首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
ts ET24 cells are a novel temperature-sensitive (ts) mutant for cell proliferation of hamster BHK21 cells. The human genomic DNA which rescued the temperature-sensitive lethality of ts ET24 cells was isolated and screened for an open reading frame in the deposited human genomic library. X chromosomal DBX gene encoding the RNA helicase, DEAD-BOX X isoform, which is homologous to yeast Ded1p, was found to be defective in this mutant. The single point mutation (P267S) was localized between the Motifs I and Ia of the hamster DBX of ts ET24 cells. At the nonpermissive temperature of 39.5 degrees C, ts ET24 cells were arrested in the G1-phase and survived for more than 3 days. In ts ET24 cells, total protein synthesis was not reduced at 39.5 degrees C for 24 h, while mRNA accumulated in the nucleus after incubation at 39.5 degrees C for 17 h. The amount of cyclin A mRNA decreased in ts ET24 cells within 4 h after the temperature shift to 39.5 degrees C, consistent with the fact that the entry into the S-phase was delayed by the temperature shift.  相似文献   

2.
Cultures of ts BN75, a temperature-sensitive mutant of BHK 21 cells, show a gradual biphasic drop in [3H]thymidine incorporation together with an accumulation of cells having a G2 DNA content when incubated at 39.5 degrees. However, when higher (41 degrees - 42 degrees) nonpermissive temperatures were used, the major block was in S-phase DNA synthesis. The cultures of ts BN75 shifted to 42 degrees at the start of the S phase, cell-cycle progress was arrested in the middle of S, while under these conditions wild-type BHK cells underwent at least one cycle of DNA synthesis. When ts BN75 cells growth-arrested at high temperature with a G2 DNA content were shifted to the permissive temperature (33.5 degrees C), the restart of DNA synthesis preceded the appearance of mitotic cells. These data suggest that the ts defect of ts BN75 cells might affect primarily the S phase of the cycle rather than the G2 phase.  相似文献   

3.
ts11 is a temperature-sensitive (ts) mutant isolated from the BHK-21 Syrian hamster cell line that is blocked in the G1 phase of the cell cycle at the non-permissive temperature (39.5 degrees C). We previously showed that the human gene encoding asparagine synthetase (AS) transformed ts11 cells to a ts+ phenotype and that ts11 cells were auxotrophic for asparagine at 39.5 degrees C. We show here that ts11 cells exhibit a ts phenotype for AS activity, and that the ts11 AS was much heat-labile than the wt enzyme. We have isolated AS cDNAs from wt BHK and ts11 cells and found that wt, but not ts11 AS cDNAs were capable of transformation. The deduced amino acid sequence of Syrian hamster AS showed 95% identity to the human protein as well as the same number of residues. The inability of the ts11 AS cDNAs to transform was due to a single base change, a C to T transition, that would result in the substitution of leucine with phenylalanine at a residue located in the C-terminal fourth of the enzyme. Thus the ts11 mutation identifies a mutated, thermolabile AS.  相似文献   

4.
The tsBN7 cell line is one of the temperature-sensitive mutants for cell proliferation derived from hamster BHK21 cell line. It has a mutation in the DAD1 gene and enters apoptosis at the restrictive temperature of 39 degrees C. The defect of Dad1p causes a loss of N-linked glycosylation; therefore, it was thought that an inhibition of N-linked glycosylation induced apoptosis.However, tunicamycin, a potent inhibitor of N-linked glycosylation, had not caused apoptosis in wild-type BHK21 cells. In order to clarify this discrepancy, wild-type BHK21 cells treated with tunicamycin and tsBN7 cells incubated at 39.5 degrees C were examined by the annexin V staining and TUNEL methods. Both methods showed that tunicamycin induces apoptosis in wild-type BHK21 cells, similar to the defect of Dad1p. Thus, we concluded that loss of N-linked glycosylation causes apoptosis.  相似文献   

5.
Prototype temperature-sensitive (ts) mutants of a coxsackievirus B3 parent virus capable of replication to similar levels at 34 or 39.5 degrees C were examined for the nature of the temperature-sensitive event restricting replication in HeLa cells at 39.5 degrees C. The ts mutant prototypes represented three different non-overlapping complementation groups. The ts1 mutant (complementation group III) synthesized less than 1% of the infectious genomic RNA synthesized by the coxsackievirus B3 parent virus at 39.5 degrees C and was designated an RNA- mutant. Agarose gel analysis of glyoxal-treated RNA from cells inoculated with ts1 virus revealed that cell RNA synthesis continued in the presence of synthesis of the small amount of viral RNA. This mutant was comparatively ineffective in inducing cell cytopathology and in directing synthesis of viral polypeptides, likely due to the paucity of nascent genomes for translation. The ts5 mutant (complementation group II) directed synthesis of appreciable quantities of both viral genomes (RNA+) and capsid polypeptides; however, assembly of these products into virions occurred at a low frequency, and virions assembled at 39.5 degrees C were highly unstable at that temperature. Shift-down experiments with ts5-inoculated cells showed that capsid precursor materials synthesized at 39.5 degrees C can, after shift to 34 degrees C, be incorporated into ts5 virions. We suggest that the temperature-sensitive defect in this prototype is in the synthesis of one of the capsid polypeptides that cannot renature into the correct configuration required for stability in the capsid at 39.5 degrees C. The ts11 mutant (complementation group I) also synthesized appreciable amounts of viral genomes (RNA+) and viral polypeptides at 39.5 degrees C. Assembly of ts11 virions at 39.5 degrees C occurred at a low frequency, and the stability of these virions at 39.5 degrees C was similar to that of the parent coxsackievirus B3 virions. The temperature-sensitive defect in the ts11 prototype is apparently in assembly. The differences in biochemical properties of the three prototype ts mutants at temperatures above 34 degrees C may ultimately offer insight into the differences in pathogenicity observed in neonatal mice for the three prototype ts mutants.  相似文献   

6.
tsJT60 cells are G0-specific temperature-sensitive mutants of the cell cycle from Fischer rats i.e., they grow exponentially at both 34 degrees and 39.5 degrees C, but when stimulated with fetal bovine serum (FBS) from the resting state (G0) they enter S phase at 34 degrees C but not at 39.5 degrees C. Epidermal growth factor (EGF) also induced DNA synthesis, although weakly, in G0-arrested tsJT60 cells at 34 degrees C but failed at 39.5 degrees C. When G0-arrested tsJT60 cells were stimulated at 39.5 degrees C with FBS plus EGF, they entered S phase and divided. Somatomedin C, insulin, or transferrin had a weak effect in inducing DNA synthesis in G0-arrested cells when applied at 34 degrees C or with FBS at 39.5 degrees C. Fibroblast growth factor, platelet-derived growth factor, or 12-O-tetradecanoylphorbol 13-acetate had no such stimulatory effect at 39.5 degrees C. Binding of 125I-somatomedin C was not temperature-sensitive. Several other ts mutant cells that were blocked at 39.5 degrees C from entering S phase from the resting state following FBS addition were stimulated by FBS plus EGF at 34 degrees C but not at 39.5 degrees C.  相似文献   

7.
The regulation of polypeptide chain initiation has been investigated in extracts from a number of well-characterized Chinese hamster ovary (CHO) cell mutants containing different temperature-sensitive aminoacyl-tRNA synthetases. These cells exhibit a large decline in the rate of initiation when cultures are shifted from the permissive temperature of 34 degrees C to the non-permissive temperature of 39.5 degrees C. During a brief incubation with [35S]Met-tRNAMetf or [35S]methionine, formation of initiation complexes on native 40S ribosomal subunits and 80S ribosomes is severely impaired in extracts from the mutant cell lines exposed to 39.5 degrees C. Wild-type cells exposed to 39.5 degrees C do not show any inhibition of protein synthesis or initiation complex formation. Inhibition of formation of 40S initiation complexes in the extracts from mutant cells, incubated at the non-permissive temperature, is shown to be independent of possible changes in mRNA binding or the rate of polypeptide chain elongation and is not due to any decrease in the total amount of initiation factor eIF-2 present. However, assays of eIF-2 X GTP X Met-tRNAMetf ternary complex formation in postribosomal supernatants from the temperature-sensitive mutants reveal a marked defect in the activity of eIF-2 after exposure of the cells to 39.5 degrees C and addition of exogenous eIF-2 to cell-free protein-synthesizing systems from cells incubated at 34 degrees C and 39.5 degrees C eliminates the difference in activity between them. The activity of the initiation factor itself is not directly temperature-sensitive in the mutant CHO cells. The results suggest that the activity of aminoacyl-tRNA synthetases can affect the ability of eIF-2 to bind Met-tRNAMetf and form 40S initiation complexes in intact cells, indicating a regulatory link between polypeptide chain elongation and chain initiation.  相似文献   

8.
A temperature-sensitive (ts) mutant of the BHK21 cell line derived from golden hamsters, tsBN462 has a mutation in the gene encoding the largest subunit of the TFIID complex, TAFII250/p230/CCG1, and arrests in the G1 phase at the nonpermissive temperature, 39.5°C. We found that tsBN462 cells underwent apoptosis following growth arrest at 39.5°C, suggesting a role for CCG1 as a repressor of apoptosis. By electron microscopic observation, tsBN462 cells at 39.5°C showed characteristic features of apoptosis. Apoptosis was not suppressed by expression of Bc1-2 or the adenovirus E1B 19 kDa protein. Cell death was suppressed completely by expression of wild-type CCG1 and partially by wild-type p53, a growth suppressor protein. Cell cycle arrest induced by p53 may help survival of tsBN462 cells at 39.5°C. Apoptosis was accelerated in SV40 large T antigen-transformed tsBN462 cells at 39.5°C where SV40 large T antigen formed a complex with p53, implying that the apoptosis of tsBN462 cells at 39.5°C occurred in a p53-independent manner. Our results suggest that CCG1/TAFII250 is required for the expression of factors regulating apoptosis.  相似文献   

9.
Infection of KB cells at 39.5 degrees C with H5ts147, a temperature-sensitive (ts) mutant of type 5 adenovirus, resulted in the cytoplasmic accumulation of hexon antigen; all other virion proteins measured, however, were normally transported into the nucleus. Immunofluorescence techniques were used to study the intracellular location of viral proteins. Genetic studies revealed that H5ts147 was the single member of a nonoverlapping complementation group and occupied a unique locus on the adenovirus genetic map, distinct from mutants that failed to produce immunologically reactive hexons at 39.5 degrees C ("hexon-minus" mutants). Sedimentation studies of extracts of H5ts147-infected cells cultured and labeled at 39.5 degrees C revealed the production of 12S hexon capsomers (the native, trimeric structures), which were immunoprecipitable to the same extent as hexons synthesized in wild type (WT)-infected cells. In contrast, only 3.4S polypeptide chains were found in extracts of cells infected with the class of mutants unable to produce immunologically reactive hexon protein at 39.5 degrees C. Hexons synthesized in H5ts147-infected cells at 39.5 degrees C were capable of being assembled into virions, to the same extent as hexons synthesized in WT-infected cells, when the temperature was shifted down to the permissive temperature, 32 degrees C. Infectious virus production was initiated within 2 to 6 h after shift-down to 32 degrees C; de novo protein synthesis was required to allow this increase in viral titer. If ts147-infected cells were shifted up to 39.5 degrees C late in the viral multiplication cycle, viral production was arrested within 1 to 2 h. The kinetics of shutoff was similar to that of a WT-infected culture treated with cycloheximide at the time of shift-up. The P-VI nonvirion polypeptide, the precursor to virion protein VI, was unstable at 39.5 degrees C, whereas the hexon polypeptide was not degraded during the chase. It appears that there is a structural requirement for the transport of hexons into the nucleus more stringent than the acquisition of immunological reactivity and folding into the 12S form.  相似文献   

10.
Twenty-six temperature-sensitive (ts) mutants of United Kingdom tissue culture-adapted bovine rotavirus were isolated and characterized. Fourteen of these mutants were determined to be ts both by efficiency of plating and by virus yield at the nonpermissive temperature of 39.5 degrees C as compared with that at the permissive temperature of 32 degrees C. The remaining mutants were only ts by the criterion of efficiency of plating. High-frequency recombination (gene reassortment) was observed when some pairs of mutants were crossed, and this allowed the classification of the mutants into five separate recombination groups. Groups III and V have prototype ts mutants (ts34 and ts115, respectively) that do not synthesize RNA or polypeptides at 39.5 degrees C. The other groups, I, II, and IV, have prototype mutants (ts17, ts7, and ts6, respectively) that synthesize both RNA and polypeptides at 39.5 degrees C, although ts17 does so only at a reduced level.  相似文献   

11.
Studies have been done to characterize further H5ts125, an adenovirus type 5 conditionally lethal, temperature-sensitive (ts) mutant defective in initiation of DNA synthesis and to investigate whether the single-strand-specific DNA-binding (72,000 molecular weight) protein is coded by the mutated viral gene. When H5ts125-infected cells were labeled with [35S]methionine at 32 degrees C and then incubated without isotope at 39.5 degrees C, the mutant's nonpermissive temperature, the 72,000 molecular weight polypeptide was progressively degraded. Immunofluorescence examination of cells infected with wild-type virus, H5ts125, and H5ts149 (a second, unique DNA-minus mutant) showed that immunologically reactive DNA-binding protein was barely detectable in H5ts125-infected cells at 39.5 degrees C, whereas this protein was present in wild-type- and H5TS149-infected cells, that the protein made at 32 degrees C in H5ts125-infected cells lost its ability to bind specific DNA-binding protein antibody when the infected cells were shifted to 39.5 degrees C, and that if H5ts125-infected cells were shifted from the restrictive temperature to 32 degrees C, even in the presence of cycloheximide to stop protein synthesis, immunologically reactive DNA-binding protein reappeared.  相似文献   

12.
Cytoplasmic regulation of two G1-specific temperature-sensitive functions   总被引:4,自引:0,他引:4  
G J Jonak  R Baserga 《Cell》1979,18(1):117-123
tsAF8 and ts13 cells are temperature-sensitive (ts) mutants of BHK cells that specifically arrest, at nonpermissive temperature, in the G1 phase of the cell cycle. These two mutants can complement each other. Both cell lines can be made quiescent by serum deprivation (G0). When subsequently stimulated by serum, they can enter S phase at 34 degrees C but not at 39.5 degrees-40.6 degrees C. We have used these mutants to determine whether the nucleus is needed during the G0 leads to S transition for the expression of the G1 ts functions. For this purpose, we fused cytoplasts of G0-tsAF8 with whole ts13 cells in G0, and cytoplasts of G0-ts13 with whole tsAF8 cells in G0. Serum stimulation at the nonpermissive temperature induced DNA synthesis in both types of such fusion products. No DNA synthesis was induced by serum stimulation at the nonpermissive temperature in fusion products constructed between either G0-tsAF8 cytoplasts and whole G0-tsAF8 cells or G0-ts13 cytoplasts and whole G0-ts13 cells. These results demonstrate that the information for these two ts functions, which are required for entry of serum-stimulated cells into the S phase, are already present in the cytoplasm of G0 cells--that is, before serum stimulation commits them to the transition from the nonproliferating to the proliferating state.  相似文献   

13.
The temperature-sensitive (ts) Chinese hamster ovary (CHO) cell mutant tsH1 contains a thermolabile leucyl-tRNA synthetase. Upon incubation at the nonpermissive temperature of 39.5 degrees C, the enzyme became reversibly inhibited over a period of minutes, and the cells lost viability over a period of many hours. However, killing of tsH1 by acute heating at 45 degrees C was identical to that of wild-type (SC) cells. In addition, the heat-induced inhibition of protein synthesis was similar for both cell types, as measured after acute heating at 45 degrees C. Furthermore, both killing and inhibition of protein synthesis showed thermotolerance in both cell types. In contrast to the effects at 45 degrees C, at 39.5 degrees C, neither the inhibition of leucyl-tRNA synthetase activity nor the killing of tsH1 expressed thermotolerance. Also, treatment of tsH1 at 39.5 degrees C did not induce thermotolerance to killing at 45 degrees C. The inhibition of leucyl-tRNA synthetase activity in tsH1 at 39.5 degrees C was further distinguished from the 45 degrees C-induced inhibition of protein synthesis in SC cells by a much more rapid reversal of the inhibition of leucyl-tRNA synthetase activity. Also, the rate of reversal of the inhibition of protein synthesis by 45 degrees C in SC cells was decreased by increased heat dose. Such was not true for the 39.5 degrees C inhibition of leucyl-tRNA synthetase activity in tsH1. The data indicate that there exist two distinct types of thermal inhibition--one slowly reversible type which was observed during and after heating at 45 degrees C and both induced and expressed thermotolerance, and a second, rapidly reversible type, which was evident only during heating of tsH1 at 39.5 degrees C and neither induced nor expressed thermotolerance.  相似文献   

14.
We describe a procedure that enriches for temperature-sensitive (ts) mutants of vesicular stomatitis virus (VSV), Indiana serotype, which are conditionally defective in the biosynthesis of the viral glycoprotein. The selection procedure depends on the rescue of pseudotypes of known ts VSV mutants in complementation group V (corresponding to the viral G protein) by growth at 39.5 degrees C in cells preinfected with the avian retrovirus Rous-associated virus 1 (RAV-1). Seventeen nonleaky ts mutants were isolated from mutagenized stocks of VSV. Eight induced no synthesis of VSV proteins at the nonpermissive temperature and hence were not studied further. Four mutants belonged to complementation group V and resembled other ts (V) mutations in their thermolability, production at 39.5 degrees C of noninfectious particles specifically deficient in VSV G protein, synthesis at 39.5 degrees C of normal levels of viral RNA and protein, and ability to be rescued at 39.5 degrees C by preinfection of cells by avian retroviruses. Five new ts mutants were, unexpectedly, in complementation group IV, the putative structural gene for the viral nucleocapsid (N) protein. At 39.5 degrees C these mutants also induced formation of noninfectious particles relatively deficient in G protein, and production of infectious virus at 39.5 degrees C was also enhanced by preinfection with RAV-1, although not to the same extent as in the case of the group V mutants. We believe that the primary effect of the ts mutation is a reduced synthesis of the nucleocapsid and thus an inhibition of synthesis of all viral proteins; apparently, the accumulation of G protein at the surface is not sufficient to envelope all the viral nucleocapsids, or the mutation in the nucleocapsid prevents proper assembly of G into virions. The selection procedure, based on pseudotype formation with glycoproteins encoded by an unrelated virus, has potential use for the isolation of new glycoprotein mutants of diverse groups of enveloped viruses.  相似文献   

15.
Summary The biochemical basis of suppression of a temperature-sensitive alanyl-tRNA synthetase (alaS) mutation by mutational alterations of the ribosome has been investigated. Measurement of the polyU-dependent polyphenylalanine synthesis showed that ribosomes from the suppressor strains are less active than ribosomes from the unsuppressed aminoacyl-tRNA synthetase mutant. In this system no increased translational ambiguity could be detected for the suppressor ribosomes. This fact and also the findings that the ram-1 mutation is not able to suppress the aminoacyl-tRNA synthetase mutation and that presence of the suppressor allele is not accompanied by a measureably improved alanyl-tRNA synthetase activity argue against the possibility that suppression might be due to increased translational misreading rates of the alanyl-tRNA synthetase mRNA.It has been further found that partial suppression of temperature sensitive growth of the alaS mutation can be achieved by independent ribosomal mutations leading to reduced growth rates because of a mutation to antibiotic resistance. Addition of low concentrations of a variety of antibiotics acting at the ribosomal level can also partially revert the temperature-sensitive phenotype of the alaS mutant. Although the possibility cannot be excluded that suppression is due to the stabilisation or activation of the mutant enzyme by some indirect effect of the suppressor ribosomal mutations, the following working hypothesis is favoured at the moment: It is assumed that limitation of the aminoacyl-tRNA synthetase activity in a certain range of the restrictive temperature causes growth inhibition by the premature termination of polypeptide synthesis at the ribosome or by the unbalanced synthesis of the individual cellular proteins under this condition. The mechanism of suppression by ribosomal mutations is proposed to consist of the release of this growth inhibition by the reduction of the rate of polypeptide synthesis, which would keep amino acid incorporation from exceeding the slow charging of tRNA and thus exhausting the pool of charged tRNA. In the suppressor strains, therefore, growth at the semi-restrictive temperature is no longer limited by the aminoacylation of tRNA but by the translational process at the mutated ribosome. This influence of the ribosomal mutation on the speed of translation could be directly or indirectly coupled with an effect on translational fidelity resulting in the prevention of the binding of uncharged or non-cognate charged tRNA or in the tighter binding of peptidyl-tRNA when cognate aminoacyl-tRNA is limiting.  相似文献   

16.
17.
The prototype member of the complementation group II temperature-sensitive (ts) mutants of vesicular stomatitis virus, ts II 052, has been investigated. In ts II 052-infected HeLa cells at the restrictive temperature (39.5 degrees C), reduced viral RNA synthesis was observed by comparison with infections conducted at the permissive temperature (30 degrees C). It was found that for an infection conducted at 39.5 degrees C, no 38S RNA or intracytoplasmic nucleocapsids were present. For nucleocapsids isolated from ts II 052 purified virions or from ts II 052-infected cells at 30 degrees C, the RNA was sensitive to pancreatic RNase after an exposure at 39.5 degrees C in contrast to the resistance observed for wild-type virus. The nucleocapsid stability of wild-type virus when heated to 63 degrees C or submitted to varying pH was not found in nucleocapsids extracted from ts II 052 purified virions. The data suggest that for ts II 052 there is an altered relationship between the viral 38S RNA and the nucleocapsid protein(s) by comparison with wild-type virus. Such results argue for the complementation group II gene product being N protein, so that the ts defect in ts II 052 represents an altered N protein.  相似文献   

18.
Endothelial-monocyte-activating polypeptide II (EMAPII) is an inflammatory cytokine released under apoptotic conditions. Its proEMAPII precursor proved to be identical to the auxiliary p43 component of the aminoacyl-tRNA synthetase complex. We show here that the EMAPII domain of p43 is released readily from the complex after in vitro digestion with caspase 7 and is able to induce migration of human mononuclear phagocytes. The N terminus of in vitro-processed EMAPII coincides exactly with that of the mature cytokine isolated from conditioned medium of fibrosarcoma cells. We also show that p43/proEMAPII has a strong tRNA binding capacity (K(D) = 0.2 microm) as compared with its isolated N or C domains (7.5 microm and 40 microm, respectively). The potent general RNA binding capacity ascribed to p43/proEMAPII is lost upon the release of the EMAPII domain. This suggests that after onset of apoptosis, the first consequence of the cleavage of p43 is to limit the availability of tRNA for aminoacyl-tRNA synthetases associated within the complex. Translation arrest is accompanied by the release of the EMAPII cytokine that plays a role in the engulfment of apoptotic cells by attracting phagocytes. As a consequence, p43 compares well with a molecular fuse that triggers the irreversible cell growth/cell death transition induced under apoptotic conditions.  相似文献   

19.
The composition of mengovirus virions produced by infected cells varies with the incubation temperature. Virons produced at 37.0 or 39.5 degrees contain four major polypeptides (alpha, beta, gamma, and delta) and one minor polypeptide (beta'). Virons produced at 31.5 degrees C contain two additional polypeptides (D1 and E). The virions of two temperature-sensitive (ts) and thermolabile mutants of mengovirus (ts25 and ts88) contain an increased amount of polypeptide beta', with a corresponding decrease in polypeptide beta when compared with the wild-type mengovirus.  相似文献   

20.
We investigated the intracellular block in the transport of hemagglutinin (HA) and the role of HA in virus particle formation by using temperature-sensitive (ts) mutants (ts134 and ts61S) of influenza virus A/WSN/33. We found that at the nonpermissive temperature (39.5 degrees C), the exit of ts HA from the rough endoplasmic reticulum to the Golgi complex was blocked and that no additional block was apparent in either the exit from the Golgi complex or post-Golgi complex transport. When MDBK cells were infected with these mutant viruses, they produced noninfectious virus particles at 39.5 degrees C. The efficiency of particle formation at 39.5 degrees C was essentially the same for both wild-type (wt) and ts virus-infected cells. When compared with the wt virus produced at either 33 or 39.5 degrees C or the ts virus formed at 33 degrees C, these noninfectious virus particles were lighter in density and lacked spikes on the envelope. However, they contained the full complement of genomic RNA as well as all of the structural polypeptides of influenza virus with the exception of HA. In these spikeless particles, HA could not be detected at the limit of 0.2% of the HA present in wt virions. In contrast, neuraminidase appeared to be present in a twofold excess over the amount present in ts virus formed at 33 degrees C. These observations suggest that the presence of HA is not an obligatory requirement for the assembly and budding of influenza virus particles from infected cells. The implications of these results and the possible role of other viral proteins in influenza virus morphogenesis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号