首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1--The mechanism of the vasopressin-induced, facilitated transport across toad urinary bladder was studied by treating the luminal membrane of the epithelium with the following reagents of protein functional groups: NEM (SH groups), SITS (amino groups), EEDQ (carboxylic groups), DEPC (histidine). 2--Treatment of the luminal side of the epithelium by NEM strongly inhibits the ADH-induced urea transport, leaving unmodified the effect of the hormone on the flux of antipyrine, a lipid soluble molecule. These results confirm the hypothesis that the urea carrier is of proteic nature. 3--Treatment of the luminal side by SITS strongly inhibits ADH action on urea and antipyrine permeability; thus this effect can be considered rather unspecific. 4--On the contrary the EEDQ effect is more specific; in fact treatment of the luminal side by EEDQ strongly inhibits ADH effect on the permeability of urea, slightly increasing the ADH effect on that of antipyrine. 5--Finally, the luminal treatment by diethylpyrocarbonate inhibits almost completely the ADH action on the urea fluxes, slightly increasing the hormone effect on the antipyrine ones. 6--Based on these results we conclude that carboxylic groups and the imidazolic ring are more important than the amino groups in determining the urea transport across toad bladder, in the presence of ADH.  相似文献   

2.
Forskolin, a natural diterpene activating the adenyl cyclase in a receptor-independent manner, increases symmetrically both transepithelial fluxes of urea and erithrytol through the frog skin. The effect is dose-dependent, being 5 X 10(-6) M the dose necessary to obtain the maximal action. Forskolin-induced permeabilization is inversely proportional to the molecular weight of water soluble molecules (urea greater than erythritol greater than mannitol); also the permeability of a mainly lipid soluble molecule, i.e. antipyrine, is slightly increased by the diterpene. The permeability pattern is more similar to that induced by isoprenaline as compared to that elicited by vasopressin. Differently from what occurs in other tissues, small doses of forskolin (10(-8) M) are unable to potentiate the actions of vasopressin and isoprenaline on urea permeability across the frog skin. Moreover, the maximal action of forskolin is not additive with the maximal ones of isoprenaline and vasopressin.  相似文献   

3.
Vasopressin increases the permeability of receptor cells to water and, in tissues such as toad bladder, to solutes such as urea. While cyclic AMP appears to play a major role in mediating the effects of vasopressin, there is evidence that activation of the water permeability system and the urea permeability system involves separate pathways. In the present study, we have shown that inhibitors of oxidative metabolism (rotenone, dinitrophenol, and methylene blue) selectively inhibit either vasopressin-stimulated water flow or vasopressin-stimulated urea transport. There was no inhibition, however, when exogenous cyclic AMP was substituted for vasopressin, and little to no inhibition when the potent analogue 8-bromoadenosine 3′,5′-cyclic monophosphate (8-Br-cAMP) was employed. Rotenone had no effect on adenylate cyclase activity or cyclic AMP levels within the cell; dinitrophenol decreased adenylate cyclase activity minimally. Additional studies with vinblastine and nocodazole, inhibitors of microtubule assembly, demonstrated an inhibition of vasopressin and cyclic AMP-stimulated water flow but showed no effect on urea transport. We would conclude that water and urea transport, as examples of hormone-stimulated processes, have different links to cell metabolism, and that in addition to cyclic AMP, a non-nucleotide pathway may be involved in the action of vasopressin.  相似文献   

4.
Maximal doses of vasopressin increase the permeability of the skins of Bufo bufo and Rana esculenta to urea, ethylene glycol, glycerol, erythritol, beta-alanine, leaving virtually unmodified that of mannitol and antipyrine. These results demonstrate that the response to vasopressin is quite different in amphibian skins as compared to the bladders. A careful analysis of the effects of vasopressin on non-electrolyte permeability as a function of their molecular weight demonstrates that hormone elicits the formation of pores with a diameter inferior to 4 A. Under vasopressin treatment the skins exhibit a selectivity for polyhydroxylated molecules as compared to urea and beta-alanine. This selectivity is not due to active of facilitated transport and is not impaired by phloretin or DTNB which selectively blocks the permeability of urea or ethylene glycol in erythrocytes. It is proposed that the site of such selectivity is located in other plasma membranes of the epithelium.  相似文献   

5.
1. The effects of both adenyl cyclase inhibitors (MDL12330A and SQ22536) have been studied on the ionic transport induced by vasopressin and isoprenaline across the frog skin. 2. MDL12330A inhibits the vasopressin action on the short-circuit current (SCC), confirming that this effect is cAMP-mediated. 3. On the other hand, isoprenaline action on the SCC is unaffected by MDL12330A. However, this lack of effect is not a sufficient argument against the role of cAMP in this action; in fact, as MDL12330A is also an inhibitor of cAMP phosphodiesterase, this action could mask the inhibitory effect of the drug on adenyl cyclase. 4. By using the other adenyl cyclase inhibitor (SQ22536), probably deprived of effect on the cAMP phosphodiesterase, we obtained a strong inhibition of isoprenaline action on the SCC. Thus we conclude that the actions of isoprenaline on the ionic transport across the frog skin are also cAMP-mediated.  相似文献   

6.
Vasopressin increases the net transport of sodium across the isolated urinary bladder of the toad by increasing the mobility of sodium ion within the tissue. This change is reflected in a decreased DC resistance of the bladder; identification of the permeability barrier which is affected localizes the site of action of vasopressin on sodium transport. Cells of the epithelial layer were impaled from the mucosal side with glass micropipettes while current pulses were passed through the bladder. The resulting voltage deflections across the bladder and between the micropipette and mucosal reference solution were proportional to the resistance across the entire bladder and across the mucosal or apical permeability barrier, respectively. The position of the exploring micropipette was not changed and vasopressin was added to the serosal medium. In 10 successful impalements, the apical permeability barrier contributed 54% of the initial total transbladder resistance, but 98% of the total resistance change following vasopressin occurred at this site. This finding provides direct evidence that vasopressin acts to increase ionic mobility selectively across the apical permeability barrier of the transporting cells of the toad bladder.  相似文献   

7.
Measurements have been made of the permeability of the isolated urinary bladder of the toad to a number of small solute molecules, in the presence and absence of vasopressin. Vasopressin has a strikingly specific effect on increasing permeability of the bladder to a group of small, uncharged amides and alcohols while penetration by other small molecules and ions is unaffected. The movement of urea is passive, as indicated by equal flux rates in the two directions. The reflection coefficients for chloride and thiourea indicate a high degree of impermeability of the bladder to these solutes even in the presence of large net movements of water. The low concentration of thiourea in the tissue water when this compound is added to the mucosal bathing medium indicates that the major permeability barrier to thiourea is at the mucosal surface of the bladder. The findings can be accounted for by a double permeability barrier consisting of a fine selective diffusion barrier and a porous barrier in series. The former would constitute the permeability barrier to most small solutes while the latter would be the rate-limiting barrier for water and the amides. It would be the porous barrier which is affected by vasopressin. Reasons are presented which require both barriers to be contained in or near the plasma membrane at the mucosal surface of the bladder.  相似文献   

8.
Summary It has been shown by means of Bentley'sin vitro preparation of the isolated urinary bladder of the toad,Bufo marinus paracnemis Lutz, that bradykinin reversibly inhibited the increase brought about by vasopressin on the permeability to water of the toad bladder. The increased hydro-osmotic response of the bladder to oxytocin was also inhibited by the kinin. The effect on water permeability was observed when bradykinin was added either to the serosal Ringer's solution or to the mucosal solution. The addition of bradykinin alone did not alter the basal osmotic water transfer across the bladder. In this context, bradykinin acted as a competitive antagonist of vasopressin (and oxytocin). Although lacking intrinsic activity, bradykinin exhibited affinity for receptor sites that are also common to the neurohypophysial hormones, causing a parallel shift of the log-dose/response curve for vasopressin without changing the maximal responses. The effects of other kinins (namely kallidin, eledoisin and physalaemin) on the toad bladder were also tested. Each of these drugs alone did not change the basal water flux across the bladder wall. Like bradykinin, these peptides inhibited the increase in water permeability evoked by vasopressin and oxytocin in the bladder. In view of the importance of neurohypophysial hormones and their target tissues to the osmotic homeostasis of amphibians, and the observation of antagonism between the kinins and the pituitary hormones coupled to the abundance of kinins in the amphibian organism, particularly in the skin and urinary bladder, teleological reasoning predicts a physiological role for the kinins, possibly functioning to dampen excesses and oscillations in membrane permeability that could occur in face of a constant and variable secretion of neurohypophysial hormone, thus adding to the homeostatic response of the amphibian organism.  相似文献   

9.
Summary Previous studies with phloretin have shown that the movement of urea and other solutes across the toad bladder can be inhitited with no effect on osmotic water flow, active sodium transport, or the movement of ethanol and ethylene glycol. These findings have suggested that a vasopressin-sensitive carrier is involved in the transport of solutes such as urea across the luminal membrane of the epithelial cell. The present paper describes the effect of two agents other than phloretin: tannic acid and chromate, on water and solute movement across the bladder. The pattern of action of these two agents resembles that of phloretin, and supports our earlier findings of the independence of solute and water movement. The effect of chromate on urea movement is seen only in the presence of vasopressin, and only if chromate is added prior to vasopressin. Chromate also proves to be an irreversible inhibitor of urea movement. The implications of these findings are discussed. In view of the known interactions of both agents with proteins, it is suggested that carrier-mediated transport of urea proceeds across a protein component of the membrane.Presented in part at the 57th annual meeting, Federation of American Societies for Experimental Biology, Atlantic City, April 1973.  相似文献   

10.
The responses to mucosal pressure elevation (physiological pressure: PP) were compared to responses to serosal pressure elevation (non-physiological pressure: NPP) in bullfrog urinary bladders (Rana catesbeiana). The bladders were mounted on vertical chambers as flat sheets. Distension was applied with 98.07 Pa. pressure gradients. PP resulted in increases in transepithelial electrical potential difference (TEP) and short-circuit current (SCC). Electrical resistance (R), urea permeability (P(urea)) and net water flux (J( v)) were not effected. NPP resulted in decreases in TEP (38%), SCC (13%), and R (36%). While P(urea) (97%) and J(v) (96%) increased. PP caused little or no change in the electron microscopic structure of frog bladder while NPP caused irreversible dilation of the lateral intercellular spaces. There were no observable changes in tight junctions under PP or NPP. The subepithelial elements of the bladder became detached from the epithelial layer during NPP suggesting a role for them during PP.  相似文献   

11.
A combined physiological and morphological study of the effects of cytochalasin B (CB) on the toad urinary bladder has been carried out. CB inhibits the hydro-osmotic response to vasopressin without altering basal water permeability or diffusion, or the increase in 3H2O diffusion observed after hormone addition. Although CB increases [22Na]-, [36Cl]-, and [14C]urea fluxes, and decreases transepithelial potential, no alteration in basal short-circuit current, the vasopressin-induced increase in this parameter, or [14C]inulin permeability occurs. In the absence of hormone, CB does not markedly alter the structure of the toad bladder. However, in the presence of vasopressin, CB induces the formation of large intracellular vacuoles. These results suggest a possible coupling of solute and water movement across the tissue.  相似文献   

12.
Involvement of enzymes catabolizing hyaluronic acid (hyaluronidase, beta-glucuronidase, N-acetyl-beta-D-hexosaminidase) in the hydroosmotic action of vasopressin on the amphibian urinary bladder Rana Ridibunda was studied. It was found that vasopressin (50 nM), agonist of V2 receptors dDAVP (1.5 mcM) and forscolin (30 mcM) induce an activation of enzymes and its release into the Ringer solution at the mucosal surface simultaneously with the increase in the osmotic water flow. Maximal effect was observed 10 min later than hydroosmotic response. Release of enzymes under vasopressin effect was found in the absence of osmotic gradient and water flow through the epithelium. The repeated substitution of the outer Ringer solution for the fresh one resulted in the increase in the both the water permeability and the release of enzymes through the mucosal surface. We suggested that involvement of hyaluronate-hydrolases in the vasopressin effect is mediated by the cAMP-dependent mechanism. It is supposed that this effect creates conditions for the increase in the permeability of glycosaminoglycan structures covering adjacent to the apical cell surface.  相似文献   

13.
Principal similarities between molecular pathways providing the enhancement of water and urea reabsorption under the action of argininvasotocin (AVT) in amphibian urinary bladder suggest that prostaglandin E2 (PGE2) could be a negative regulator of urea transport. To analyse this hypothesis, the role of PGE2 in regulation of urea transport was studied in isolated frog (Rana temporaria L.) urinary bladder. The urea permeability (Pu) was determined from the rate of efflux of (14) Curea from mucosal to serosal solution in isoosmotic conditions. The water permeability was measured in separate experiments in presence of an osmotic gradient. In contrast to water permeability, we were unable to demonstrate any inhibitory effect of 10-1000 nM PGE2 on AVT-stimulated urea transport using a variety of protocols. It was found that basolateral PGE2 exposure (10 nM-1 microM) caused an increase in Pu with no effect on osmotic water flow. The PGE2 effect was markedly inhibited by phloretin, a specific inhibitor of urea transporter. Sulprostone, an EP1/EP3 prostaglandin E2 receptor agonist, had no effect on Pu suggesting the contribution of EP2/EP4 receptor subtypes. In presence of osmotic water flow, the AVT-induced urea transport was significantly higher. This water flow-dependent urea permeability was inhibited by PGE2 although the inhibitory effect was less pronounced in comparison to the action of PGE2 on osmotic water flow. On the basis of these results we can make a conclusion that PGE2 has different role in regulation of water and urea transport in the frog urinary bladder. PGE2 could be considered as a stimulator of urea transport and an inhibitor of osmotic water flow activated by the AVT. The ability of PGE2 to regulate various types of cAMP-dependent transport by different mechanisms seems to be based on the presence of multiple basolateral PGE2 receptor subtypes in amphibian osmosis-regulatory epithelium.  相似文献   

14.
In amphibian urinary bladder epithelium, vasopressin increases passive urea permeability, concomitant with the appearance of a facilitated urea transport. Amphibian oocytes from Xenopus laevis and Rana esculenta were microinjected with total or fractionated poly(A+) RNA isolated from frog urinary bladder epithelial cells. After several (3-5) days at 18 degrees C, the urea flux was assayed by measuring the uptake and efflux of [14C]urea in water-injected and mRNA-injected oocytes. A 2 to 3-fold increase of urea transport was detected in oocytes injected either with total mRNA or with a 6-10 kilobase mRNA fraction, when compared with water-injected oocytes. This expression of urea channels was inhibited by 0.1 mM phloretin (50% inhibition) and 0.1 mM nitrophenylthiourea (up to 70% inhibition). On the contrary, no expression was detected in brain mRNA-injected oocytes. These results show the specific functional expression of the phloretin- and NPTU-sensitive urea channel (or carrier) from frog urinary bladder epithelial cells, providing an approach for the expression cloning of these urea channels.  相似文献   

15.
A series of analogs of vasopressin with photoreactive groups in positions 1, 2, 3, 4, 8 or 9 of the nonapeptide sequence have been studied for their effects on water and urea permeability of the isolated toad urinary bladder. Compounds with photoreactive groups in positions 3 or 8 bound covalently to receptors as judged by a persistent increase in water and urea permeability following UV irradiation, prevention of photolabeling by incubation in the presence of vasopressin, and a persistent increase in membrane-bound adenylate cyclase activity. Some analogs were inactive in the dark, but became active and bound covalently to receptors during photolysis. Other analogs were inhibitors or agonists in the dark, but did not bind to receptors following UV irradiation. Time course studies with photolabelled bladders showed a stable urea flux for 4 hr in the absence of osmotic water flow. However, in the presence of water flow urea flux was initially enhanced (solvent drag effect) and later retarded (diminished urea permeability). Binding of photoaffinity analogs to receptors was not diminished with acidification of the serosal bathing medium, lowering of the bath temperature from 21 degrees C to 4 degrees C or with addition of prostaglandin E1. However, the capacity of photoreactive analogs to effect an increase in transmural water flux, once the analog was bound covalently to receptors, was markedly diminished under these conditions.  相似文献   

16.
Previous reports have indicated that calcium is necessary to support active sodium transport by the toad bladder, and may be required as well in the action of vasopressin on both toad bladder and frog skin. The structure and function of the toad bladder has been studied in the absence of calcium, and a reinterpretation of the previous findings now appears possible. When calcium is withdrawn from the bathing medium, epithelial cells detach from one another and eventually from their supporting tissue. The short-circuit current (the conventional means of determining active sodium transport) falls to zero, and vasopressin fails to exert its usual effect on short-circuit current and water permeability. However, employing an indirect method for the estimation of sodium transport (oxygen consumption), it is possible to show that vasopressin exerts its usual effect on Qoo2 when sodium is present in the bathing medium. Hence, it appears that the epithelial cells maintain active sodium transport when calcium is rigorously excluded from the bathing medium, and continue to respond to vasopressin. The failure of conventional techniques to show this can be attributed to the structural alterations in the epithelial layer in the absence of calcium. These findings may provide a model for the physiologic action of calcium in epithelia such as the renal tubule.  相似文献   

17.
18.
Vasopressin affects a variety of cell systems. This review is focused on permeability changes induced by vasopressin in tight epithelia such as the collecting duct of the mammalian kidney and the skin and the bladder of anurans. These vasopressin effects are discussed with reference to current concepts and models of the microstructure of the plasma membrane. The transport of three major chemical species--Na, urea and water--is analyzed. In each instance, the hormone appears to activate selective membrane pathways situated at the rat-limiting barrier of the epithelium, i.e., the apical membrane. Available data suggest that two intra-cellular messengers -- cAMP and calcium -- plan a key role in the coupling between stimulus (receptor occupancy) and biological effect (permeability change). The enhancement of Na transport (natriferic effect) depends on the opening and/or the insertion of Na channels, the biophysical and biochemical characteristics of which have been investigated by fluctuation analysis and by means of several chemical blockers of Na transport, particularly the amiloride molecule and its congeners. Likewise, the finding of inhibitors and activators of urea transport, which do not cause any appreciable change in Na or water permeability, led to the notion of selective urea channels or pores. Finally, the enhancement of water transport (hydrosmotic effect) possibly results from the insertion in the apical membrane of water channels already present in vesicular cytoplasmic structures. The restructuring of the apical membrane underlying the transition from a low to a higher state of water permeability is very likely related to the appearance of intramembrane particle aggregates detectable with the freeze-fracture technique in epithelia exposed to vasopressin. The putative water channels (or pores) appear to be so narrow that trans-apical water movement is constrained to single-file diffusion. Recent data also suggest that, in addition to cAMP, microtubules and microfilaments, the calmodulin-Ca complex is a major element in the hydrosmotic effect of vasopressin.  相似文献   

19.
Guanosine 3′:5′-monophosphate has a slight hydroosmotic effect on toad urinary bladder. Furthermore, this nucleotide strongly inhibits the responses to 3′:5′-adenosine monophosphate and oxytocin. The response to an increase in medium tonicity is not modified by the guanosine nucleotide. A role for guanosine 3′:5′-monophosphate in the regulation of water permeability in toad urinary bladder is proposed.  相似文献   

20.
Summary Unstirred layers of water complicate the measurement of water permeability across epithelia. In the toad urinary bladder, the hormone vasopressin increases the osmotic water permeability of the granular epithelial cell's luminal membrane, and also leads to the appearance of aggregates of particles within this membrane. The aggregates appear to be markers for luminal membrane osmotic water permeability. This report analyzes the relationship between transbladder osmotic water flow and aggregate frequency, and demonstrates that flow across the bladder is significantly attenuated by unstirred layers of water or by structural barriers other than the luminal membrane when the luminal membrane is made permeable by vasopressin. This analysis in addition yields unique values for the permeabilities of both the luminal membrane and the barriers to water flow which lie in series with it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号