首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
印度洋表层海水石油降解菌的多样性分析   总被引:2,自引:0,他引:2  
吴常亮  王鑫  邵宗泽 《微生物学报》2010,50(9):1218-1225
【目的】为了研究印度洋石油降解菌多样性,并获得新的石油降解菌。【方法】本研究通过印度洋表层海水样品采集、以柴油与原油1:1混合物作为碳源,从中富集、分离筛选石油降解菌,并通过PCR-DGGE对13个站点富集菌群的菌群结构进行分析。【结果】通过形态观察、生理生化反应和16SrRNA分析,共得到共29个属的51株不同的细菌,它们主要是属于α亚群和γ亚群。其中,Alcanivorax属(占18%),Novosphingobium属(占10%)和Marinobacter(占6%)Thalassospira(占6%)为主要的优势菌。通过生态多样性分析表明,Shannon-Winner指数(H)为4.57968,说明其具有较高的多样性;均匀度指数(E)为0.8664771,表示其分布比较均匀。单菌实验表明,49株具有石油降解能力其中,Sinomonas,Knoellia,Mesoflavibacter等属的细菌为首次发现有降解能力。DGGE分析表明Alcanivorax属的细菌是印度洋表层海水中的重要石油降解菌。【结论】本研究首次揭示了印度洋表层海水中石油降解菌的多样性,并获取了若干在海洋石油污染生物修复中具有应用前景的降解菌。  相似文献   

2.
大西洋洋中脊深海多环芳烃降解菌群的优势菌分析   总被引:3,自引:1,他引:2  
摘要:【目的】为了分析大西洋洋中脊深海海水及表层沉积物中多环芳烃(PAHs)降解菌群中的优势菌。【方法】采用富集培养法和平板涂布法从深海样品中分离可培养细菌及PAHs降解菌。通过16S rRNA基因测序完成系统发育分析。采用变性梯度凝胶电泳(DGGE)及DNA测序分析降解菌群中的优势菌。【结果】总共分离到16株细菌,包括一株PAHs降解菌Novosphingobium sp. 4D。系统发育分析发现,可培养细菌中两个最大的类群分别与Alcanivorax dieselolei NO1A(5/16)和Tistrella mobilis TISTR 1108T(5/16)亲缘关系最近。DGGE结果表明,在菌群MC2D中菌株4L(以及4M、4N, Alcanivorax dieselolei NO1A, 99.21%)、4D(Novosphingobium pentaromativorans US6-1T,97.07%)和4B(以及4E、4H、4K,Tistrella mobilis TISTR 1108T,>99%)是降解菌群中的优势菌。而降解菌群MC3CO中的优势菌是菌株5C(以及5H,Alcanivorax dieselolei NO1A,>99%)、条带5-8代表的未培养菌株(Novosphingobium aromaticivorans DSM 12444T,99.41%)、5J(Tistrella mobilis TISTR 1108T,99.52%)和5F(以及5G,Thalassospira lucentensis DSM 14000T,<97%)。【结论】本研究发现在大西洋洋中脊深海海水及表层沉积物中Alcanivorax、Novosphingobium、Thalassospira、Tistrella属的细菌是PAHs降解菌群中的优势菌,其中的主要降解菌是Novosphingobium属的细菌。  相似文献   

3.
胜利油田滩涂区石油降解菌的筛选、鉴定及其多样性分析   总被引:6,自引:0,他引:6  
基于传统的实验方法,对胜利油田滩涂区土壤中石油降解菌进行了筛选和鉴定,并利用PCR-DGGE (变性梯度凝胶电泳)技术分析了胜利油田滩涂区的菌群多样性.结果表明:由研究区土壤中筛选出13株石油降解菌,其中,6株石油降解菌的石油降解率>90%,能降解大部分C12~C26的石油烷烃,系统发育学鉴定为Alcanivorax、Halomonas和Marinobacter,均属于γ-proteobacteria分支;胜利油田滩涂区未培养优势菌有Sulfurovum、Gillisia和Arcobacter;该区优势菌群中γ-proteobacteria所占比重较大,其次为α-proteobactiria、ε-proteobactiria、Actinobacteria 和Flavobacteria.  相似文献   

4.
【目的】食烷菌是海洋烃类降解优势菌,其烷烃代谢调控机制有待深入研究。本研究拟从食烷菌转录和翻译水平上认识烷烃降解的调控过程。【方法】分别以乙酸和正十六烷(C16)为唯一碳源与能源,获取柴油食烷菌(Alcanivorax dieselolei) B5菌株的转录组和翻译组数据,并整合数据计算得到该菌在2种碳源培养条件下基因的翻译效率。采用基因本体论(gene ontology, GO)和京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)对差异翻译和翻译效率基因进行功能和代谢通路注释。【结果】当以C16为唯一碳源与能源时,B5菌株烷烃代谢途径的关键基因在转录与翻译水平均大量提升,包括烷烃单加氧酶、细胞色素P450氧化酶、醇脱氢酶和醛脱氢酶等。KEGG富集结果表明,翻译水平显著上调基因参与了肽聚糖生物合成、脂肪酸降解、氯代烷烃降解、氧化磷酸化和生物膜形成等通路;翻译效率差异基因主要富集在铁载体非核糖体肽的生物合成、氧化磷酸化和不饱和脂肪酸的生物合成等途径。通过转录组和翻译组学的联合分析显示,为了适应烷烃氧化,B5有效地协调了转...  相似文献   

5.
陈亮  董纯明  何进  邵宗泽 《微生物学报》2010,50(10):1392-1398
摘要:【目的】为了分析厦门近海原位海水中多环芳烃降解菌的多样性。【方法】将涂有菲的聚氯乙烯(PVC)板悬挂在厦门国际邮轮码头的海水中,进行菲降解菌的原位富集。利用变性梯度凝胶电泳(Denaturing gradient gel electrophoresis,DGGE)和16S rRNA基因文库两种方法分析了在PVC板表面富集微生物的菌群结构。之后,在实验室模拟原位条件下,对PVC板表面富集的菲降解菌群进行进一步富集、分离和初步鉴定。【结果】PVC板在海水中浸没6 d后,16S rRNA基因文库分析表明,在涂菲的PVC板表面富集的菌群中解环菌属(Cycloclasticus)对应的克隆子占文库总克隆子的50%;在未涂菲的PVC板表面吸附的菌群中红杆菌科(Rhodobacteraceae)为优势菌,其对应的克隆子占文库总克隆子的47%;而解环菌属的克隆子只占文库总克隆子的2%。DGGE的分析结果也证明解环菌是菲原位富集降解菌群中的优势菌。实验室进一步富集后,从该菌群中分离鉴定出14株细菌,其中一株新鞘氨醇杆菌B14(Novosphingobium sp.B14)具有菲降解能力。但是,解环菌未能获得纯培养。【结论】菲原位富集发现,厦门近海水体中解环菌是多环芳烃的主要降解菌。  相似文献   

6.
陈双喜  邵宗泽 《微生物学报》2008,48(10):1351-1355
[目的]为了筛选深海砷抗性菌,了解印度洋中脊深海沉积物砷抗性菌的多样性情况.[方法]通过砷富集培养,筛选出砷抗性菌;通过变性梯度凝胶电泳(DGGE)分析与构建16S rDNA克隆文库法两种手段分析了富集物中砷抗性菌的多样性.利用兼并引物PCR,从抗性菌株中克隆与砷抗性相关的基因.[结果]共筛选到8株砷抗性菌,分别属于y-proteobacteria的5个不同的属.其中,菌株AS-I1-3的抗性最高,可以在26×10-3 mol/L三价砷存在的情况下生长,该菌株的16S rDNA序列与菌株Pseudoalteromonas tetraodoni IAM同源性最高(100%).DGGE分析显示,该菌是富集物中的最优势菌,其次是盐单胞菌(Halomonas)和海杆菌(Marinobacter).16S rDNA克隆文库分析结果进一步证明,与菌株AS-I1-3序列相同的克隆子占整个克隆文库的72.5%;而与菌株AS-I1-5(Halomonas meridiana,100%)和菌株Mn-I1-6(Marinobacter vinifirmus,99%)序相同的克隆子分别占10%和7.5%.然而,利用兼并引物PCR,仅能从2株非优势菌中克隆到了与砷抗性相关的基因,表明菌群中的优势抗性菌可能有其他的抗性机制.[结论]在深海环境中存在着多种砷抗性菌,其中Pseudoalteromonas属的菌株是该富集条件下的砷抗性优势菌.这些砷抗性菌在大洋环境砷元素的生物地球化学循环中的作用有待进一步研究.  相似文献   

7.
任菲  郗丽君  宋磊  朱雅新  董志扬  黄英  黄力  戴欣 《微生物学报》2012,52(11):1318-1325
[目的]分析西南印度洋深海热液羽流细菌的多样性特点,为认识该特殊环境微生物对大洋生态系统的影响,以及获得特殊的微生物资源奠定基础.[方法]将西南印度洋深海热液羽流海水进行原位浓缩,对获得的1000倍浓缩海水样品进行富集培养和微生物纯培养 ;通过构建原始海水浓缩样品和富集培养物的16S rRNA基因克隆文库,结合纯培养获得的微生物菌株的16S rRNA基因,分析该样品的细菌多样性结构和特点.[结果]共获得104个16S rRNA基因,其中50个来自原始热液羽流浓缩海水样品,40个来自富集培养物,14个来自分离获得的纯培养,它们分属于γ-变形菌群(γ-Proteobacteria)(74个),α-变形菌群(α-Proteobacteria)(14个),β-变形菌群(β-Proteobacteria)(5个),拟杆菌群(Bacteroidetes)(4个),厚壁菌群(Firmicutes)(2个),浮霉状菌(Planctomycetes)(2个),疣微菌(Verrucomicrobia)(2个)以及放线菌(Actinobacteria)(1个),共29个不同的操作分类单元(Operational Taxonomic Units,OTUs).26个序列与已知微生物16S rRNA基因相似性低于97%,最低的只有86%.[结论]西南印度洋热液羽流存在较丰富的微生物多样性,以γ-Proteobacteria为优势类群,其次为α-Proteobacteria ;该环境中存在较多尚未获得分离培养的微生物新属种.  相似文献   

8.
南海深海沉积物烷烃降解菌的富集分离与多样性初步分析   总被引:13,自引:0,他引:13  
刘真  邵宗泽 《微生物学报》2007,47(5):869-873
通过培养和非培养2种手段研究了南海沉积物中石油降解菌的多样性。通过烷烃富集培养,从2个站点不同深度的南海沉积物样品中富集筛选出48株深海细菌,其中27株对十六烷有降解能力。表面张力测定结果表明,4株降解菌同时具有较强的表面活性剂产生能力,2株Dietzia maris菌能使水的表面张力降至33mN/m左右,这是该种微生物产表面活性剂的首次报道。通过变性梯度凝胶电泳(DGGE)分析显示,南海沉积物富集物中的烷烃降解菌优势菌是芽孢杆菌,而且有多种。其中,Bacillus aquimaris在两个站点的7个样品的富集物中都是优势菌。此外,Sporosarcina,Halomona以及Brevibacterium属的细菌在不同样品中也表现为除Bacillus之外的优势菌。  相似文献   

9.
十溴联苯醚降解菌群的降解特性与组成分析   总被引:2,自引:0,他引:2  
[目的]针对水体沉积物中日益严重的多溴联苯醚污染问题,以电子垃圾污染河床沉积物为种源富集驯化获得的菌群Cf3,研究该菌群对十溴联苯醚的降解特性以及其菌群结构组成.[方法]通过GC-MS分析十溴联苯醚降解后低溴代产物组成,并测定其降解率;通过DGGE技术分析了该BDE-209降解菌群的结构组成.[结果]菌群Cf3具有较强降解BDE-209的能力,经过120 d的培养,初始量为2.6 μmol的BDE-209降解率达到80.03%,OD600从0.01增长到0.21,pH由初始的6.93增加到反应结束时的8.50.菌群Cf3经过单菌落分离,共获得10株可培养细菌,通过16S rRNA基因序列比对发现,其中6株与柠檬酸杆菌属(Citrobacter spp.)具有较高同源性,其余4株与产碱杆菌属(Alcaligenes spp.)较相似.进一步采用DGGE分析菌群Cf3的结构组成时发现,除了分离得到的2个菌属外,该菌群中还含有拟杆菌属(Wolinella spp.)、氨基酸球菌属(Acidaminococcus spp.),以及随着降解时间延长而消失的脱硫弧菌属(Desulfovibrio spp.)和醋杆菌属(Acetobacterium spp.).[结论]获得了具有较强多溴联苯醚降解能力的菌群,并分析了其降解特性和群落组成,为进一步开展溴代阻燃剂等持久性有机污染物的生物修复提供宝贵的菌种资源和科学数据.  相似文献   

10.
杨洋  邵宗泽 《生物资源》2017,(6):423-433
烃类物质在海洋环境中广泛分布,深海可能含有特殊的烃降解微生物。本研究通过对西南印度洋中脊与印度洋中部深海沉积物中石油降解菌的富集培养和分离鉴定,从6个站点的样品中共分离得到800株菌,通过BOX-PCR去重复菌株后,对其中183株菌进行了16S rRNA基因序列分析,发现这些菌分属于23个属;其中,γ-变形菌纲的食烷菌属(Alcanivorax)和放线菌纲的微杆菌属(Microbacterium)占优势。此外,还发现了食烷菌属2个潜在的新种、假海栖菌属(Pseudooceanicola)1个潜在新种。高通量测序结果证明,富集菌群中γ-变形菌纲是优势菌,主要包括食烷菌属、盐单胞菌属(Halomonas)、海杆菌属(Marinobacter)等。结合可培养菌与高通量测序结果,食烷菌属、盐单胞菌属、海杆菌属、交替假单胞菌(Pseudoalteromonas)、海源菌属(Idiomarina)与微杆菌属(Microbacterium)是沉积物样品中常见的石油烃降解菌,迪茨氏菌属(Dietzia)、红球菌属(Rhodococcus),假单胞菌属(Pseudomonas)、赤杆菌属(Erythrobacter)与副球菌属(Paracoccus)等可能也参与了烃的降解。  相似文献   

11.
Many bacteria have been reported as degraders of long-chain (LC) n-alkanes, but the mechanism is poorly understood. Flavin-binding monooxygenase (AlmA) was recently found to be involved in LC-alkane degradation in bacteria of the Acinetobacter and Alcanivorax genera. However, the diversity of this gene and the role it plays in other bacteria remains unclear. In this study, we surveyed the diversity of almA in marine bacteria and in bacteria found in oil-enrichment communities. To identify the presence of this gene, a pair of degenerate PCR primers were was designed based on conserved motifs of the almA gene sequences in public databases. Using this approach, we identified diverse almA genes in the hydrocarbon-degrading bacteria and in bacterial communities from the surface seawater of the Xiamen coastal area, the South China Sea, the Indian Ocean, and the Atlantic Ocean. As a result, almA was positively detected in 35 isolates belonging to four genera, and a total of 39 different almA sequences were obtained. Five isolates were confirmed to harbor two to three almA genes. From the Xiamen coastal area and the Atlantic Ocean oil-enrichment communities, a total of 60 different almA sequences were obtained. These sequences mainly formed two clusters in the phylogenetic tree, named Class I and Class II, and these shared 45-56% identity at the amino acid level. Class I contained 11 sequences from bacteria represented by the Salinisphaera and Parvibaculum genera. Class II was larger and more diverse, and it was composed of 88 sequences from Proteobacteria, Gram-negative bacteria, and the enriched bacterial communities. These communities were represented by the Alcanivorax and Marinobacter genera, which are the two most popular genera hosting the almA gene. AlmA was also detected across a wide geographical range, as determined by the origin of the bacterial host. Our results demonstrate the diversity of almA and confirm its high rate of occurrence in hydrocarbon-degrading bacteria, indicating that this gene plays an important role in the degradation of LC alkanes in marine environments.  相似文献   

12.
第六次北极科学考察海洋沉积物可培养细菌的多样性分析   总被引:2,自引:0,他引:2  
【目的】研究北极海洋沉积物可培养细菌的菌种资源多样性。【方法】采用海水Zobell2216E培养基和涂布平板法对第六次北极科学考察获得的海洋沉积物开展细菌分离培养,通过16S rRNA基因系统发育分析了解可培养细菌的多样性。【结果】根据菌落形态特征,从40个站位的北极海洋沉积物样品中共分离并获得16S rRNA基因有效序列的细菌达445株;基于16S rRNA基因的相似性分析与系统发育研究结果表明,分离获得的细菌分属于细菌域的4个门、6个纲、13个目、28个科、49个属、91个种,其中γ-Proteobacteria占大多数;有12株与模式菌株的16S rRNA基因序列相似性小于97%,可能代表了6个潜在的细菌新物种;此次获得的细菌种类组成与以往第五次北极科考获得的相比,在属水平上差异较大。【结论】北极海洋沉积物中存在着丰富的微生物菌种资源,具有很多新型微生物仍未被发现,是亟待开发的微生物资源宝库。  相似文献   

13.
Archaea assemblages from the Arctic Ocean and Antarctic waters were compared by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes amplified using the Archaea-specific primers 344f and 517r. Inspection of the DGGE fingerprints of 33 samples from the Arctic Ocean (from SCICEX submarine cruises in 1995, 1996, and 1997) and 7 Antarctic samples from Gerlache Strait and Dallman Bay revealed that the richness of Archaea assemblages was greater in samples from deep water than in those from the upper water column in both polar oceans. DGGE banding patterns suggested that most of the Archaea ribotypes were common to both the Arctic Ocean and the Antarctic Ocean. However, some of the Euryarchaeota ribotypes were unique to each system. Cluster analysis of DGGE fingerprints revealed no seasonal variation but supported depth-related differences in the composition of the Arctic Ocean Archaea assemblage. The phylogenetic composition of the Archaea assemblage was determined by cloning and then sequencing amplicons obtained from the Archaea-specific primers 21f and 958r. Sequences of 198 clones from nine samples covering three seasons and all depths grouped with marine group I Crenarchaeota (111 clones), marine group II Euryarchaeota (86 clones), and group IV Euryarchaeota (1 clone). A sequence obtained only from a DGGE band was similar to those of the marine group III Euryarchaeota:  相似文献   

14.
Bioremediation, mainly by indigenous bacteria, has been regarded as an effective way to clean up oil pollution after an oil spill. In order to obtain a systematic understanding of the succession of bacterial communities associated with oil bioremediation, sediments collected from the Penglai 19-3 oil platform were co-incubated with crude oil. Oil biodegradation was assessed on the basis of changes in oil composition monitored by GC–MS. Changes in the bacterial community structure were detected by two 16S rRNA gene based culture-independent methods, denaturing gradient gel electrophoresis (DGGE) and clone library. The results suggested that crude oil was rapidly degraded during the 30-day bioremediation period. Bacteria affiliated with the genus Pseudomonas dominated all three clone libraries. But dramatic changes were also detected in the process of biodegradation of crude oil. The “professional hydrocarbonocastic bacteria” (e.g., Alcanivorax) became abundant in the two samples during the bioremediation period. Meanwhile, δ-proteobacteria was only detected in the two samples. Information on the bacterial community revealed in this study will be useful in developing strategies for bioremediation of crude oil dispersed in the marine ecosystem.  相似文献   

15.
Archaea assemblages from the Arctic Ocean and Antarctic waters were compared by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes amplified using the Archaea-specific primers 344f and 517r. Inspection of the DGGE fingerprints of 33 samples from the Arctic Ocean (from SCICEX submarine cruises in 1995, 1996, and 1997) and 7 Antarctic samples from Gerlache Strait and Dallman Bay revealed that the richness of Archaea assemblages was greater in samples from deep water than in those from the upper water column in both polar oceans. DGGE banding patterns suggested that most of the Archaea ribotypes were common to both the Arctic Ocean and the Antarctic Ocean. However, some of the Euryarchaeota ribotypes were unique to each system. Cluster analysis of DGGE fingerprints revealed no seasonal variation but supported depth-related differences in the composition of the Arctic Ocean Archaea assemblage. The phylogenetic composition of the Archaea assemblage was determined by cloning and then sequencing amplicons obtained from the Archaea-specific primers 21f and 958r. Sequences of 198 clones from nine samples covering three seasons and all depths grouped with marine group I Crenarchaeota (111 clones), marine group II Euryarchaeota (86 clones), and group IV Euryarchaeota (1 clone). A sequence obtained only from a DGGE band was similar to those of the marine group III Euryarchaeota.  相似文献   

16.
A pyrene-degrading bacterial consortium was obtained from deep-sea sediments of the Pacific Ocean. The consortium degraded many kinds of polycyclic aromatic hydrocarbons (PAHs), including naphthalene, phenanthrene, pyrene, acenaphthene, fluorene, anthracene, fluoranthene, 2-methylnaphthalene and 2,6-dimethylnaphthalene, but it did not grow with chrysene and benzo[alpha]pyrene. With methods of plate cultivation and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), 72 bacteria belonging to 22 genera were detected from this consortium. Among the detected bacteria, the following genera frequently occurred: Flavobacterium, Cycloclasticus, Novosphingobium, Halomonas, Achromobacter, Roseovarius and Alcanivorax. The first two genera showed the strongest bands in denaturing gradient gel electrophoresis (DGGE) profiles and appeared in all PAH treatments. By now, only one isolate designated P1 was confirmed to be a pyrene degrader. It was identified to be Cycloclasticus spirillensus (100%). Although P1 can degrade pyrene independently, other bacteria, such as Novosphingobium sp. (Band 14), Halomonas sp. (Band 16) and an unidentified bacterium (Band 35), were involved in pyrene degradation in some way; they persist in the consortium in the test of dilution to extinction if only the consortium was motivated with pyrene. However, the secondary most important member Flavobacterium sp. evaded from the community at high dilutions. As a key member of the consortium, P1 distinguished itself by both cell morphology and carbon source range among the isolates of this genus. Based on intermediate analyses of pyrene degradation, P1 was supposed to take an upper pathway different from that previously reported. Together with the results of obtained genes from P1 homology with those responsible for naphthalene degradation, its degradation to pyrene is supposed to adopt another set of genes unique to presently detected. Summarily, an efficient pyrene-degrading consortium was obtained from the Pacific Ocean sediment, in which Cycloclasticus bacterium played a key role. This is the first report to exploit the diversity of pyrene-degrading bacteria in oceanic environments.  相似文献   

17.
The spatial distribution and diversity of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria (hereinafter referred to as ammonia oxidizers) in the Arctic Ocean were determined. The presence of ammonia oxidizers was detected by PCR amplification of 16S rRNA genes using a primer set specific for this group of organisms (nitA and nitB, which amplifies a 1.1-kb fragment between positions 137 and 1234, corresponding to Escherichia coli 16S rDNA numbering). We analyzed 246 samples collected from the upper water column (5 to 235 m) during March and April 1995, September and October 1996, and September 1997. Ammonia oxidizers were detected in 25% of the samples from 5 m, 80% of the samples from 55 m, 88% of the samples from 133 m, and 50% of the samples from 235 m. Analysis of nitA-nitB PCR product by nested PCR-denaturing gradient gel electrophoresis (DGGE) showed that all positive samples contained the same major band (band A), indicating the presence of a dominant, ubiquitous ammonia oxidizer in the Arctic Ocean basin. Twenty-two percent of the samples contained additional major bands. These samples were restricted to the Chukchi Sea shelf break, the Chukchi cap, and the Canada basin; areas likely influenced by Pacific inflow. The nucleotide sequence of the 1.1-kb nitA-nitB PCR product from a sample that contained only band A grouped with sequences designated group 1 marine Nitrosospira-like sequences. PCR-DGGE analysis of 122 clones from four libraries revealed that 67 to 71% of the inserts contained sequences with the same mobility as band A. Nucleotide sequences (1.1 kb) of another distinct group of clones, found only in 1995 samples (25%), fell into the group 5 marine Nitrosomonas-like sequences. Our results suggest that the Arctic Ocean beta-proteobacterial ammonia oxidizers have low diversity and are dominated by marine Nitrosospira-like organisms. Diversity appears to be higher in Western Arctic Ocean regions influenced by inflow from the Pacific Ocean through the Bering and Chukchi seas.  相似文献   

18.
Crude oil is a complex mixture of different hydrocarbons. While diverse bacterial communities can degrade oil, the specific roles of individual members within such communities remain unclear. To identify the key bacterial taxa involved in aerobic degradation of specific hydrocarbons, microcosm experiments were established using seawater from Stanford le Hope, Thames estuary, UK, adjacent to a major oil refinery. In all microcosms, hydrocarbon degradation was significant within 10 weeks, ranging from > 99% of low-molecular-weight alkanes (C(10)-C(18)), 41-84% of high-molecular-weight alkanes (C(20)-C(32)) and pristane, and 32-88% of polycyclic aromatic hydrocarbons (PAHs). Analysis of 16S rRNA sequences from clone libraries and denaturing gradient gel electrophoresis (DGGE) indicated that, except when incubated with fluorene, PAH-degrading communities were dominated by Cycloclasticus. Moreover, PAH-degrading communities were distinct from those in microcosms containing alkanes. Degradation of the branched alkane, pristane, was carried out almost exclusively by Alcanivorax. Bacteria related to Thalassolituus oleivorans (99-100% identity) were the dominant known alkane degraders in n-alkane (C(12)-C(32)) microcosms, while Roseobacter-related bacteria were also consistently found in these microcosms. However, in contrast to previous studies, Thalassolituus, rather than Alcanivorax, was dominant in crude oil-enriched microcosms. The communities in n-decane microcosms differed from those in microcosms supplemented with less volatile alkanes, with a phylogenetically distinct species of Thalassolituus out-competing T. oleivorans. These data suggest that the diversity and importance of the genus Thalassolituus is greater than previously established. Overall, these experiments demonstrate how degradation of different petroleum hydrocarbons is partitioned between different bacterial taxa, which together as a community can remediate petroleum hydrocarbon-impacted estuarine environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号