首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A polyphasic taxonomic study was undertaken to establish the taxonomic position of six representative strains isolated from activated sewage sludge foam. The organisms were found to have chemical and morphological properties consistent with their assignment to the genus Tsukamurella. DNA:DNA relatedness studies showed that five out of the six isolates formed a distinct genomic species, the remaining strain was most closely associated with this taxon. The five isolates had a unique phenotypic profile that served to distinguish them from representatives of the validly described species of Tsukamurella. The combination of the genotypic and phenotypic data indicated that the five strains should be classified as a new species in the genus Tsukamurella. The name proposed for this taxon is Tsukamurella spumae, the type strain is N1171T (= DSM 44.113T = NCIMB 13947T). It was also shown that some of the reference strains were misclassified as Tsukamurella paurometabola.  相似文献   

2.
The taxonomic positions of two actinomycetes, strains Bc663 and 10bc312T, provisionally assigned to the genus Rhodococcus were determined using a combination of genotypic and phenotypic properties. The organisms have phenotypic properties typical of members of the genus Rhodococcus and were assigned to the 16S rRNA subgroup which contains Rhodococcus rhodochrous and closely related species. The two strains, which have many phenotypic features in common, belong to the same genomic species albeit one readily separated from Rhodococcus ruber with which they form a distinct phyletic line. The organisms were also distinguished from all of the species classified in the R. rhodochrous subgroup, including R. ruber, using a combination of phenotypic properties. The genotypic and phenotypic data show that strains Bc663 and 10bc312T merit recognition as a new species of Rhodococcus. The name proposed for the new species is Rhodococcus aetherivorans (10bc312T = DSM 44752T = NCIMB 13964T).  相似文献   

3.
Gene transfer systems for Gordonia polyisoprenivorans strains VH2 and Y2K based on electroporation and conjugation, respectively, were established. Several parameters were optimized, resulting in transformation efficiencies of >4 x 10(5) CFU/ micro g of plasmid DNA. In contrast to most previously described electroporation protocols, the highest efficiencies were obtained by applying a heat shock after the intrinsic electroporation. Under these conditions, transfer and autonomous replication of plasmid pNC9503 was also demonstrated to proceed in G. alkanivorans DSM44187, G. nitida DSM44499(T), G. rubropertincta DSM43197(T), G. rubropertincta DSM46038, and G. terrae DSM43249(T). Conjugational plasmid DNA transfer to G. polyisoprenivorans resulted in transfer frequencies of up to 5 x 10(-6) of the recipient cells. Recombinant strains capable of polyhydroxyalkanoate synthesis from alkanes were constructed.  相似文献   

4.
The taxonomic position of three actinomycete strains isolated from Malaysian soil was established by using a polyphasic approach. The isolates formed chains composed of four spores on the tip of sporophores branching from the aerial mycelium, and their chemotaxonomic properties were common to those of members of the family Streptosporangiaceae. These phenotypic properties as well as a phylogenetic analysis based on 16S rRNA gene sequences indicated that they should be classified in the genus Microtetraspora. The three isolates showed a unique pattern of cultural, physiological and biochemical properties that distinguished them from previously described species of the genus Microtetraspora. The isolates showed more than 72% DNA relatedness to each other, but only 58% or less relatedness to any previously described species. On the basis of the data presented, a new species of the genus Microtetraspora, Microtetraspora malaysiensis, is proposed. The type strain of the new species is strain H47-7(T) (=JCM 11278(T)=DSM 44579(T)).  相似文献   

5.
The taxonomic position of two soil isolates, strains A288(T) and A290(T) [provisionally assigned to the genus Actinomadura] was clarified in a polyphasic study. The organisms showed a combination of chemotaxonomic and morphological properties typical of actinomadurae. They also formed distinct phyletic lines in the 16S rRNA Actinomadura gene tree; strain A288(T) was associated with A. nitritigenes whereas strain A290(T) was closely related to a group that consisted of A. citrea, A. coerulea, A. glauciflava, A. luteofluorescens and A. verrucosospora. Strains A288(T) and A290(T) showed key phenotypic features which readily distinguish them from one another and from representatives of related validly described species of Actinomadura. It is proposed that the two organisms be classified as new species of the genus Actinomadura. The names proposed for the new taxa are Actinomadura mexicana (A290(T) = DSM 44485(T) = NRRL B-24203(T)), and Actinomadura meyerii (A288(T) = DSM 44485(T) = NRRL B-24203(T)).  相似文献   

6.
The taxonomic position of three acidophilic actinomycetes isolated from acidic rhizosphere soil was established using a polyphasic approach. The morphological and chemical properties of the isolates were found to be consistent with their assignment to the genus Streptacidiphilus. Almost complete 16S rRNA gene sequences determined for the strains were aligned with corresponding sequences of representatives of the genera Kitasatospora, Streptacidiphilus and Streptomyces and phylogenetic trees inferred using three tree-making algorithms. The organisms formed a distinct subclade within the Streptacidiphilus 16S rRNA gene tree. They also shared nearly identical phenotypic profiles and rep-PCR fingerprint patterns that readily distinguished them from representatives of the established species of Streptacidiphilus. It is evident from the genotypic and phenotypic data that the three isolates form a new species in the genus Streptacidiphilus. The name proposed for this new species is Streptacidiphilus jiangxiensis, the type strain is isolate 33214T (= AS 4.1857T = JCM 12277T).  相似文献   

7.
Two actinomycete strains, designated YIM 30006(T) and YIM 31075(T), were isolated from soil samples in Yunnan, China and subjected to a polyphasic taxonomic study. Morphological and chemotaxonomic analysis revealed that the two isolates should be consistent with the nocardioform actinomycetes. Comparative 16S rDNA sequences confirmed that the two unknown isolates to be members of the genus Kribbella. Based on the results of phenotypic characteristics, phylogenetic studies and DNA-DNA hybridization results, strains YIM 30006(T) and YIM 31075(T) should be classified as two novel species of the genus Kribbella, for which the names Kribbella yunnanensis sp. nov. and Kribbella alba sp. nov. are proposed. The type strains for them are YIM 30006(T) (=CCTCC AA001019(T)=DSM 15499(T)) and YIM 31075(T) (=CCTCC AA 001020(T)=DSM 15500(T)), respectively. The 16S rDNA sequences of strains YIM 30006(T), YIM 31075(T) have been deposited in GenBank under the accession numbers AY 082061 and AY 082062, respectively.  相似文献   

8.
Nine strains isolated from mycetoma patients and received as Streptomyces somaliensis were the subject of a polyphasic taxonomic study. The organisms shared chemical markers consistent with their classification in the genus Streptomyces and formed two distinct monophyletic subclades in the Streptomyces 16S rRNA gene tree. The first subclade contained four organisms, including the type strain of S. somaliensis, and the second clade the remaining five strains which had almost identical 16S rRNA sequences. Members of the two subclades were sharply separated using DNA:DNA relatedness and phenotypic data which also showed that the subclade 1 strains formed an heterogeneous group. In contrast, the subclade 2 strains were assigned to a single genomic species and had identical phenotypic profiles. It is evident from these data that the subclade 2 strains should be recognised as a new species of Streptomyces. The name proposed for this new species is Streptomyces sudanensis sp. nov. The type strain is SD 504T (DSM = 41923T = NRRL B-24575T). Erika T. Quintana and Katarzyna Wierzbicka contributed equally to this work. The GenBank accession numbers for the 16S rRNA gene sequences of Streptomyces somaliensis DSM 40738T and Streptomyces sudanensis DSM 41607, DSM 41608, DSM 41609, SD 504T and SD 509 are EF540897, EF540898, EF540999, EF515876 and EF540900.  相似文献   

9.
The taxonomic position of an actinomycete isolated from soil was evaluated using a polyphasic approach. The organism, strain J72, was found to have chemical and morphological properties consistent with its assignment to the genus Gordonia. A nearly complete 16S rDNA sequence of the strain was determined by direct sequencing of the amplified gene. The tested strain formed a distinct phylogenetic line within the evolutionary radiation occupied by the genus Gordonia and was most closely related to G. polyisoprenivorans DSM 44302T. The phenotypic profile of strain 372 readily distinguishes it from representatives of the validly described species of Gordonia. The combined genotypic and phenotypic data show that strain J72 merits recognition as a new species of Gordonia. The name proposed for the new species is Gordonia sinesedis; the type strain is J72T (= DSM 44455T = NCIMB 13802T). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The importance of the emerging genus Gordonia in industrial and environmental biotechnology is evidenced by the recent increase in associated publications and patents. But, investigations into potentially valuable Gordonia members are restricted by the limitations of current isolation and detection techniques. This motivated us to design a genus-specific oligonucleotide primer pair which could assist in rapid detection of species of the genus Gordonia by means of PCR-specific amplification. The Gordonia-specific 16S rDNA fragment (829 bp) was successfully amplified for all the reference Gordonia species with the designed primer pair G268F/G1096R. No amplification was noted for closely related species from other genera. The genus specificity was validated with 47 strains including wild-type isolates. Interestingly, two strains assigned earlier as Gordonia nitida (DSM 777) and Gordonia rubripertinctus (ATCC 21930) failed to produce a Gordonia-specific fragment with this primer pair. Further analysis of these two isolates based on 16S rDNA sequencing and phylogenetic analysis classified them to the genus Rhodococcus. Preliminary screening of soil samples with the Gordonia-specific primers was successful in terms of the rapid detection of nine Gordonia wild-type isolates.  相似文献   

11.
Two strains of a previously undescribed Eubacterium-like bacterium were isolated from human faeces. The strains are Gram-variable, obligately anaerobic, catalase negative, asporogenous rod-shaped cells which produced acetate, butyrate and lactate as the end products of glucose metabolism. The two isolates displayed 99.9% 16S rRNA gene sequence similarity to each other and treeing analysis demonstrated the faecal isolates are far removed from Eubacterium sensu stricto and that they represent a new subline within the Clostridium coccoides group of organisms. Based on phenotypic and phylogenetic criteria, it is proposed that the two strains from faeces be classified as a new genus and species, Anaerostipes caccae. The type strain of Anaerostipes caccae is NCIMB 13811T (= DSM 14662T).  相似文献   

12.
在前期数值分类工作的基础上,对7株与Rhizobium关系较密切的分离自西藏部分地区豆科植物Trigonellaspp.和Astragalusspp.的根瘤菌所形成的独立表观群,通过DNA同源性测定及16S rDNA全序列分析进行了分类地位的进一步确定。结果表明:该独立表观群菌株的(G C)mol%为59.5%~63.3%,群内菌株间DNA同源性在74.3%~92.3%之间,中心菌株XZ2-3与相关Rhizobium种之间的DNA同源性在0%~47.4%之间,是不同于Rhizobium内各种的新DNA同源群。另外,16S rDNA全序列分析结果也表明,中心菌株XZ2-3占居Rhizobium系统发育分支中的一个独立亚分支,其与临近R.leguminosarumUSDA2370T和R.etliCFN42T之间的序列相似性分别为96.55%和96.62%。根据国际系统细菌学委员会提出的细菌种属分类标准,该独立表观群构成了一个不同于Rhizobium内各种的新种群。该研究结果丰富了现有根瘤菌分类系统,将为国际上现有Rhizobium的14个种中再增添一个新的分类单元。  相似文献   

13.
Phenotypic and phylogenetic studies were performed on seven unidentified gram-negative, facultatively anaerobic, coccobacillus-shaped organisms isolated from human clinical specimens. Comparative 16S rRNA gene sequencing demonstrated that four of the strains corresponded to Dysgonomonas capnocytophagoides whereas the remaining three isolates represent a new sub-line within the genus Dysgonomonas, displaying greater than 5% sequence divergence with Dysgonomonas capnocytophagoides and Dysgonomonas gadei. The three novel isolates were readily distinguished from D.capnocytophagoides and D. gadei by biochemical tests. The DNA base composition of the novel species was consistent with its assignment to the genus Dysgonomonas. Based on phylogenetic and phenotypic evidence it is proposed that the unknown species, be classified as Dysgonomonas mossii sp. nov. The type strain of Dysgonomonas mossii is CCUG 43457T (= CIP 107079T).  相似文献   

14.
15.
Strain CH7T, a pale yellow-pigmented bacterium and new isolate from deep subsurface water of the South Coast of Korea, was subjected to a polyphasic taxonomic study. CH7T grew between 5 and 37 degrees C, pH 5.3-10.5, and tolerated up to 13% NaCl. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain CH7T was associated with the genus Arthrobacter and phylogenetically closely related to the type strains Arthrobacter tumbae (99.4%) and Arthrobacter parietis (99.1%). However, DNA-DNA hybridization experiments revealed 2.1% and 12% between strain CH7T and Arthrobacter tumbae and Arthrobacter parietis, respectively. Thus, the phenotypic and phylogenetic differences suggested that CH7T should be placed in the genus Arthrobacter as a novel species, for which the name Arthrobacter subterraneus sp. nov. is proposed. In addition, the type strain for the new species is CH7T (=KCTC 9997T=DSM 17585T).  相似文献   

16.
Three strains of strictly aerobic, Gram-negative, naphthalene-degrading bacteria isolated from polychlorinated-dioxin-contaminated soil and sediment were characterized. These isolates grew well with naphthalene as the sole carbon and energy source, degrading it completely within 24 h of incubation. The isolates also degraded dibenzofuran co-metabolically in the presence of naphthalene with the concomitant production of yellow intermediate metabolite(s). A 16S rRNA gene sequence analysis revealed that the isolates affiliated to the genus Novosphingobium with Novosphingobium pentaromativorans and Novosphingobium subarcticum as their nearest phylogenetic neighbors (97.4-97.5% similarity). The isolates had a genomic DNA G+C ratio of 64.5-64.6 mol% and formed a genetically coherent group distinguishable from any established species of the genus Novosphingobium at a DNA-DNA hybridization level of less than 46%. The cellular fatty acids were characterized by the predominance of 18 : 1omega7c with significant proportions of 16 : 0, 16 : 1omega7c, 17 : 1omega6c and 2-OH 14 : 0. Sphingoglycolipids were present. The major respiratory quinone was ubiquinone-10. Spermidine was detected as the major polyamine. The distinct taxonomic position of the isolates within the Novosphingobium was also demonstrated by physiological and biochemical testing. Based on these phylogenetic and phenotypic data, we propose Novosphingobium naphthalenivorans sp. nov. to accommodate the novel isolates. The type strain is strain TUT562(T) (DSM 18518(T), JCM 13951(T), NBRC 102051(T)).  相似文献   

17.
Two Gram-positive strains isolated from cysts of the brine shrimp Artemia franciscana were subjected to a polyphasic taxonomic analysis. Based on 16S rRNA gene sequence comparison and composition of isoprenoid quinones, peptidoglycan and fatty acids, these organisms are members of the genus Exiguobacterium. Both strains showed 95.9% 16S rRNA gene sequence similarity to one another. The 16S rRNA gene sequences of strain 8N(T) and 9AN(T) were 97.5% and 98.9% similar to those of Exiguobacterium aurantiacum DSM 6208(T) and Exiguobacterium undae DSM 14481(T), respectively. Based on differences in chemotaxonomic and physiological characteristics, results of DNA-DNA hybridization and automated riboprinting, two novel species of the genus Exiguobacterium are proposed, Exiguobacterium mexicanum sp. nov. (type strain 8N(T)=DSM 16483(T)=CIP 108859(T)) and Exiguobacterium artemiae sp. nov. (type strain 9AN(T)=DSM 16484(T)=CIP 108858(T)).  相似文献   

18.
"Pseudomonas oxalaticus" strain Ox1T (= DSM 1105T), which was described as an oxalate-decomposing bacterium, was reinvestigated to clarify its taxonomic position. 16S ribosomal DNA sequence comparisons demonstrated that this species is phylogenetically related to the species of the genus Ralstonia. and represents a new species. The result of the DNA-DNA hybridization value was supported in this placement. Strain Ox1T is closely related to Ralstonia eutropha with a less than 60% DNA-DNA hybridization value. The new name Ralstonia oxalatica comb. nov. is proposed to strain Ox1T, on the basis of these results and previously published data for the G+C content of the genomic DNA and the phenotypic characters.  相似文献   

19.
Phenotypic and phylogenetic studies were performed on two myxobacterial strains, SMP-2 and SMP-10, isolated from coastal regions. The two strains are morphologically similar, in that both produce yellow fruiting bodies, comprising several sessile sporangioles in dense packs. They are differentiated from known terrestrial myxobacteria on the basis of salt requirements (2-3% NaCl) and the presence of anteiso-branched fatty acids. Comparative 16S rRNA gene sequencing studies revealed that SMP-2 and SMP-10 are genetically related, and constitute a new cluster within the myxobacteria group, together with the Polyangium vitellinum Pl vt1 strain as the closest neighbor. The sequence similarity between the two strains is 95.6%. Based on phenotypic and phylogenetic evidence, it is proposed that these two strains be assigned to a new genus, Haliangium gen. nov., with SMP-2 designated as Haliangium ochraceum sp. nov. (= JCM 11303(T) = DSM 14365(T)), and SMP-10 as Haliangium tepidum sp. nov. (= JCM 11304(T)= DSM 14436(T)).  相似文献   

20.
The taxonomic position of an unknown actinomycete isolated from a sand dune soil sample collected at Borg El-Arab in Egypt was established using a combination of genotypic and phenotypic data. Isolate S136(T) had chemotaxonomic and morphological properties consistent with its classification in the genus Nonomuraea and formed a distinct phyletic line in the Nonomuraea 16S rRNA gene tree. It was most closely related to the type strains of Nonomuraea helvata, Nonomuraea kuesteri and Nonomuraea turkmeniaca, sharing 16S rRNA gene similarities with these species of 97.1, 97.2 and 97.3%, respectively. The organism was distinguished from representatives of validly described Nonomuraea species using a range of phenotypic properties. It is apparent that the isolate belongs to a novel Nonomuraea species. The name proposed for this taxon is Nonomuraea aegyptia sp. nov., the type strain is S136(T) (=CGMCC 4.2054(T) = DSM 45082(T)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号