首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
高等植物蔗糖转运的分子调控   总被引:2,自引:0,他引:2  
在高等植物中,蔗糖的合成、运输与分配是一个复杂的过程。蔗糖由源到库的运输不仅与植物的生长发育相关,还受到植物体内的激素水平以及外界环境条件变化等因素的影响。蔗糖转运蛋白介导了蔗糖在植物韧皮部的装载、运输和卸载,在某些库中的蔗糖转运和库组织分配的分子调控中起有重要的生理作用。此外,简要介绍了笔者实验室在橡胶树蔗糖转运蛋白基因研究方面的最新进展。  相似文献   

2.
水稻蔗糖转运蛋白研究进展   总被引:2,自引:0,他引:2  
蔗糖转运蛋白是光合产物运输与分配调控网络中的重要节点,主要参与蔗糖从"源"到"库"的质外体运输,在蔗糖的感应、"源"器官装载、韧皮部长距离运输和"库"器官卸载中起重要作用。总结和分析了水稻蔗糖转运蛋白基因家族的组成、蛋白结构特点、表达与调控特性、生物学功能等方面的研究进展,在此基础上,提出了蔗糖转运蛋白基础理论和应用研究方面存在的不足及应予重视和加强的主要方向。  相似文献   

3.
植物体内糖分子的长距离运输及其分子机制   总被引:1,自引:0,他引:1  
张懿  张大兵  刘曼 《植物学报》2015,50(1):107-121
植物器官(如叶、叶鞘、绿色的茎等)可以通过光合作用将CO2合成为碳水化合物, 并经过长距离运输到达库组织(如新生组织、花粉、果实等)中进行贮存或利用。蔗糖是高等植物长距离运输碳水化合物的主要形式。蔗糖分子从源到库的运输包括源组织韧皮部的装载、维管束的运输和库组织韧皮部的卸载3个步骤。遗传学和分子生物学研究证明, 蔗糖转运蛋白、转化酶和单糖转运蛋白在糖分子的装载和卸载过程中发挥重要作用。该文综述了目前对光合产物运输过程及其调控分子机制的最新研究进展。  相似文献   

4.
植物光合作用的产物主要以蔗糖的形式在植物体内进行从源到库的运输。蔗糖转运蛋白是此过程的重要参与者,其表达和调控与植物中光合作用产物的分配紧密关联,从而调控着植物的生长发育、结果结实、抗逆抗病等性状。蔗糖转运蛋白的表达受到植物发育时期、外界环境条件及激素的影响。蔗糖转运蛋白的调控机制有转录因子的调节、基因内部序列调控、蛋白质的磷酸化、蛋白之间的相互作用及质子转运体的活性调节等。综述了国内外对蔗糖转运蛋白表达与活性的调控因素及机制等最新的研究内容,以期为从多角度上探索植物蔗糖转运蛋白的功能和调控机制提供相关研究信息和思路。  相似文献   

5.
《植物生理学通讯》2011,(7):726-730
蔗糖是光合作用的主要产物,作为碳同化的产物在植物体内进行分配。蔗糖的转运机制和效率通过减弱产物抑制来影响光合产率,通过控制源/库关系和生物量分配来调控植物活性。蔗糖在细胞质合成,或通过胞间连丝进行细胞问转运,或跨膜区域化,或外输入质外体被相邻细胞吸收。作为相对大极性的化合物,蔗糖的有效膜转运需要转运蛋白协助。跨液泡膜运输机制可能通过异化扩散、质子对向运输和同向运输;而跨质膜的运输则可能通过质子同向运输和异化扩散类似机制。近几十年仅在分子水平对质子同向运输进行了较为详尽的研究。这篇综述旨在综合介绍最近和过去关于蔗糖跨膜转运与植物整体碳分布机制。  相似文献   

6.
蔗糖是植物体内碳水化合物长距离转运的主要( 甚至唯一) 形式, 为植物生长发育提供碳架与能量。蔗糖转运蛋白(sucrose transporter, SUT)负责蔗糖的跨膜运输, 在韧皮部介导的源-库蔗糖运输, 以及库组织的蔗糖供给中起关键作用。自从菠菜中克隆到第一个SUT基因以来, 已先后有多个SUT基因的cDNA得到克隆与功能分析, 涉及34种双子叶与单子叶植物。每种植物都有一个中等规模 的SUT基因家族, 其不同成员之间具有较高的氨基酸序列同源性, 但在蔗糖吸收的动力学特性、转运底物的特异性和表达谱等方面存在差异。本文系统介绍国内外(主要是国外)在植物SUT基因的克隆、分类与进化、细胞定位与功能, 以及研究方法等方面的研究进展, 并简要介绍我们在橡胶树SUT基因研究上的初步结果。  相似文献   

7.
植物蔗糖转运蛋白的基因与功能   总被引:16,自引:0,他引:16  
蔗糖是植物体内碳水化合物长距离转运的主要(甚至唯一)形式,为植物生长发育提供碳架与能量。蔗糖转运蛋白(sucrose transporter,SUT)负责蔗糖的跨膜运输,在韧皮部介导的源-库蔗糖运输,以及库组织的蔗糖供给中起关键作用。自从菠菜中克隆到第一个SUT基因以来,已先后有多个SUT基因的cDNA得到克隆与功能分析,涉及34种双子叶与单子叶植物。每种植物都有一个中等规模的SUT基因家族,其不同成员之间具有较高的氨基酸序列同源性,但在蔗糖吸收的动力学特性、转运底物的特异性和表达谱等方面存在差异。本文系统介绍国内外(主要是国外)在植物SUT基因的克隆、分类与进化、细胞定位与功能,以及研究方法等方面的研究进展,并简要介绍我们在橡胶树SUT基因研究上的初步结果。  相似文献   

8.
植物蔗糖转运蛋白及其功能调节研究进展   总被引:1,自引:0,他引:1  
综述了高等植物蔗糖转运蛋白基因家族的分类,蔗糖转运蛋白的细胞定位,蔗糖转运蛋白的功能调节,以及果实中糖运转的特性等方面的研究进展,并提出了深入研究果实蔗糖运转蛋白的展望。  相似文献   

9.
水稻蔗糖转运及其与产量形成的关系   总被引:2,自引:0,他引:2  
蔗糖是植物体内主要的光合产物和运输形式,在叶片中合成并经过维管组织向库器官转运,在库组织中水解并用于合成淀粉、蛋白质和纤维素等有机物。水稻蔗糖转运对调控作物生长发育和产量形成,特别是在逆境条件下的产量稳定,都具有十分重要的作用。本文重点综述了水稻蔗糖韧皮部装载、运输和卸载机制以及关键酶的活性和基因表达调控,并讨论了其与水稻产量形成的关系。  相似文献   

10.
蔗糖转运蛋白(sucrose transporters,SUTs)属于跨膜转运蛋白,大多数参与蔗糖的吸收和转运。迄今为止,对高粱蔗糖转运蛋白知之甚少,为进一步研究高粱蔗糖转运蛋白家族(SbSUTs),本研究利用生物信息学方法对SbSUTs的6个成员(编号SbSUT1~SbSUT6)进行蛋白理化性质、基因结构、蛋白结构、同源性及系统进化树构建等分析。结果表明:SbSUTs是一种无信号肽、定位于质膜和叶绿体类囊膜上的疏水性膜蛋白;SbSUTs均具有GPH结构功能域,是高度保守的蛋白;α-螺旋和无规卷曲是主要的二级结构元件,其三级结构较为相似。本研究为探究SbSUTs蛋白家族在高粱的蔗糖吸收及转运中的功能提供理论依据。  相似文献   

11.
A Comparison of the Sucrose Transporter Systems of Different Plant Species   总被引:5,自引:0,他引:5  
Abstract: The sucrose uptake behaviour of many different plant species is characterised by the presence of at least two components with distinct kinetic properties. These include at least one high-affinity and one low-affinity transport system. All known sucrose transporters from higher plants fall into one of three large subfamilies, according to phylogenetic analysis. Apparently, the largest subfamily, the SUT1 subfamily, exclusively consists of high-affinity sucrose transporters from dicotyledons, whereas none of the transporters from monocotyledonous plants groups within this subfamily. The other two subfamilies of sucrose transporter-like proteins are either low-affinity transporter or putative sucrose-sensing proteins. Most of the known sucrose transporters from monocotyledons are closely related to the SUT2 subfamily and include high-affinity transporters, suggesting a different evolutionary origin of dicotyledonous and monocotyledonous sucrose transporter gene families.  相似文献   

12.
Vacuoles release sucrose via tonoplast-localised SUC4-type transporters   总被引:1,自引:0,他引:1  
Arabidopsis thaliana has seven genes for functionally active sucrose transporters. Together with sucrose transporters from other dicot and monocot plants, these proteins form four separate phylogenetic groups. Group-IV includes the Arabidopsis protein SUC4 (synonym SUT4) and related proteins from monocots and dicots. These Group-IV sucrose transporters were reported to be either tonoplast- or plasma membrane-localised, and in heterologous expression systems were shown to act as sucrose/H(+) symporters. Here, we present comparative analyses of the subcellular localisation of the Arabidopsis SUC4 protein and of several other Group-IV sucrose transporters, studies on tissue specificity of the Arabidopsis SUC4 promoter, phenotypic characterisations of Atsuc4.1 mutants and AtSUC4 overexpressing (AtSUC4-OX) plants, and functional comparisons of Atsuc4.1 and AtSUC4-OX vacuoles. Our data show that SUC4-type sucrose transporters from different plant families (Brassicaceae, Cucurbitaceae and Solanaceae) localise exclusively to the tonoplast, demonstrating that vacuolar sucrose transport is a common theme of all SUC4-type proteins. AtSUC4 expression is confined to the stele of Arabidopsis roots, developing anthers and meristematic tissues in all aerial parts. Analyses of the carbohydrate content of WT and mutant seedlings revealed reduced sucrose content in AtSUC4-OX seedlings. This is in line with patch-clamp analyses of AtSUC4-OX vacuoles that characterise AtSUC4 as a sucrose/H(+) symporter directly in the tonoplast membrane.  相似文献   

13.
A suite of newly discovered sucrose transporter genes, PsSUF1, PsSUF4, PvSUT1 and PvSUF1, were isolated from the coats of developing pea (Pisum sativum L.) and bean (Phaseolus vulgaris L.) seeds. Sequence analysis indicated that deduced proteins encoded by PsSUF1, PvSUT1 and PvSUF1 clustered in a separate sub-group under sucrose transporter Clade I, whereas the deduced protein encoded by PsSUF4 clustered in Clade II. When expressed in yeast, these genes were shown to encode sucrose transporters with apparent Michaelis Menten constant (Km) values ranging from 8.9 to 99.8 mm. PvSUT1 exhibited functional characteristics of a sucrose/H+ symporter. In contrast, PsSUF1, PvSUF1 and PsSUF4 supported the pH- and energy independent transport of sucrose that was shown to be bi-directional. These transport properties, together with that of counter transport, indicated that PsSUF1, PvSUF1 and PsSUF4 function as carriers that support the facilitated diffusion of sucrose. Carrier function was unaffected by diethylpyrocarbonate and by maltose competition, suggesting that the sucrose binding sites of these transporters differed from those of known sucrose/H+ symporters. All sucrose transporters were expressed throughout the plant and, of greatest interest, were co-expressed in cells considered responsible for sucrose efflux from seed coats. The possible roles played by the novel facilitators in sucrose efflux from seed coats are discussed.  相似文献   

14.
15.
The mechanism of phloem loading in rice (Oryza sativa)   总被引:1,自引:0,他引:1  
Carbohydrates, mainly sucrose, that are synthesized in source organs are transported to sink organs to support growth and development. Phloem loading of sucrose is a crucial step that drives long-distance transport by elevating hydrostatic pressure in the phloem. Three phloem loading strategies have been identified, two active mechanisms, apoplastic loading via sucrose transporters and symplastic polymer trapping, and one passive mechanism. The first two active loading mechanisms require metabolic energy, carbohydrate is loaded into the phloem against a concentration gradient. The passive process, diffusion, involves equilibration of sucrose and other metabolites between cells through plasmodesmata. Many higher plant species including Arabidopsis utilize the active loading mechanisms to increase carbohydrate in the phloem to higher concentrations than that in mesophyll cells. In contrast, recent data revealed that a large number of plants, especially woody species, load sucrose passively by maintaining a high concentration in mesophyll cells. However, it still remains to be determined how the worldwide important cereal crop, rice, loads sucrose into the phloem in source organs. Based on the literature and our results, we propose a potential strategy of phloem loading in rice. Elucidation of the phloem loading mechanism should improve our understanding of rice development and facilitate its manipulation towards the increase of crop productivity.  相似文献   

16.
A cDNA coding for a vitamin H (biotin) transport protein from Arabidopsis was identified by genetic complementation of a biotin uptake-deficient yeast mutant. Vitamin H transport by this protein was sensitive to the SH-group inhibitor p-chloromercuribenzene sulfonic acid (PCMBS) and to the uncoupler carbonyl cyanide-m-chlorophenylhydrazone (CCCP), suggesting an energy-dependent biotin-H+ symport mechanism. The transport activity could contribute to the so-far uncharacterized plant sucrose-H+ symporter AtSUC5 which mediates the energy-dependent transport of biotin and sucrose, and restores growth of the biotin transport-deficient yeast mutant on medium with low biotin concentrations. Functional comparison of the AtSUC5 transporter with previously characterized plant sucrose or monosaccharide transporters revealed that biotin transport may be a general and specific property of all plant sucrose transporters (sucrose/biotin-H+ symporters). This first report on a transporter with dual substrate specificity for two structurally unrelated molecules has a major impact on general thinking concerning the specificity of membrane transporters. The physiological relevance of this finding is discussed.  相似文献   

17.
果实中糖的运输、代谢与积累及其调控   总被引:42,自引:0,他引:42  
叶片光合产物向果实运输的主要形态是蔗糖,但在木本蔷薇科果树中,光合产物的主要运输形态为山梨醇.糖从质外体空间跨膜运入共质体的过程由糖运输蛋白介导,而糖运输蛋白的基因表达伴随着果实糖的积累而增强.蔗糖代谢酶参与了细胞内外4个与糖运输有关的无效循环.己糖代谢抑制是果实糖快速积累的前提.在木本蔷薇科果实中,蔗糖代谢酶活力仍非常活跃,表明蔗糖可能与山梨醇在果实生长发育中都起重要的作用.糖作为信号分子,调节了承担糖运输与代谢的基因的表达.自然环境因子和栽培措施能有效调控糖运输、代谢与积累.反义抑制Ivr基因表达能提高番茄果实含糖量的实验结果表明遗传工程调控糖积累的潜力.阐明糖信号与其它信号互作对糖运输与代谢的调控机制是今后研究的重点.  相似文献   

18.
蔗糖是韧皮部同化碳运输的主要形式,植物蔗糖转运体(SUT,Sucrose transporters)在参与植物碳素分配中起着重要的作用.编码SUT蛋白的基因在许多双子叶和单子叶植物中都已被分离.目前已经在水稻中鉴定出了5个蔗糖共运体(Sucrose symporter)基因家族成员.对这5个成员在水稻中的鉴定、克隆和表达分析,以及其蛋白结构、分类与进化进行了综述.这些信息可用于探索杂交稻高产的同化物分配和运输的分子原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号