首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
During development, mitral cell axons, the major efferents of the olfactory bulb, exhibit a protracted waiting period in the lateral olfactory tract (LOT) before giving off collateral branches and innervating the target olfactory cortex. To investigate the target invasion mechanism, a series of heterochronic and heterotopic cocultures of olfactory bulbs with various olfactory cortical strips were conducted. These experiments indicated that development of collateral branches is triggered by environmental cues but not by intrinsic mechanisms in mitral cells. The collateral-inducing cues are apparently different from the cues directing outgrowth of primary mitral cell axons. Coculture experiments also indicated that the target olfactory cortex undergoes a developmental change to become accessible to mitral cell fibers. Primary mitral cell axons, however, still preferred the LOT position over such accessible piriform cortex when encountered both the locations. These results suggest that mitral cell projection comprises multiple steps which are controlled by various environmental cues.  相似文献   

3.
In mammals, conventional odorants are detected by OSNs located in the main olfactory epithelium of the nose. These neurons project their axons to glomeruli, which are specialized structures of neuropil in the olfactory bulb. Within glomeruli, axons synapse onto dendrites of projection neurons, the mitral and tufted (M/T) cells. Genetic approaches to visualize axons of OSNs expressing a given odorant receptor have proven very useful in elucidating the organization of these projections to the olfactory bulb. Much less is known about the development and connectivity of the lateral olfactory tract (LOT), which is formed by axons of M/T cells connecting the olfactory bulb to central neural regions. Here, we have extended our genetic approach to mark M/T cells of the main olfactory bulb and their axons in the mouse, by targeted insertion of IRES-tauGFP in the neurotensin locus. In NT-GFP mice, we find that M/T cells of the main olfactory bulb mature and project axons as early as embryonic day 11.5. Final innervation of central areas is accomplished before the end of the second postnatal week. M/T cell axons that originate from small defined areas within the main olfactory bulb, as visualized by localized injections of fluorescent tracers in wild-type mice at postnatal days 1 to 3, follow a dual trajectory: a branch of tightly packed axons along the dorsal aspect of the LOT, and a more diffuse branch along the ventral aspect. The dorsal, but not the ventral, subdivision of the LOT exhibits a topographical segregation of axons coming from the dorsal versus ventral main olfactory bulb. The NT-GFP mouse strain should prove useful in further studies of development and topography of the LOT, from E11.5 until 2 weeks after birth.  相似文献   

4.
Franks KM  Isaacson JS 《Neuron》2006,49(3):357-363
Olfactory information is first encoded in a combinatorial fashion by olfactory bulb glomeruli, which individually represent distinct chemical features of odors. This information is then transmitted to piriform (olfactory) cortex, via axons of olfactory bulb mitral and tufted (M/T) cells, where it is presumed to form the odor percept. However, mechanisms governing the integration of sensory information in mammalian olfactory cortex are unclear. Here we show that single M/T cells can make powerful connections with cortical pyramidal cells, and coincident input from few M/T cells is sufficient to elicit spike output. These findings suggest that odor coding is broad and distributed in olfactory cortex.  相似文献   

5.
Primates are usually thought of as "visual" mammals, and several comparative studies have emphasized the role of vision in primate neural and sociocognitive specialization. Here I explore the role of olfactory systems, using phylogenetic analysis of comparative volumetric data. The relative sizes of the main olfactory bulb (MOB) and accessory olfactory bulb (AOB) tend to show different evolutionary patterns in accordance with their different functions. Although there is some evidence of correlated evolution of the two systems, this is apparent in only one clade (the strepsirhines). As predicted, the MOBs correlate predominantly with ecological factors (activity period and diet), while the AOBs correlate with social and mating systems. Related olfactory structures (i.e., the piriform cortex and amygdala) exhibit correlated evolution with the AOBs but not with the MOBs, and the corticobasolateral part of the amygdala exhibits a correlation with social group size in platyrrhines similar to that observed for the AOB. These social system correlations support the idea that there is an olfactory dimension to the concept of the social brain.  相似文献   

6.
The vomeronasal projection conveys information provided by pheromones and detected by neurones in the vomeronasal organ (VNO) to the accessory olfactory bulb (AOB) and thence to other regions of the brain such as the amygdala. The VNO-AOB projection is topographically organised such that axons from apical and basal parts of the VNO terminate in the anterior and posterior AOB respectively. We provide evidence that the Slit family of axon guidance molecules and their Robo receptors contribute to the topographic targeting of basal vomeronasal axons. Robo receptor expression is confined largely to basal VNO axons, while Slits are differentially expressed in the AOB with a higher concentration in the anterior part, which basal axons do not invade. Immunohistochemistry using a Robo-specific antibody reveals a zone-specific targeting of VNO axons in the AOB well before cell bodies of these neurones in the VNO acquire their final zonal position. In vitro assays show that Slit1-Slit3 chemorepel VNO axons, suggesting that basal axons are guided to the posterior AOB due to chemorepulsive activity of Slits in the anterior AOB. These data in combination with recently obtained other data suggest a model for the topographic targeting in the vomeronasal projection where ephrin-As and neuropilins guide apical VNO axons, while Robo/Slit interactions are important components in the targeting of basal VNO axons.  相似文献   

7.
Olfactory bulb (OB) projection neurons receive sensory input from olfactory receptor neurons and precisely relay it through their axons to the olfactory cortex. Thus, olfactory bulb axonal tracts play an important role in relaying information to the higher order of olfactory structures in the brain. Several classes of axon guidance molecules influence the pathfinding of the olfactory bulb axons. Draxin, a recently identified novel class of repulsive axon guidance protein, is essential for the formation of forebrain commissures and can mediate repulsion of diverse classes of neurons from chickens and mice. In this study, we have investigated the draxin expression pattern in the mouse telencephalon and its guidance functions for OB axonal projection to the telencephalon. We have found that draxin is expressed in the neocortex and septum at E13 and E17.5 when OB projection neurons form the lateral olfactory tract (LOT) rostrocaudally along the ventrolateral side of the telencephalon. Draxin inhibits axonal outgrowth from olfactory bulb explants in vitro and draxin-binding activity in the LOT axons in vivo is detected. The LOT develops normally in draxin−/− mice despite subtle defasciculation in the tract of these mutants. These results suggest that draxin functions as an inhibitory guidance cue for OB axons and indicate its contribution to the formation of the LOT.  相似文献   

8.
The olfactory bulb directly projects to several diverse telencephalic structures, but, to date, few studies have investigated the physiological characteristics of most of these areas. As an initial step towards understanding the odor processing functions of these secondary olfactory structures, we recorded evoked field potentials in response to lateral olfactory tract stimulation in vivo in urethane-anesthetized Sprague-Dawley rats in the following brain structures: anterior olfactory nucleus, ventral and dorsal tenia tecta, olfactory tubercle, anterior and posterior piriform cortex, the anterior cortical nucleus of the amygdala, and lateral entorhinal cortex. Using paired-pulse stimulation with interpulse intervals of 25-1000 ms, we observed facilitation of the response to the second pulse in every structure examined, although the degree of facilitation varied among the target structures. Additionally, pulse train stimulation at three different frequencies (40, 10 and 2 Hz) produced facilitation of evoked field potentials that also varied among target structures. We discuss the potential utility of such short-term facilitation in olfactory processing.  相似文献   

9.
The physiological role of anosmin-1, defective in the X chromosome-linked form of Kallmann syndrome, is not yet known. Here, we show that anti-anosmin-1 antibodies block the formation of the collateral branches of rat olfactory bulb output neurons (mitral and tufted cells) in organotypic cultures. Moreover, anosmin-1 greatly enhances axonal branching of these dissociated neurons in culture. In addition, coculture experiments with either piriform cortex or anosmin-1-producing CHO cells demonstrate that anosmin-1 is a chemoattractant for the axons of these neurons, suggesting that this protein, which is expressed in the piriform cortex, attracts their collateral branches in vivo. We conclude that anosmin-1 has a dual branch-promoting and guidance activity, which plays an essential role in the patterning of mitral and tufted cell axon collaterals to the olfactory cortex.  相似文献   

10.
Davison IG  Ehlers MD 《Neuron》2011,70(1):82-94
Odors are initially encoded in the brain as a set of distinct physicochemical characteristics but are ultimately perceived as a unified sensory object--a "smell." It remains unclear how chemical features encoded by diverse odorant receptors and segregated glomeruli in the main olfactory bulb (MOB) are assembled into integrated cortical representations. Combining patterned optical microstimulation of MOB with in vivo electrophysiological recordings in anterior piriform cortex (PCx), we assessed how cortical neurons decode complex activity patterns distributed across MOB glomeruli. PCx firing was insensitive to single-glomerulus photostimulation. Instead, individual cells reported higher-order combinations of coactive glomeruli resembling odor-evoked sensory maps. Intracellular recordings revealed a corresponding circuit architecture providing each cortical neuron with weak synaptic input from a distinct subpopulation of MOB glomeruli. PCx neurons thus detect specific glomerular ensembles, providing an explicit neural representation of chemical feature combinations that are the hallmark of complex odor stimuli.  相似文献   

11.
Using olfactory marker protein (OMP) and neural cell adhesion molecule (N-CAM) immunohistochemistry, the present study describes development of olfactory and vomeronasal systems in pre- and postnatal opossums, Monodelphis domestica. As revealed by OMP expression, development of the main olfactory system precedes that of the vomeronasal system by 1–2 weeks. OMP is expressed throughout (homogeneously) the nerve and glomerular layers of the main (MOB) but is expressed more strongly (heterogeneously) in the anterior as compared to the posterior accessory (AOB) olfactory bulb. N-CAM expression is homogeneous in both MOB and AOB. The heterogeneity in the AOB is developmentally regulated, since in the 30-day-old AOB the expression of OMP is homogeneous, becoming heterogeneous during the second month of life. Maximal expression of N-CAM precedes maximal expression of OMP in the VNS by about 2 weeks. From 7 to 21 days of age only, there is a small population of OMP-positive, N-CAM-negative olfactory and vomeronasal axon terminals that penetrate deep into the brain parenchyma, overgrowing their normal targets in the MOB and AOB, respectively. J. Morphol. 234:109–129, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
The vertebrate main and accessory olfactory bulbs (MOB and AOB) are the first synaptic sites in the olfactory pathways. The MOB is a cortical structure phylogenetically well conserved in its laminar structure and overall synaptic organization, while the AOB has significant species variation in size. In order to better understand signal processing in the two olfactory systems and the species differences, immunocytochemical staining and analysis were done of the neuronal expression patterns of the calcium-binding proteins calbindin D28k (CB), parvalbumin (PV), and calretinin (CR) in the MOB and AOB in a marsupial species, the gray short-tailed opossum, Monodelphis domestica. In the MOB, antibody to CB labeled periglomerular cells, superficial short axon cells / Van Gehuchten cells; antibody to PV labeled Van Gehuchten cells; and antibody to CR immunostained periglomerular cells, superficial short axon cells / Van Gehuchten cells, and granule cells. In the AOB, CB immunoreactivity was detected in periglomerular cells and a subpopulation of granule cells; antibody to PV labeled the superficial short axon cells / Van Gehuchten cells and granule cells; and antibody to CR labeled a small number of periglomerular cells, superficial short axon cells / Van Gehuchten cells, and granule cells. These results showed that the patterns of CB, PV, and CR expression differ in the opossum main and accessory olfactory bulbs and differ from that in other animal species. These varying patterns of neuronal immunostaining may be related to the different functions of the main and accessory olfactory bulbs and to the differing signal processing features.  相似文献   

13.
The mechanisms that underlie axonal pathfinding of vomeronasal neurons from the vomeronasal organ (VNO) in the periphery to select glomeruli in the accessory olfactory bulb (AOB) are not well understood. Neuropilin-2, a receptor for secreted semaphorins, is expressed in V1R- and V3R-expressing, but not V2R-expressing, postnatal vomeronasal neurons. Analysis of the vomeronasal nerve in neuropilin-2 (npn-2) mutant mice reveals pathfinding defects at multiple choice points. Vomeronasal sensory axons are severely defasciculated and a subset innervates the main olfactory bulb (MOB). While most axons of V1R-expressing neurons reach the AOB and converge into distinct glomeruli in stereotypic locations, they are no longer restricted to their normal anterior AOB target zone. Thus, Npn-2 and candidate pheromone receptors play distinct and complementary roles in promoting the wiring and patterning of sensory neurons in the accessory olfactory system.  相似文献   

14.
Using a voltage-sensitive styryl dye, optical recordings ofthe piriform cortex responses to bipolar electrical stimulationsof the rat lateral olfactory tract (LOT) were taken. Surgicalprocedures were performed on Wistar SPF male rats anaesthetizedwith equithesine. Anaesthesia was continued during the recording.In addition the animals were curarized and artificially ventilated.Piriform cortex was stained with RH795. Cortical fluorescencewas recorded with a 124-element photodiode array using epi-illuminationwhile electrical stimulations were delivered to the LOT. Mappingof the piriform activity indicated a very large overlap of therecorded responses. Nevertheless, some differences in locationof recorded responses were observed and seemed to correlatewith the location of the stimulation electrode on the LOT. Theresults are discussed in relation to the anatomy and histologyof the olfactory bulb projections to the piriform cortex.  相似文献   

15.
啮齿动物的犁鼻器和副嗅球与社会通讯和生殖行为有关,主嗅球影响其觅食行为。达乌尔黄鼠(Spermophilus dauricus)是一种具有较低社会行为的储脂类冬眠动物。本研究用组织学和免疫组织化学方法探究了其犁鼻器和副嗅球的结构特点及嗅球神经元活动对季节变化的适应。结果发现,达乌尔黄鼠犁鼻器具有较大的血管,犁鼻器管腔外侧为非感觉性的呼吸上皮(Respiratory epithelium,RE),内侧为感觉上皮(Sensory epithelium,SE),RE较SE薄,靠近管腔处为假复层柱状上皮。选取犁鼻器中间部位比较,发现SE的厚度、长度及感觉细胞密度均无性别差异。副嗅球位于主嗅球后方背内侧,由6层细胞构成。侧嗅束穿过副嗅球,位于颗粒细胞层之上。雄性达乌尔黄鼠较雌性有更长的僧帽细胞层和颗粒细胞层。春季(3月)和冬季(1月)达乌尔黄鼠主嗅球的嗅小球层、僧帽细胞层和颗粒细胞层的c-Fos-ir神经元密度显著低于夏季(7月)和秋季(10月),且冬季外网织层的c-Fos-ir神经元密度显著低于夏季和秋季,说明达乌尔黄鼠在冬季和春季的嗅觉神经活动较弱,呈现出对冬眠的生理性适应。这些结果丰富了动物犁鼻器和副嗅球的形态学资料,并有助于理解冬眠动物嗅觉系统对季节变化和冬眠的适应。  相似文献   

16.
Summary Vibra tome sections of male hamster brains were treated immunohistochemically with LHRH antiserum, and the anatomical distribution of LHRH immunoreactive cells and nerve fibers was assessed. LHRH-cell bodies are found in the ventral hypothalamus that includes its preoptic, anterior and central parts, in the septum, the olfactory tubercle, the main and accessory olfactory bulb, and the prepiriform cortex. In addition, extracerebral LHRH-neurons and ganglia exist in LHRH-positive nerves at the ventromedial surface of the olfactory tubercle and bulb as well as in olfactory nerves. Dense networks of LHRH-immunoreactive fibers are found in all regions where LHRH-cell bodies exist. Intraseptal connections reach the organum vasculosum of the lamina terminalis, the subfornical organ, and the lateral ventricle. Dorsolateral projections from the septum can be traced via the fimbria hippocampi and alveus to the ventral hippocampus, via the stria terminalis to the amygdala and piriform cortex. Ventrolateral projections extend from the level of the olfactory tubercle and preoptic-anterior hypothalamic area via the ventral amygdalofugal pathway to the prepiriform and piriform cortex as well as the amygdala. Dorsal supracallosal projections via the stria longitudinalis are seen in the induseum griseum and the cingulate cortex. Caudal efferents reach the habenula, interpeduncular nucleus, midbrain raphe, and central gray of the rostral fourth ventricle via the stria medullaris and fasciculus retroflexus and by a ventral projection via the periventricular and subventricular hypothalamus. A major portion of this ventrocaudal projection gives rise to a dense network in the median eminence. Anatomical relationships of LHRH-fibers to certain regions of the inner ventricular and outer brain surface are noted.Postdoctoral fellow of the Deutsche ForschungsgemeinschaftSupported by US PHS grant NS09914 and NRCHD grant HD03110  相似文献   

17.
Detailed knowledge of neuronal connectivity patterns is indispensable for studies of various aspects of brain functions. We previously established a genetic strategy for visualization of multisynaptic neural pathways by expressing wheat germ agglutinin (WGA) transgene under the control of neuron type-specific promoter elements in transgenic mice and Drosophila. In this paper, we have developed a WGA-expressing recombinant adenoviral vector system and applied it for analysis of the olfactory system. When the WGA-expressing adenovirus was infused into a mouse nostril, various types of cells throughout the olfactory epithelium were infected and expressed WGA protein robustly. WGA transgene products in the olfactory sensory neurons were anterogradely transported along their axons to the olfactory bulb and transsynaptically transferred in glomeruli to dendrites of the second-order neurons, mitral and tufted cells. WGA protein was further conveyed via the lateral olfactory tract to the olfactory cortical areas including the anterior olfactory nucleus, olfactory tubercle, piriform cortex and lateral entorhinal cortex. In addition, transsynaptic retrograde labeling was observed in cholinergic neurons in the horizontal limb of diagonal band, serotonergic neurons in the median raphe nucleus, and noradrenergic neurons in the locus coeruleus, all of which project centrifugal fibers to the olfactory bulb. Thus, the WGA-expressing adenovirus is a useful and powerful tool for tracing neural pathways and could be used in animals that are not amenable to the transgenic technology.  相似文献   

18.
The accessory olfactory bulb (AOB) is a sexually dimorphic structure of the vomeronasal system, which plays a role in the control of sexual behaviors. In adult rats, we have demonstrated previously that the migrating neuroblasts of the subependymal layer (SEL) directed to the main olfactory bulb (MOB) also reach the AOB. To tackle the relation between sexual dimorphism and targeted cell migration, we quantified the neo-neurogenesis in the AOB of adult rats of both sexes. Our results confirm a morphological sexual dimorphism in the AOB granular layer volumes. We showed that the number of newly generated cells reaching the AOB in both sexes was considerable, even if lower than those directed to the MOB. Moreover, we demonstrated that the rate of neurogenesis in the anterior AOB of the two sexes was significantly different.  相似文献   

19.
Olfactory neurons project their axons to spatially invariant glomeruli in the olfactory bulb, forming an ordered pattern of innervation comprising the olfactory sensory map. A mirror symmetry exists within this map, such that neurons expressing a given receptor typically project to one glomerulus on the medial face and one glomerulus on the lateral face of the bulb. The mechanisms underlying an olfactory neuron's choice to project medially versus laterally remain largely unknown, however. Here we demonstrate that insulin-like growth factor (IGF) signaling is required for sensory innervation of the lateral olfactory bulb. Mutations that eliminate IGF signaling cause axons destined for targets in the lateral bulb to shift to ectopic sites on the ventral-medial surface. Using primary cultures of olfactory and cerebellar neurons, we further show that IGF is a chemoattractant for axon growth cones. Together these observations reveal a role of IGF signaling in sensory map formation and axon guidance.  相似文献   

20.
The developmental mechanisms by which the network organization of the adult cortex is established are incompletely understood. Here we report on empirical data on the development of connections in hamster isocortex and use these data to parameterize a network model of early cortical connectivity. Using anterograde tracers at a series of postnatal ages, we investigate the growth of connections in the early cortical sheet and systematically map initial axon extension from sites in anterior (motor), middle (somatosensory) and posterior (visual) cortex. As a general rule, developing axons extend from all sites to cover relatively large portions of the cortical field that include multiple cortical areas. From all sites, outgrowth is anisotropic, covering a greater distance along the medial/lateral axis than along the anterior/posterior axis. These observations are summarized as 2-dimensional probability distributions of axon terminal sites over the cortical sheet. Our network model consists of nodes, representing parcels of cortex, embedded in 2-dimensional space. Network nodes are connected via directed edges, representing axons, drawn according to the empirically derived anisotropic probability distribution. The networks generated are described by a number of graph theoretic measurements including graph efficiency, node betweenness centrality and average shortest path length. To determine if connectional anisotropy helps reduce the total volume occupied by axons, we define and measure a simple metric for the extra volume required by axons crossing. We investigate the impact of different levels of anisotropy on network structure and volume. The empirically observed level of anisotropy suggests a good trade-off between volume reduction and maintenance of both network efficiency and robustness. Future work will test the model's predictions for connectivity in larger cortices to gain insight into how the regulation of axonal outgrowth may have evolved to achieve efficient and economical connectivity in larger brains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号