首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
O N Witte  D Baltimore 《Cell》1977,11(3):505-511
Pseudotypes of vesicular stomatitis virus (VSV) and Moloney murine leukemia virus (MuLV), defined by their resistance to neutralization by anti-VSV antiserum, are released preferentially at early times after infection of MuLV-producing cells with VSV. At later times, after synthesis of MuLV proteins has been inhibited by the VSV infection, neither MuLV virions nor the VSV (MuLV) pseudotypes are made. Infection of MuLV-producing cells with mutants of VSV having temperature-sensitive lesions in either G or M protein does not generate pseudotypes at nonpermissive temperature, indicating that both proteins are needed for pseudotypes to form. Although the pseudotypes resist neutralization by anti-VSV serum, they are inactivated by anti-VSV serum plus complement, and they can be precipitated by rabbit anti-VSV serum plus goat anti-rabbit IgG. These results, coupled with experiments using a temperature-sensitive mutant of VSV G protein grown at partly restrictive temperature, suggest that small numbers of VSV G protein are obligately incorporated into VSV(MuLV) pseudotypes. There appears to be a stringent requirement for recognition of the viral core by homologous envelope components as the nucleating step in the budding process. Only after such a nucleation can the envelope components of the second virus substitute into the membrane of the budding particle.  相似文献   

2.
Vesicular stomatitis virus (VSV) forms pseudotypes with envelope components of reticuloendotheliosis virus (REV). The VSV pseudotype possesses the limited host range and antigenic properties of REV. Approximately 70% of the VSV, Indiana serotype, and 45% of VSV, New Jersey serotype, produced from the REV strain T-transformed chicken bone marrow cells contain mixed envelope components of both VSV and REV. VSV pseudotypes with mixed envelope antigens can be neutralized with excess amounts of either anti-VSV antiserum or anti-REV antiserum.  相似文献   

3.
Phenotypically mixed virus yields, obtained by coinfection of MDCK cells with influenza A/WSN/33 and B/Lee/40 viruses, contained both A/WSN/33 and B/Lee/40 NP proteins, as revealed by polyacrylamide gel electrophoresis of the purified 14C-amino acids-labeled virus. Virions were lysed with 0.6 M KCl-Triton X-100 buffer, and nucleocapsids were immunoprecipitated with antibodies against NP protein of influenza A virus. Polyacrylamide gel electrophoresis of the immunoprecipitate revealed NP protein of A/WSN/33 but not of B/Lee/40 virus. However, in similar experiments with the lysates of doubly infected cells, the band of B/Lee/40 NP protein was revealed in the polyacrylamide gel electrophoresis patterns of the immunoprecipitates. In an attempt to analyze the RNA content of the immune complexes, we absorbed the lysates of doubly infected [3H]uridine-labeled cells with protein A-containing Staphylococcus aureus covered with antibodies against the NP protein of influenza A virus. RNA extracted from the immune complexes contained genomic RNA segments of both A/WSN/33 and B/Lee/40 viruses. In control samples containing an artificial mixture of cell lysates separately infected with each virus, the analysis revealed homologous components (i.e., A/WSN/33 NP protein or RNA segments) in the immune complexes. The results suggest the presence of phenotypically mixed nucleocapsids in the cells doubly infected with influenza A and B viruses; in the course of the virion formation, the nucleocapsids lacking the heterologous NP protein are selected.  相似文献   

4.
It has been difficult to propagate and titrate hepatitis B virus (HBV) in tissue culture. We examined whether vesicular stomatitis virus (VSV) pseudotypes bearing HBV surface (HBs) proteins infectious for human cell lines could be prepared. For this, expression plasmids for three surface proteins, L, M, and S, of HBV were made. 293T cells were then transfected with these plasmids either individually or in different combinations. 293T cells expressing HBs proteins were infected with VSVdeltaG*-G, a recombinant VSV expressing green fluorescent protein (GFP), to make VSV pseudotypes. Culture supernatants together with cells were harvested and sonicated for a short time. The infectivities of freshly harvested supernatants were determined by quantifying the number of cells expressing GFP after neutralization with anti-VSV serum and mouse monoclonal antibodies (MAbs) against HBs protein. Among 14 cell lines tested for susceptibility to HBV pseudotype samples, HepG2, JHH-7, and 293T cells were judged to be the most susceptible. Namely, the infectious units (IU) of the culture supernatant samples neutralized with anti-VSV in the absence and presence of anti-HBs S MAbs and titrated on HepG2 cells ranged from 1,000 to 4,000 IU/ml and 200 to 400 IU/ml, respectively, suggesting the presence of VSVdeltaG*(HBV) pseudotypes. This infectivity was inhibited by treatment with lactoferrin or dextran sulfate. Pretreatment of the cells with trypsin or tunicamycin inhibited plating of the pseudotype samples. The HBV pseudotypes can be used to analyze early steps of HBV infection, including the entry mechanism of HBV.  相似文献   

5.
6.
Inhibition of vesicular stomatitis virus infection by nitric oxide.   总被引:14,自引:5,他引:14       下载免费PDF全文
Z Bi  C S Reiss 《Journal of virology》1995,69(4):2208-2213
Inhibitory effects of nitric oxide (NO) on vesicular stomatitis virus (VSV) infection were investigated by using a VSV-susceptible mouse neuroblastoma cell line, NB41A3. Productive VSV infection of NB41A3 cells was significantly inhibited by an organic NO donor, S-nitro-N-acetylpenicillamine (SNAP), while the control compound N-acetylpenicillamine (NAP) had no effect. Survival rate of VSV-infected cells was greatly increased by the treatment with SNAP, while the NAP treatment did not have any effect. Adding SNAP 30 min prior to infection resulted in complete inhibition of viral production when a low multiplicity of infection (MOI) was used. Substantial inhibition of viral production was also obtained with treating cells 6 h earlier before infection with a higher MOI. Activating the neuronal NO synthase by treating cells with N-methyl-D-aspartate (NMDA) led to significant inhibition of viral production by cells infected at the three doses of virus tested (MOIs of 0.1, 1, and 5). The inhibitory effect of NMDA on viral infection was totally blocked by the NO synthase inhibitor N-methyl-L-arginine. However, adding hemoglobin, a strong NO-binding protein and thus an inactivator of NO activity, did not reverse the NMDA-induced inhibition of viral production, suggesting that NO might exert its antiviral effects inside the NO-producing cells. Collectively, these data support the anti-VSV effects of NO, which might be one of the important factors of natural immunity in controlling the initial stages of VSV infection in the central nervous system.  相似文献   

7.

Background  

In cell culture-based influenza vaccine production the monitoring of virus titres and cell physiology during infection is of great importance for process characterisation and optimisation. While conventional virus quantification methods give only virus titres in the culture broth, data obtained by fluorescence labelling of intracellular virus proteins provide additional information on infection dynamics. Flow cytometry represents a valuable tool to investigate the influences of cultivation conditions and process variations on virus replication and virus yields.  相似文献   

8.
Persistent infection of BHK21 cells was established with cloned vesicular somatitis virus plus purified Dl particles and maintained in vitro for over 5 years. After 1 year of persistence, the infectious virus RNA genome had evolved several oligonucleotide map changes, and numerous changes had accumulated by 3.5 years. Additional evolution occurred by the fourth year and continued until the fifth year. In contrast, repeated passage of virus in acute infections of several cell types in vitro or in vivo did not lead to detectable oligonucleotide map changes. The short Dl particle originally used to co-infect with infectious virus in establishing persistent infection has been displaced by an ever present and constantly changing population of other Dl particles of differing sizes and radically differing oligonucleotide maps. We conclude that the genomes of both infectious VSV and its Dl particles undergo continuous evolutionary change during years of persistence. In the infectious virus, these changes involve hundreds of mutations which are usually expressed as poorly replicating, temperature-sensitive, small plaque mutants. These are stable mutants which do not revert to wild-type when passaged repeatedly in acute infections at 37 or 33 degrees C. It appears that the sequestered intracellular environment of persistently infected cells favors rapid and continuous virus evolution.  相似文献   

9.
Life-history theory predicts that traits for survival and reproduction cannot be simultaneously maximized in evolving populations. For this reason, in obligate parasites such as infectious viruses, selection for improved between-host survival during transmission may lead to evolution of decreased within-host reproduction. We tested this idea using experimental evolution of RNA virus populations, passaged under differing transmission times in the laboratory. A single ancestral genotype of vesicular stomatitis virus (VSV), a negative-sense RNA Rhabdovirus, was used to found multiple virus lineages evolved in either ordinary 24-h cell-culture passage, or in delayed passages of 48 h. After 30 passages (120 generations of viral evolution), we observed that delayed transmission selected for improved extracellular survival, which traded-off with lowered viral fecundity (slower exponential population growth and smaller mean plaque size). To further examine the confirmed evolutionary trade-off, we obtained consensus whole-genome sequences of evolved virus populations, to infer phenotype–genotype associations. Results implied that increased virus survival did not occur via convergence; rather, improved virion stability was gained via independent mutations in various VSV structural proteins. Our study suggests that RNA viruses can evolve different molecular solutions for enhanced survival despite their limited genetic architecture, but suffer generalized reproductive trade-offs that limit overall fitness gains.  相似文献   

10.
We have used immunoisolation on a magnetic solid support for the positive selection of stable MDCK transformants which express VSV-G protein via genomic integration of a cloned cDNA. This method is a simple, inexpensive alternative to selection with a fluorescence-activated cell sorter. The G-protein is synthesized in the absence of other viral proteins and is transported to the plasma membrane. The G-positive cells were enriched by immunoselection during normal passage of the transformed population. Using sterile conditions, antibodies to G were incubated with a suspension of transformed cells at 4 degrees C, unbound antibodies were then removed, and the cells were incubated with the immunoabsorbent (3 micron magnetic beads; J. Ugelstad et al. (1983) Nature (London) 303, 95) containing bound IgG molecules against the Fc portion of rabbit IgG. The magnetic properties of the beads were used to retrieve and further wash the immunoselected population. The cells are then removed from the beads by the same trypsinization conditions used for routine passaging and returned to culture. Using this selection scheme we have been able to increase the number of G-expressing cells five- to sevenfold per round; with repeated rounds enrichment from 2 to 74% was obtained. When grown on filters the immunoselected cells were shown to have the same morphology and electrical resistance (150-200 ohm.cm2) as untransformed MDCK II cells. Indirect immunofluorescence staining and [125I]protein A binding assays carried out on these cells demonstrated that G protein was localized exclusively to the basolateral surface as is observed with viral infection.  相似文献   

11.
Dendritic cells (DCs) are potent antigen-presenting cells capable of promoting or regulating innate and adaptive immune responses against non-self antigens. To better understand the DC biology or to use them for immune intervention, a tremendous effort has been made to improve gene transfer in these cells. Lentiviral vectors (LVs) have conferred a huge advantage in that they can transduce nondividing cells such as human monocyte-derived DCs (MDDCs) but required high amounts of viral particles and/or accessory proteins such as Vpx or Vpr to achieve sufficient transduction rates. As a consequence, these LVs have been shown to cause dramatic functional modifications, such as the activation or maturation of transduced MDDCs. Taking advantage of new pseudotyped LVs, i.e., with envelope glycoproteins from the measles virus (MV), we demonstrate that MDDCs are transduced very efficiently with these new LVs compared to the classically used vesicular stomatitis virus G-pseudotyped LVs and thus allowed to achieve high transduction rates at relatively low multiplicities of infection. Moreover, in this experimental setting, no activation or maturation markers were upregulated, while MV-LV-transduced cells remained able to mature after an appropriate Toll-like receptor stimulation. We then demonstrate that our MV-pseudotyped LVs use DC-SIGN, CD46, and CD150/SLAM as receptors to transduce MDDCs. Altogether, our results show that MV-pseudotyped LVs provide the most accurate and simple viral method for efficiently transferring genes into MDDCs without affecting their activation and/or maturation status.  相似文献   

12.
B S Huneycutt  Z Bi  C J Aoki    C S Reiss 《Journal of virology》1993,67(11):6698-6706
To determine whether central neuropathogenesis associated with vesicular stomatitis virus (VSV) infection is regulated by T cells, we have examined the effects of intranasal infection of mice lacking T cells. The mice examined were of two kinds: (i) thymus-deficient BALB/c nu/nu nice and (ii) BALB/c mice experimentally depleted of T cells by systemic infusions of a monoclonal antibody to the CD4 or CD8 cell surface molecules. These mice were infected intranasally with a single dose of replication-competent VSV. Brain tissue homogenates were analyzed for the presence of infectious virus. For each population of mice, infection-related mortality was assessed. In histological sections of brain, the distribution of viral antigens (Ags) was examined by immunocytochemistry. We found that recovery of infectious virus from homogenates of tissues obtained from athymic nu/nu animals was more than 10 times greater than that from samples from their euthymic littermates. With a single exception in a BALB/c nu/nu mouse, virus was not isolated from the spleen when it was administered intranasally. In these experimental infections, athymic mice succumbed 1 to 2 days before their euthymic littermates. A dose of virus that resulted in half of the nu/+ survival rate was uniformly lethal to nu/nu mice. In experiments with BALB/c mice depleted of either CD4+ or CD8+ T cells by in vivo antibody treatment, histological analysis revealed an increase in viral Ag distribution in comparison with control (medium-infused) infected mice. Necrosis and inflammation paralleled the extent of viral Ag expression. Viral Ags were detected in discrete areas that usually remain uninfected in immunocompetent mice. These areas include the neocortex and caudate putamen nuclei, the piriform cortex, and the lateral olfactory tract. Neuronal loss and necrosis were consistently found in the olfactory bulb and the horizontal/vertical band of Broca. In some of the T-cell depleted mice, necrosis was also evident in the hippocampus, fimbria, mammillary bodies, and hypothalamic nuclei. In the brain stem, perivascular cuffing was evident, but with little necrosis. Collectively, these data suggest that CD4+ and CD8+ T cells make only a minor contribution to the development of histopathology but rather function together to limit viral replication and transsynaptic or ventricular spread of virus, thus promoting recovery. The primary effectors of histopathology appear to be related more to the cytopathologic nature of the virus infection and non-T-cell-mediated mechanisms.  相似文献   

13.
Summary MDCK cells (epithelioid line derived from the kidney of a normal dog) form monolayers which retain the properties of transporting epithelia. In these cells viruses bud asymmetrically: influenza from the apical, and vesicular stomatitis (VSV) from the basolateral membrane (E. Rodríguez-Boulán and D. D. Sabatini,Proc. Natl. Acad. Sci. USA 75: 5071–5075, 1978; E. Rodríguez-Boulán and M. Pendergast,Cell 20: 45–54, 1980). In the present study, we analyzed whether these viruses affect specific ion-translocating mechanisms located in the plasma membrane. We studied the effect of infection on membrane and transepithelial conductance, passive and active unidirectional fluxes of Na+ and K+, intracellular potentials, cellular content of Na+ and K+, and formation of blisters which, in these preparations, are due to the vectorial transport of fluid. Two main observations are derived from these studies. First, infection with VSV caused an increase in transepithelial electrical conductance, due to the opening of tight junctions, 5 to 6 hr after the start of infection, coincident with the accumulation of envelope protein in the cell surface and with the rise in the curve of virus budding. Infection with influenza, on the other hand, increased the transepithelial conductance only late in the infection (12 to 14 hr) when virus production has already stopped. Second, viruses did affect membrane permeability. Yet, the changes observed may not be ascribed to a perturbation of the specific translocating mechanisms for Na+ and K+ which operate in the same region of the plasma membrane that the viruses use to penetrate and leave MDCK cells. The methods used in the present study are not suitable to decide whether the nonspecific changes in permeability elicited by the viruses occur over the whole cell membrane or are restricted to a given region.  相似文献   

14.
Pathway of vesicular stomatitis virus entry leading to infection   总被引:67,自引:0,他引:67  
The entry of vesicular stomatitis virus into Madin-Darby canine kidney (MDCK) cells was examined both biochemically and morphologically. At low multiplicity and 0 °C, viruses bound to the cell surface but were not internalized. Binding was very dependent on pH. More than ten times more virus bound at pH 6.5 than at higher pH values. At the optimal pH, binding failed to reach equilibrium after more than two hours. The proportion of virus bound was irreproducible and low, relative to the binding of other enveloped viruses. Over 90% of the bound viruses were removed by proteases. When cells with pre-bound virus were warmed to 37 °C, a proportion of the bound virus became protease-resistant with a half-time of about 30 minutes. After a brief lag period, degraded viral material was released into the medium. The protease-resistant virus was capable of infecting the cells and probably did so by an intracellular route, since ammonium chloride blocked the infection and slightly reduced the degradation of viral protein.When the entry process was observed by electron microscopy, viruses were seen bound to the cell surface at 0 °C and, after warming at 37 °C, within coated pits, coated vesicles and larger, smooth-surfaced vesicles. No fusion of the virus with the plasma membrane was observed at pH 7.4.When pre-bound virus was incubated at a pH below 6 for 30 seconds at 37 °C, about 40 to 50% of the pre-bound virus became protease-resistant. On the basis of this result and previously published experiments (White et al., 1981), it was concluded that vesicular stomatitis virus fuses to the MDCK cell plasma membrane at low pH.These experiments suggest that vesicular stomatitis virus enters MDCK cells by endocytosis in coated pits and coated vesicles, and is transported to the lysosome where the low pH triggers a fusion reaction ultimately leading to the transfer of the genome into the cytoplasm. The entry pathway of vesicular stomatitis virus thus resembles that described earlier for both Semliki Forest virus and fowl plague virus.  相似文献   

15.
16.
Long-term antigen expression is believed to play an important role in modulation of T-cell responses to chronic virus infections. However, recent studies suggest that immune responses may occur late after apparently acute infections. We have now analyzed the CD8 T-cell response to vesicular stomatitis virus (VSV), which is thought to cause to an infection characterized by rapid virus clearance by innate and adaptive immune system components. Unexpectedly, virus-encoded antigen was detectable more than 6 weeks after intranasal VSV infection in both draining and nondraining lymph nodes by adoptively transferred CD8 T cells. Infection with Listeria monocytogenes expressing the same antigen did not result in prolonged antigen presentation. Weeks after VSV infection, discrete T-cell clustering with dendritic cells within the lymph node was observed after transfer of antigen-specific CD8 T cells. Moreover, memory CD8 T cells as defined by phenotype and function were generated from na?ve CD8 T cells entering the response late after infection. These findings suggested that protracted antigen presentation after an apparently acute virus infection may contribute to an ongoing antiviral immune response.  相似文献   

17.
Four hours after infection of BHK cells by vesicular stomatitis virus (VSV), the rate of total protein synthesis was about 65% that of uninfected cells and synthesis of the 12 to 15 predominant cellular polypeptides was reduced to a level about 25% that of control cells. As determined by in vitro translation of isolated RNA and both one- and two-dimensional gel analyses of the products, all predominant cellular mRNA's remained intact and translatable after infection. The total amount of translatable mRNA per cell increased about threefold after infection; this additional mRNA directed synthesis of the five VSV structural proteins. To determine the subcellular localization of cellular and viral mRNA before and after infection, RNA from various sizes of polysomes and nonpolysomal ribonucleoproteins (RNPs) was isolated from infected and noninfected cells and translated in vitro. Over 80% of most predominant species of cellular mRNA was bound to polysomes in control cells, and over 60% was bound in infected cells. Only 2 of the 12 predominant species of translatable cellular mRNA's were localized to the RNP fraction, both in infected and in uninfected cells. The average size of polysomes translating individual cellular mRNA's was reduced about two- to threefold after infection. For example, in uninfected cells, actin (molecular weight 42,000) mRNA was found predominantly on polysomes with 12 ribosomes; after infection it was found on polysomes with five ribosomes, the same size of polysomes that were translating VSV N (molecular weight 52,000) and M (molecular weight 35,000) mRNA. We conclude that the inhibition of cellular protein synthesis after VSV infection is due, in large measure, to competition for ribosomes by a large excess of viral mRNA. The efficiency of initiation of translation on cellular and viral mRNA's is about the same in infected cells; cellular ribosomes are simply distributed among more mRNA's than are present in growing cells. About 20 to 30% of each of the predominant cellular and viral mRNA's were present in RNP particles in infected cells and were presumably inactive in protein synthesis. There was no preferential sequestration of cellular or viral mRNA's in RNPs after infection.  相似文献   

18.
Glycosylation of the envelope glycoprotein of vesicular stomatitis virus was examined using virus-infected HeLa cells that were pulse-labeled with radioactive sugar precursors. The intracellular sites of glycosylation and the stepwise elongation of the carbohydrate side chains of the G protein were monitored by membrane fractionation and gel filtration of Pronase-digested glycopeptides. The results with short pulses of sugar label (5 to 10 mtein linkage (glucosamine and mannose) are added to G which was associated with the rough endoplasmic reticulum-enriched membrane fraction, whereas the more distal sugars (galactose, sialic acid, fucose, and possibly more glucosamine) are added in the light-density internal membrane fraction. Accumulation of mature G was observed in the plasma membrane-enriched fraction. The gel filtration studies indicated that the initial glycosylation event may be the en bloc addition of a mannose and glucosamine oligomer, followed by the stepwise addition of the more distal sugars.  相似文献   

19.
The complementation properties of the virus progeny released from cells mixedly infected with mutants of vesicular stomatitis virus belonging to four different complementation groups have been examined. The group IV mutant, tsW16B, was tested in combinations with three group I mutants (tsW4, tsW28, and tsG11), one group II mutant (tsG22), and one group III mutant (tsW29). Virus stocks were grown from isolated plaques appearing on the cell monolayers used to assay the mixed infection yields and tested, in a second series of mixed infections, for their ability to complement each of the two parents. It was found that the virus harvested from each one of the first series of mixed infections contained mutants of both parental types.  相似文献   

20.
MxA and MxB are interferon-induced proteins of human cells and are related to the murine protein Mx1, which confers selective resistance to influenza virus. In contrast to the nuclear murine protein Mx1, MxA and MxB are located in the cytoplasm, and their role in the interferon-induced antiviral state was unknown. In this report we show that transfected cell lines expressing MxA acquired a high degree of resistance to influenza A virus. Surprisingly, MxA also conferred resistance to vesicular stomatitis virus. Expression of MxA in transfected 3T3 cells had no effect on the multiplication of two picornaviruses, a togavirus, or herpes simplex virus type 1. Treatment of MxA-expressing cells with antibodies to mouse alpha-beta interferon did not abolish the resistance phenotype. The conclusion that resistance to influenza virus and vesicular stomatitis virus was due to the specific action of MxA is further supported by the observation that transfected 3T3 cell lines expressing the related MxB failed to acquire virus resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号