velocity of dynein-driven microtubule sliding in spoke-deficient mutants (pf14, pf17) was increased to wild-type level after treatment with the kinase inhibitors HA-1004 or H-7 or by the specific peptide inhibitors of cAMP-dependent protein kinase (cAPK) PKI(6-22)amide or N alpha-acetyl-PKI(6-22)amide. In particular, the peptide inhibitors of cAPK were very potent, stimulating half-maximal velocity at 12-15 nM. In contrast, kinase inhibitors did not affect microtubule sliding in axonemes from wild- type cells. PKI treatment of axonemes from a double mutant missing both the radial spokes and the outer row of dynein arms (pf14pf28) also increased microtubule sliding to control (pf28) velocity. Second, addition of the type-II regulatory subunit of cAPK (RII) to spoke- deficient axonemes increased microtubule sliding to wild-type velocity. Addition of 10 microM cAMP to spokeless axonemes, reconstituted with RII, reversed the effect of RII. Third, our previous studies revealed that inner dynein arms from the Chlamydomonas mutants pf28 or pf14pf28 could be extracted in high salt buffer and subsequently reconstituted onto extracted axonemes restoring original microtubule sliding activity. Inner arm dyneins isolated from PKI-treated axonemes (mutant strain pf14pf28) generated fast microtubule sliding velocities when reconstituted onto both PKI-treated or control axonemes. In contrast, dynein from control axonemes generated slow microtubule sliding velocities on either PKI-treated or control axonemes. Together, the data indicate that an endogenous axonemal cAPK-type protein kinase inhibits dynein-driven microtubule sliding in spoke-deficient axonemes. The kinase is likely to reside in close association with its substrate(s), and the substrate targets are not exclusively localized to the central pair, radial spokes, dynein regulatory complex, or outer dynein arms. The results are consistent with a model in which the radial spokes regulate dynein activity through suppression of a cAMP- mediated mechanism.  相似文献   

18.
Our goal was to assess the microtubule translocating ability of individual ATPase subunits of outer arm dynein. Solubilized outer arm dynein from sea urchin sperm (Stronglocentrotus purpuratus) was dissociated into subunits by low ionic strength buffer and fractionated by zonal centrifugation. Fractions were assessed by an in vitro functional assay wherein microtubules move across a glass surface to which isolated dynein fractions had been absorbed. Microtubule gliding activity was coincident with the 12-S beta-heavy chain-intermediate chain 1 ATPase fractions (beta/IC1). Neither the alpha-heavy chain nor the intermediate chains 2 and 3 fractions coincided with microtubule gliding activity. The beta/IC1 ATPase induced very rapid gliding velocities (9.7 +/- 0.88 micron/s, range 7-11.5 micron/s) in 1 mM ATP-containing motility buffers. In direct comparison, isolated intact 21-S outer arm dynein, from which the beta/IC1 fraction was derived, induced slower microtubule gliding rates (21-S dynein, 5.6 +/- 0.7 micron/s; beta/IC1, 8.7 +/- 1.2 micron/s). These results demonstrate that a single subdomain in dynein, the beta/IC1 ATPase, is sufficient for microtubule sliding activity.  相似文献   

19.
The inner row of dynein arms contains three dynein subforms. Each is distinct in composition and location in flagellar axonemes. To begin investigating the specificity of inner dynein arm assembly, we assessed the capability of isolated inner arm dynein subforms to rebind to their appropriate positions on axonemal doublet microtubules by recombining them with either mutant or extracted axonemes missing some or all dyneins. Densitometry of Coomassie blue-stained polyacrylamide gels revealed that for each inner dynein arm subform, binding to axonemes was saturable and stoichiometric. Using structural markers of position and polarity, electron microscopy confirmed that subforms bound to the correct inner arm position. Inner arms did not bind to outer arm or inappropriate inner arm positions despite the availability of sites. These and previous observations implicate specialized tubulin isoforms or nontubulin proteins in designation of specific inner dynein arm binding sites. Further, microtubule sliding velocities were restored to dynein-depleted axonemes upon rebinding of the missing inner arm subtypes as evaluated by an ATP-induced microtubule sliding disintegration assay. Therefore, not only were the inner arm dynein subforms able to identify and bind to the correct location on doublet microtubules but they bound in a functionally active conformation.  相似文献   

20.
To gain a further understanding of axonemal dynein regulation, mutant strains of Chlamydomonas reinhardtii that had defects in both phototactic behavior and flagellar motility were identified and characterized. ptm1, ptm2, and ptm3 mutant strains exhibited motility phenotypes that resembled those of known inner dynein arm region mutant strains, but did not have biochemical or genetic phenotypes characteristic of other inner dynein arm mutations. Three other mutant strains had defects in the f class of inner dynein arms. Dynein extracts from the pf9-4 strain were missing the entire f complex. Strains with mutations in pf9/ida1, ida2, or ida3 failed to assemble the f dynein complex and did not exhibit phototactic behavior. Fractionated dynein from mia1-1 and mia2-1 axonemes exhibited a novel f class inner dynein arm biochemical phenotype; the 138-kD f intermediate chain was present in altered phosphorylation forms. In vitro axonemal dynein activity was reduced by the mia1-1 and mia2-1 mutations. The addition of kinase inhibitor restored axonemal dynein activity concomitant with the dephosphorylation of the 138-kD f intermediate chain. Dynein extracts from uni1-1 axonemes, which specifically assemble only one of the two flagella, contained relatively high levels of the altered phosphorylation forms of the 138-kD intermediate chain. We suggest that the f dynein complex may be phosphoregulated asymmetrically between the two flagella to achieve phototactic turning. C hlamydomonas reinhardtii flagella use an asymmetric beat stroke, similar to a breast stroke, to propel cells forward. To generate the asymmetric beat stroke, dynein activity must be regulated both along the length and around the circumference of the flagella. If all dyneins were active at the same time, the flagella would exist in a state of rigor. The dyneins are located in two rows along the length of the doublet microtubules. The inner dynein arms are heterogeneous in composition with at least eight heavy chains and various intermediate and light chains arranged in an elaborate morphology that repeats every 96 nm (Kagami and Kamiya, 1992; Mastronarde et al., 1992). In contrast, the outer dynein arms are biochemically and morphologically homogeneous (Huang et al., 1979; Mitchell and Rosenbaum, 1985; Kamiya, 1988); each outer dynein arm contains three dynein heavy chains and 10 intermediate and light chains. The inner and outer arms appear to have different functions in the formation of the beat stroke; the inner arms generate the waveform of the beat stroke, whereas the outer arms provide additional force to the waveform (Brokaw and Kamiya, 1987).Previous workers had shown that dynein regulation is imposed, in part, by activities of the radial spokes and the central pair complex. Mutant strains that are missing or have altered radial spokes or central pair complexes are paralyzed even if they have a full complement of dyneins (Adams et al., 1981; Piperno et al., 1981). Many extragenic suppressors of this paralysis phenotype do not restore the missing structures, but rather suppress by altering either inner arm or outer arm region structures (Huang et al., 1982a ; Piperno et al., 1992; Porter et al., 1992, 1994). These data suggest that direct or indirect interactions exist between the dynein arms and the radial spokes or central pair complexes.Over 80 proteins in Chlamydomonas flagella are phosphorylated (Piperno et al., 1981), which makes dynein regulation by phosphorylation an attractive model. Hasegawa et al. (1987) showed that a higher percentage of demembranated axonemes reactivate with ATP after treatments that lower cAMP levels or inhibit cAMP-dependent protein kinase (cAPK)1. In flagella from other organisms, cAMP has an opposite role (for reviews see Tash and Means, 1983; Tash, 1989). An increased frequency of reactivation also occurs after the NP-40–soluble components are extracted from the axonemes, which suggests that the cAPK, target phosphoproteins, and endogenous phosphatases are all integral axonemal components (Hasegawa et al., 1987). In quantitative sliding disintegration assays, the inner dynein arm activity of axonemes that are missing the radial spokes is increased in the presence of pharmacological or specific peptide inhibitors of cAPK (Smith and Sale, 1992; Howard et al., 1994). Reconstitution experiments with axonemes that are missing the radial spokes suggest that radial spokes normally function to activate the inner dynein arms by inhibiting a cAPK (Smith and Sale, 1992; Howard et al., 1994). It is not known if the cAPK directly phosphorylates inner dynein arm components or phosphorylates another axonemal component that then acts on the inner dynein arms (Howard et al., 1994).The f (originally called I1) inner arms are biochemically the best studied inner dynein arm complex. This complex is comprised of two dynein heavy chains and three intermediate chains of 140, 138, and 110 kD; it can be purified by sucrose density centrifugation (Piperno and Luck, 1981; Smith and Sale, 1991; Porter et al., 1992) or ion-exchange chromatography (Kagami and Kamiya, 1992). The purified complex has low ATPase activity and only rarely translocates microtubules in vitro (Smith and Sale, 1991; Kagami and Kamiya, 1992). Deep-etch EM of the purified f inner arm shows a two-headed complex that is connected to a common base by thin stalks (Smith and Sale, 1991). Longitudinal EM image analyses have shown that this complex is located just proximally of the first radial spoke in each 96-nm repeating unit (Piperno et al., 1990; Mastronarde et al., 1992). Mutations at three different loci (PF9/ IDA1, IDA2, and IDA3) result in the complete loss of the f complex (Kamiya et al., 1991; Kagami and Kamiya, 1992; Porter et al., 1992). The PF9/IDA1 locus encodes a dynein heavy chain that is believed to be one of the two heavy chains that are components of the f complex (Porter, 1996).We undertook a new approach to identify axonemal components involved in dynein regulation; we isolated and characterized mutant strains that were unable to perform phototaxis. In Chlamydomonas, phototaxis is a behavior by which cells orient to the direction of incident light. Light direction is detected by the eyespot, an asymmetrically located organelle, and a signal is transmitted to the flagella using voltage-gated ion channels (Harz and Hegemann, 1991). For cells to perform phototaxis, the waveforms of the two flagella are altered coordinately. The trans flagellum, which is located farther from the eyespot, beats with a larger front amplitude than the cis flagellum to turn the cell toward the light (Rüffer and Nultsch, 1991). It seemed likely that the alterations in the beat amplitudes needed for correct phototactic behavior could be caused by differential dynein regulation in the cis and trans flagella. Therefore, we hypothesized that there should be a class of phototactic mutant strains that is not able to perform phototaxis because of defects in the regulation of dyneins. Three of the eight phototactic mutant strains that we characterized had biochemical defects in the f class of inner dynein arms. One of these strains, pf9-4, was missing the entire f complex, and the other two strains, mia1-1 and mia2-1, exhibited a novel f class inner dynein arm biochemical phenotype. These observations suggest that the f inner dynein arm is a target for regulation during phototaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号