首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
Syndecan-2, a transmembrane heparan sulfate proteoglycan, is a critical mediator in the tumorigenesis of colon carcinoma cells. We explored the function of syndecan-2 in melanoma, one of the most invasive types of cancers, and found that the expression of this protein was elevated in tissue samples from both nevus and malignant human melanomas but not in melanocytes of the normal human skin tissues. Similarly, elevated syndecan-2 expression was observed in various melanoma cell lines. Overexpression of syndecan-2 enhanced migration and invasion of melanoma cells, whereas the opposite was observed when syndecan-2 levels were knocked down using small inhibitory RNAs. Syndecan-2 expression was enhanced by fibroblast growth factor-2, which is known to stimulate melanoma cell migration; however, α-melanocyte-stimulating hormone decreased syndecan-2 expression and melanoma cell migration and invasion in a melanin synthesis-independent manner. Furthermore, syndecan-2 overexpression rescued the migration defects induced by α-melanocyte-stimulating hormone treatment. Together, these data strongly suggest that syndecan-2 plays a crucial role in the migratory potential of melanoma cells.The syndecans, a family of four transmembrane cell surface heparan sulfate proteoglycans, mainly serving as a co-receptor, regulate the adhesion-dependent signal transduction of a variety of cell types, including cancer cells (1, 2). Cell adhesion receptors or co-receptors play a critical role in the neoplastic transformation of normal cells by regulating the induction of cancer-specific cellular behavior and morphology. Thus, cancer cells probably express and utilize a distinct set of syndecans in the regulation of cancer cell growth.Several reports have linked altered syndecan expression to various elements of cancer cell growth. Loss of syndecan-1 correlates with shorter survival times in patients with squamous cell carcinoma of the head, neck, and lung (3) as well as multiple myeloma (4); loss of syndecan-1 is also associated with an elevated potential for metastasis in patients with hepatocellular and colorectal carcinomas (5, 6). Previous studies have shown that syndecan-1 regulates tumor activity in pancreatic (7), gastric (8), and breast carcinomas (9). Syndecan-1 may thus play multiple roles in tumorigenic activity and perform various tissue- and/or tumor stage-specific functions (10). Syndecan-4 expression is reduced in colon carcinoma cells (11, 12) and appears to correlate with increased tumorigenic activity (e.g. cell migration and invasion (13)), implying that syndecan-4 functions as a tumor suppressor.Syndecan-2 is also known to play a crucial role in the regulation of cancer activity. Increased levels of syndecan-2 confer an invasive phenotype in lung (14) and colon cancer cells (15). Reduction in syndecan-2 expression induces cells to switch from the transformed phenotype to flattened monolayers (8) and reduces tumorigenic activity in colon adenocarcinoma and fibrosarcoma cells (8, 16). In addition, syndecan-2 is highly expressed in the microvasculature of mouse gliomas and has been shown to regulate angiogenesis in microvascular endothelial cells (17). On the other hand, an inverse correlation between syndecan-2 expression and metastatic potential has been found in Lewis lung carcinoma cell lines (6). Therefore, changes in syndecan-2 expression may directly or indirectly regulate cancer growth.Melanoma is the most aggressive malignant tumor of melanocytes. Although found predominantly in the skin, primary melanomas are also known to occur in the bowel and eye (18). Malignant melanoma is notoriously one of the most difficult cancers to treat (19). Therefore, identifying and understanding molecules that regulate the aggressive melanoma phenotype is essential for predicting the likelihood of metastasis. Interestingly, previous studies have shown that melanoma cells acquire the ability to recognize components of the extracellular matrix (ECM)2 via the ectopic expression of different ECM receptors during invasion of the basement membrane (20). Indeed, invadopodia, the dynamic organelle-like structures that form actin-rich protrusions with ECM proteolytic activity, adhere to and digest collagens, laminins, and fibronectin (21). The adhesive properties of invadopodia are primarily attributed to integrins, a large family of heterodimeric transmembrane receptors composed of α and β subunits (22). For example, β1 integrins localize within the invadopodia of melanoma cells (23), and the α5β1 integrins are enriched peripherally in invadopodia, where they stabilize invadopodia protrusion (24). Ectopic stimulation of α6β1 integrin with laminin peptides or with β1 or α6 integrin stimulatory antibodies increases invadopodia activity and melanoma invasiveness (23). The invasive behavior of melanoma cells can be attributed to increased cell motility caused by changes in cytoskeletal organization and altered contacts with the ECM. Thus, cell adhesion receptors may play a crucial role in the acquisition of highly migratory behavior.Syndecan-2 acts as a key regulator of cancer cells, suggesting that syndecan-2 may contribute to the aggressive phenotype and metastatic potential of melanoma. Here, we report that syndecan-2 plays a pivotal role in the migratory activity of melanoma cells.  相似文献   

2.
There are a large number of Rho guanine nucleotide exchange factors, most of which have no known functions. Here, we carried out a short hairpin RNA-based functional screen of Rho-GEFs for their roles in leukocyte chemotaxis and identified Arhgef5 as an important factor in chemotaxis of a macrophage phage-like RAW264.7 cell line. Arhgef5 can strongly activate RhoA and RhoB and weakly RhoC and RhoG, but not Rac1, RhoQ, RhoD, or RhoV, in transfected human embryonic kidney 293 cells. In addition, Gβγ interacts with Arhgef5 and can stimulate Arhgef5-mediated activation of RhoA in an in vitro assay. In vivo roles of Arhgef5 were investigated using an Arhgef-5-null mouse line. Arhgef5 deficiency did not affect chemotaxis of mouse macrophages, T and B lymphocytes, and bone marrow-derived mature dendritic cells (DC), but it abrogated MIP1α-induced chemotaxis of immature DCs and impaired migration of DCs from the skin to lymph node. In addition, Arhgef5 deficiency attenuated allergic airway inflammation. Therefore, this study provides new insights into signaling mechanisms for DC migration regulation.Leukocyte chemotaxis underlies leukocyte migration, infiltration, trafficking, and homing that are not only important for normal leukocyte functions, but also have a important role in inflammation-related diseases. Leukocyte chemotaxis is regulated by leukocyte chemoattractants that include bacterial by-products such as formylmethionylleucylphenylalanine, complement proteolytic fragments such as C5a, and the superfamily of chemotactic cytokines, chemokines. These chemoattractants bind to their specific cell G protein-coupled receptors and are primarily coupled to the Gi family of G proteins to regulate leukocyte chemotaxis. Previous studies have established that the Rho family of small GTPases regulates leukocyte migration (1, 2). Rac, Cdc42, and RhoA are the three best studied Rho small GTPases. In myeloid cells, Cdc42 regulates directionality by directing where F-actin and lamellipodia are formed, and Rac regulates F-actin formation in the lamellipodia, which provides a driving force for cell motility (36). On the other hand, RhoA regulates the formation and contractility of the actomyosin structure at the back that provides a pushing force (5, 7). Rho guanine nucleotide exchange factors (GEF)3 are key regulators for the activity of these small GTPases. GEFs activate small GTPases by promoting the loading of GTP to the small GTPases, a rate-limiting step in GTPase regulation (811). Previous biochemical and genetic studies have revealed how Cdc42 and Rac may be regulated by chemokine receptors in leukocytes. Chemokine receptors can regulate Cdc42 via a Rho-GEF PIXα, which is regulated by Gβγ from the Gi proteins via the interactions between Gβγ and Pak1 and between Pak1 and PIXα in myeloid cells 12. On the other hand, in neutrophils chemokine receptors regulate Rac2 via another Rho-GEF P-Rex1, which is directly regulated by Gβγ (1315). Two Rho-GEFs have been implicated in regulation of RhoA in neutrophils. GEF115 was found in the leading edges of polarized mouse neutrophils, whereas PDZ Rho-GEF was found in the uropods of differentiated HL-60 cells. Both Rho-GEFs were believed to mediate pertussis toxin-resistant activation of RhoA in these cells. However, a significant portion of RhoA activity in leukocytes are pertussis toxin-sensitive, which is presumably regulated by the α and/or βγ subunits from the Gi proteins. The signaling mechanism for this pertussis toxin-sensitive RhoA regulation by chemokine receptors remains largely elusive.Molecular cloning and genomic sequencing have identified more than 70 Rho-GEFs in mammals (1620). Many of these Rho-GEFs have been shown to activate RhoA in in vitro and overexpression assays (1620). However, it is not known if any of them regulate RhoA in vivo, we have found that PIXα is a specific GEF for Cdcd42 in neutrophils (12) despite its potent activity on Rac in in vitro and overexpression assays (21, 22). Therefore, we used a siRNA-based loss of function screen in an attempt to identify the GEFs that regulate myeloid cell migration and RhoA activity. One of the candidates, Arhgef5, was found to be directly activated by Gβγ to regulate RhoA and has an important role in immature DC migration. In addition, Arhgef5 deficiency attenuated allergic airway inflammation in a mouse model.  相似文献   

3.
4.
5.
6.
Despite the important contribution of cell-cell fusion in the development and physiology of eukaryotes, little is known about the mechanisms that regulate this process. Our study shows that glycosaminoglycans and more specifically heparan sulfate (HS) expressed on the cell surface and extracellular matrix may act as negative regulator of cell-cell fusion. Using herpes simplex virus type-1 as a tool to enhance cell-cell fusion, we demonstrate that the absence of HS expression on the cell surface results in a significant increase in cell-cell fusion. An identical phenomenon was observed when other viruses or polyethylene glycol was used as fusion enhancer. Cells deficient in HS biosynthesis showed increased activity of two Rho GTPases, RhoA and Cdc42, both of which showed a correlation between increased activity and increased cell-cell fusion. This could serve as a possible explanation as to why HS-deficient cells showed significantly enhanced cell-cell fusion and suggests that HS could regulate fusion via fine tuning of RhoA and Cdc42 activities.Cell-cell fusion is an important physiological process widespread in organisms ranging from yeast to humans (1). It is critical for several biological phenomena including fertilization, placenta formation, skeletal muscle and bone development, tumorigenesis, immune response, and stem cell differentiation (19). Defects in cell-cell fusion can lead to serious diseases, such as myotonic dystrophy, centronuclear myopathy, preeclampsia, and osteopetrosis (1013). Defects in sperm-egg fusion are a major cause of infertility (5). Cell-cell fusion has also been utilized for therapeutic applications, including the generation of monoclonal antibody-producing hybridomas (14) as well as new agents for cancer immunotherapy (1517).Because of its critical nature, many studies have looked at the mechanism by which cell-cell fusion occurs. Although it can occur in a variety of different biological processes, many of the fusion events share common characteristics (8). For example, tetraspanin proteins function in gamete-, myoblast-, macrophage-, and virus-mediated fusion events (1821). Although many mediators of cell-cell fusion are known, little is known about the fine-tuning mechanisms that may regulate the membrane fusion process.Viruses have been a useful tool for studying cell-cell fusion since the discovery that they could induce the fusion of somatic cells in vitro (22). Enveloped viruses, like herpes simplex virus type-1 (HSV-1),2 use transmembrane viral proteins to mediate fusion with the host cell during entry and spread (2325). For HSV-1, fusion occurs after the virus has attached to host cells by binding to heparan sulfate (HS) using glycoproteins gB and gC (26). Fusion of the virus envelope with the plasma membrane requires that an additional glycoprotein, gD, binds to one of its receptors, a process that also requires HSV-1 gB, gH, and gL (2729). During HSV-1-mediated cell-cell fusion, gB, gD, gH, and gL are expressed on the surface of infected cells, allowing them to bind and fuse with surrounding uninfected cells, forming syncytia.Heparan sulfate proteoglycans are ubiquitously expressed cell surface molecules composed of a protein core, commonly syndecan, covalently attached to one or more HS glycosaminoglycan (GAG) side chains via a linker region (30). HS polysaccharide chains are composed of alternating hexuronic acid and d-glucosamine units (30, 31). HS chains undergo extensive modifications during their biosynthesis, including sulfation and epimerization, resulting in a variety of structurally diverse HS chains (30, 3233). This diversity allows HS to interact with an array of functionally unrelated proteins and participate in various processes, such as the regulation of embryonic development, angiogenesis, blood coagulation, growth factor/cytokine interactions, cell adhesion, and lipid metabolism (30).Much remains to be learned about the cell-cell fusion mechanism and regulation of this phenomenon. The purpose of our study was to examine the effect of HS on cell-cell fusion and how it may function in the fusion mechanism. Using HSV-1 as a tool, we discovered that the absence of HS from the cell surface significantly enhanced the ability of cells to fuse with each other. This effect was also seen independently of HSV-1 in cells that neither expressed HSV-1 glycoproteins nor their receptors. This suggests a novel role for HS as a negative regulator and a fine-tuner of cell-cell fusion events.  相似文献   

7.
Matrix metalloproteinases (MMPs) have been extensively studied because of their functional attributes in development and diseases. However, relatively few in vivo functional studies have been reported on the roles of MMPs in postembryonic organ development. Amphibian metamorphosis is a unique model for studying MMP function during vertebrate development because of its dependence on thyroid hormone (T3) and the ability to easily manipulate this process with exogenous T3. The MMP stromelysin-3 (ST3) is induced by T3, and its expression correlates with cell death during metamorphosis. We have previously shown that ST3 is both necessary and sufficient for larval epithelial cell death in the remodeling intestine. To investigate the roles of ST3 in other organs and especially on different cell types, we have analyzed the effect of transgenic overexpression of ST3 in the tail of premetamorphic tadpoles. We report for the first time that ST3 expression, in the absence of T3, caused significant muscle cell death in the tail of premetamorphic transgenic tadpoles. On the other hand, only relatively low levels of epidermal cell death were induced by precocious ST3 expression in the tail, contrasting what takes place during natural and T3-induced metamorphosis when ST3 expression is high. This cell type-specific apoptotic response to ST3 in the tail suggests distinct mechanisms regulating cell death in different tissues. Furthermore, our analyses of laminin receptor, an in vivo substrate of ST3 in the intestine, suggest that laminin receptor cleavage may be an underlying mechanism for the cell type-specific effects of ST3.The extracellular matrix (ECM),3 the dynamic milieu of the cell microenvironment, plays a critical role in dictating the fate of the cell. The cross-talk between the cell and ECM and the timely catabolism of the ECM are crucial for tissue remodeling during development (1). Matrix metalloproteinases (MMPs), extrinsic proteolytic regulators of the ECM, mediate this process to a large extent. MMPs are a large family of Zn2+-dependent endopeptidases potentially capable of cleaving the extracellular as well as nonextracellular proteins (29). The MMP superfamily includes collagenases, gelatinases, stromelysins, and membrane-type MMPs based on substrate specificity and domain organization (24). MMPs have been implicated to influence a wide range of physiological and pathological processes (1013). The roles of MMPs appear to be very complex. For example, MMPs have been suggested to play roles in both tumor promotion and suppression (1319). Unfortunately, relatively few functional studies have been carried out in vivo, especially in relation to the mechanisms involved during vertebrate development.Amphibian metamorphosis presents a fascinating experimental model to study MMP function during postembryonic development. A unique and salient feature of the metamorphic process is the absolute dependence on the signaling of thyroid hormone (2023). This makes it possible to prevent metamorphosis by simply inhibiting the synthesis of endogenous T3 or to induce precocious metamorphosis by merely adding physiological levels of T3 in the rearing water of premetamorphic tadpoles. Gene expression screens have identified the MMP stromelysin-3 (ST3) as a direct T3 response gene (2427). Expression studies have revealed a distinct spatial and temporal ST3 expression profile in correlation with metamorphic event, especially cell death (25, 2831). Organ culture studies on intestinal remodeling have directly substantiated an essential role of ST3 in larval epithelial cell death and ECM remodeling (32). Furthermore, precocious expression of ST3 alone in premetamorphic tadpoles through transgenesis is sufficient to induce ECM remodeling and larval epithelial apoptosis in the tadpole intestine (33). Thus, ST3 appears to be necessary and sufficient for intestinal epithelial cell death during metamorphosis.ST3 was first isolated as a breast cancer-associated gene (34), and unlike most other MMPs, ST3 is secreted as an active protease through a furin-dependent intracellular activation mechanism (35). Like many other MMPs, ST3 is expressed in a number of pathological processes, including most human carcinomas (11, 3640), as well as in many developmental processes in mammals (10, 34, 4143), although the physiological and pathological roles of ST3 in vivo are largely unknown in mammals. Interestingly, compared with other MMPs, ST3 has only weak activities toward ECM proteins in vitro but stronger activities against non-ECM proteins like α1 proteinase inhibitor and IGFBP-1 (4446). Although ST3 may cleave ECM proteins strongly in the in vivo environment, these findings suggest that the cleavage of non-ECM proteins is likely important for its biological roles. Consistently, we have recently identified a cell surface receptor, laminin receptor (LR) as an in vivo substrate of ST3 in the tadpole intestine during metamorphosis (4749). Analyses of LR expression and cleavage suggest that LR cleavage by ST3 is likely an important mechanism by which ST3 regulates the interaction between the larval epithelial cells and the ECM to induce cell death during intestinal remodeling (47, 48).Here, to investigate the role of ST3 in the apoptosis in other tissues during metamorphosis and whether LR cleavage serves as a mechanism for ST3 to regulate the fate of different cell types, we have analyzed the effects of precocious expression of ST3 in premetamorphic tadpole tail. The tail offers an opportunity to examine the effects of ST3 on different cell types. The epidermis, the fast and slow muscles, and the connective tissue underlying the epidermis in the myotendinous junctions and surrounding the notochord constitute the major tissue types in tail (50). Even though death is the destiny of all these cell types, it is not clear whether they all die through similar or different mechanisms. Microscopic and histochemical analyses have shown that at least the muscle and epidermal cells undergo T3-dependent apoptosis during metamorphosis (23, 29, 51, 52). To study whether ST3 regulates apoptosis of these two cell types, we have made use of the transgenic animals that express a transgenic ST3 under the control of a heat shock-inducible promoter (33). We show that whereas extensive apoptosis is present in both the epidermis and muscles during natural as well as T3-induced metamorphosis, transgenic expression of ST3 induces cell death predominantly in the muscles. Furthermore, we show that LR is expressed in the epidermis and connective tissue but not in muscles of the tadpole tail. More importantly, LR cleavage products are present in the tail during natural metamorphosis but not in transgenic tadpoles overexpressing ST3. These results suggest that ST3 has distinct effects on the epidermis and muscles in the tail, possibly because of the tissue-specific expression and function of LR.  相似文献   

8.
Lysophosphatidic acid (LPA), a bioactive phospholipid, induces a wide range of cellular effects, including gene expression, cytoskeletal rearrangement, and cell survival. We have previously shown that LPA stimulates secretion of pro- and anti-inflammatory cytokines in bronchial epithelial cells. This study provides evidence that LPA enhances pulmonary epithelial barrier integrity through protein kinase C (PKC) δ- and ζ-mediated E-cadherin accumulation at cell-cell junctions. Treatment of human bronchial epithelial cells (HBEpCs) with LPA increased transepithelial electrical resistance (TER) by ∼2.0-fold and enhanced accumulation of E-cadherin to the cell-cell junctions through Gαi-coupled LPA receptors. Knockdown of E-cadherin with E-cadherin small interfering RNA or pretreatment with EGTA (0.1 mm) prior to LPA (1 μm) treatment attenuated LPA-induced increases in TER in HBEpCs. Furthermore, LPA induced tyrosine phosphorylation of focal adhesion kinase (FAK) and overexpression of the FAK inhibitor, and FAK-related non-kinase-attenuated LPA induced increases in TER and E-cadherin accumulation at cell-cell junctions. Overexpression of dominant negative protein kinase δ and ζ attenuated LPA-induced phosphorylation of FAK, accumulation of E-cadherin at cell-cell junctions, and an increase in TER. Additionally, lipopolysaccharide decreased TER and induced E-cadherin relocalization from cell-cell junctions to cytoplasm in a dose-dependent fashion, which was restored by LPA post-treatment in HBEpCs. Intratracheal post-treatment with LPA (5 μm) reduced LPS-induced neutrophil influx, protein leak, and E-cadherin shedding in bronchoalveolar lavage fluids in a murine model of acute lung injury. These data suggest a protective role of LPA in airway inflammation and remodeling.The airway epithelium is the site of first contact for inhaled environmental stimuli, functions as a physical barrier to environmental insult, and is an essential part of innate immunity. Epithelial barrier disruption is caused by inhaled allergens, dust, and irritants, resulting in inflammation, bronchoconstriction, and edema as seen in asthma and other respiratory diseases (14). Furthermore, increased epithelial permeability also results in para-cellular leakage of large proteins, such as albumin, immunoglobulin G, and polymeric immunoglobulin A, into the airway lumen (5, 6). The epithelial cell-cell junctional complex is composed of tight junctions, adherens junctions, and desmosomes. These adherens junctions play a pivotal role in regulating the activity of the entire junctional complex because the formation of adherens junctions subsequently leads to the formation of other cell-cell junctions (79). The major adhesion molecules in the adherens junctions are the cadherins. E-cadherin is a member of the cadherin family that mediates calcium-dependent cell-cell adhesion. The N-terminal ectodomain of E-cadherin contains homophilic interaction specificity, and the cytoplasmic domain binds to catenins, which interact with actin (1013). Plasma membrane localization of E-cadherin is critical for the maintenance of epithelial cell-cell junctions and airway epithelium integrity (7, 10, 14). A decrease of adhesive properties of E-cadherin is related to the loss of differentiation and the subsequent acquisition of a higher motility and invasiveness of epithelial cells (10, 14, 15). Dislocation or shedding of E-cadherin in the airway epithelium induces epithelial shedding and increases airway permeability in lung airway diseases (10, 14, 16). In an ovalbumin-challenged guinea pig model of asthma, it has been demonstrated that E-cadherin is dislocated from the lateral margins of epithelial cells (10). Histamine increases airway para-cellular permeability and results in an increased susceptibility of airway epithelial cells to adenovirus infection by interrupting E-cadherin adhesion (14). Serine phosphorylation of E-cadherin by casein kinase II, GSK-3β, and PKD1/PKC2 μ enhanced E-cadherin-mediated cell-cell adhesion in NIH3T3 fibroblasts and LNCaP prostate cancer cells (11, 17). However, the regulation and mechanism by which E-cadherin is localized within the pulmonary epithelium is not fully known, particularly during airway remodeling.LPA, a naturally occurring bioactive lipid, is present in body fluids, such as plasma, saliva, follicular fluid, malignant effusions, and bronchoalveolar lavage (BAL) fluids (1820). Six distinct high affinity cell-surface LPA receptors, LPA-R1–6, have been cloned and described in mammals (2126). Extracellular activities of LPA include cell proliferation, motility, and cell survival (2730). LPA exhibits a wide range of effects on differing cell types, including pulmonary epithelial, smooth muscle, fibroblasts, and T cells (3135). LPA augments migration and cytokine synthesis in lymphocytes and induces chemotaxis of Jurkat T cells through Matrigel membranes (34). LPA induces airway smooth muscle cell contractility, proliferation, and airway repair and remodeling (35, 36). LPA also potently stimulates IL-8 (31, 3739), IL-13 receptor α2 (IL-13Rα2) (40), and COX-2 gene expression and prostaglandin E2 release (41) in HBEpCs. Prostaglandin E2 and IL-13Rα2 have anti-inflammatory properties in pulmonary inflammation (42, 43). These results suggest that LPA may play a protective role in lung disease by stimulating an innate immune response while simultaneously attenuating the adaptive immune response. Furthermore, intravenous injection with LPA attenuated bacterial endotoxin-induced plasma tumor necrosis factor-α production and myeloperoxidase activity in the lungs of mice (44), suggesting an anti-inflammatory role for LPA in a murine model of sepsis.We have reported that LPA induces E-cadherin/c-Met accumulation in cell-cell contacts and increases TER in HBEpCs (45). Here, for the first time, we report that LPA-induced increases in TER are dependent on PKCδ, PKCζ, and FAK-mediated E-cadherin accumulation at cell-cell junctions. Furthermore, we demonstrate that post-treatment of LPA rescues LPS-induced airway epithelial disruption in vitro and reduces E-cadherin shedding in a murine model of ALI. This study identifies the molecular mechanisms linking the LPA and LPA receptors to maintaining normal pulmonary epithelium barrier function, which is critical in developing novel therapies directed at ameliorating pulmonary diseases.  相似文献   

9.
We have previously reported that growth factor receptor-bound protein-7 (Grb7), an Src-homology 2 (SH2)-containing adaptor protein, enables interaction with focal adhesion kinase (FAK) to regulate cell migration in response to integrin activation. To further elucidate the signaling events mediated by FAK·Grb7 complexes in promoting cell migration and other cellular functions, we firstly examined the phos pho ryl a ted tyrosine site(s) of Grb7 by FAK using an in vivo mutagenesis. We found that FAK was capable of phos pho rylating at least 2 of 12 tyrosine residues within Grb7, Tyr-188 and Tyr-338. Moreover, mutations converting the identified Tyr to Phe inhibited integrin-dependent cell migration as well as impaired cell proliferation but not survival compared with the wild-type control. Interestingly, the above inhibitory effects caused by the tyrosine phos pho ryl a tion-deficient mutants are probably attributed to their down-regulation of phospho-Tyr-397 of FAK, thereby implying a mechanism by competing with wild-type Grb7 for binding to FAK. Consequently, these tyrosine phos pho ryl a tion-deficient mutants evidently altered the phospho-Tyr-118 of paxillin and phos pho ryl a tion of ERK1/2 but less on phospho-Ser-473 of AKT, implying their involvement in the FAK·Grb7-mediated cellular functions. Additionally, we also illustrated that the formation of FAK·Grb7 complexes and Grb7 phos pho ryl a tion by FAK in an integrin-dependent manner were essential for cell migration, proliferation and anchorage-independent growth in A431 epidermal carcinoma cells, indicating the importance of FAK·Grb7 complexes in tumorigenesis. Our data provide a better understanding on the signal transduction event for FAK·Grb7-mediated cellular functions as well as to shed light on a potential therapeutic in cancers.Growth factor receptor bound protein-7 (Grb7)2 is initially identified as a SH2 domain-containing adaptor protein bound to the activated EGF receptor (1). Grb7 is composed of an N-terminal proline-rich region, following a putative RA (Ras-associating) domain and a central PH (pleckstrin homology) domain and a BPS motif (between PH and SH2 domains), and a C-terminal SH2 domain (26). Despite the lack of enzymatic activity, the presence of multiple protein-protein interaction domains allows Grb7 family adaptor proteins to participate in versatile signal transduction pathways and, therefore, to regulate many cellular functions (46). A number of signaling molecules has been reported to interact with these featured domains, although most of the identified Grb7 binding partners are mediated through its SH2 domain. For example, the SH2 domain of Grb7 has been demonstrated to be capable of binding to the phospho-tyrosine sites of EGF receptor (1), ErbB2 (7), ErbB3 and ErbB4 (8), Ret (9), platelet-derived growth factor receptor (10), insulin receptor (11), SHPTP2 (12), Tek/Tie2 (13), caveolin (14), c-Kit (15), EphB1 (16), G6f immunoreceptor protein (17), Rnd1 (18), Shc (7), FAK (19), and so on. The proceeding α-helix of the PH domain of Grb7 is the calmodulin-binding domain responsible for recruiting Grb7 to plasma membrane in a Ca2+-dependent manner (20), and the association between the PH domain of Grb7 and phosphoinositides is required for the phosphorylation by FAK (21). Two additional proteins, NIK (nuclear factor κB-inducing kinase) and FHL2 (four and half lim domains isoform 2), in association with the GM region (Grb and Mig homology region) of Grb7 are also reported, although the physiological functions for these interactions remain unknown (22, 23). Recently, other novel roles in translational controls and stress responses through the N terminus of Grb7 are implicated for the findings of Grb7 interacting with the 5′-untranslated region of capped targeted KOR (kappa opioid receptor) mRNA and the Hu antigen R of stress granules in an FAK-mediated phosphorylation manner (24, 25).Unlike its member proteins Grb10 and Grb14, the role of Grb7 in cell migration is unambiguous and well documented. This is supported by a series of studies. Firstly, Grb7 family members share a significantly conserved molecular architecture with the Caenorhabditis elegans Mig-10 protein, which is involved in neuronal cell migration during embryonic development (4, 5, 26), suggesting that Grb7 may play a role in cell migration. Moreover, Grb7 is often co-amplified with Her2/ErbB2 in certain human cancers and tumor cell lines (7, 27, 28), and its overexpression resulted in invasive and metastatic consequences of various cancers and tumor cells (23, 2933). On the contrary, knocking down Grb7 by RNA interference conferred to an inhibitory outcome of the breast cancer motility (34). Furthermore, interaction of Grb7 with autophosphorylated FAK at Tyr-397 could promote integrin-mediated cell migration in NIH 3T3 and CHO cells, whereas overexpression of its SH2 domain, an dominant negative mutant of Grb7, inhibited cell migration (19, 35). Recruitment and phosphorylation of Grb7 by EphB1 receptors enhanced cell migration in an ephrin-dependent manner (16). Recently, G7–18NATE, a selective Grb7-SH2 domain affinity cyclic peptide, was demonstrated to efficiently block cell migration of tumor cells (32, 36). In addition to cell migration, Grb7 has been shown to play a role in a variety of physiological and pathological events, for instance, kidney development (37), tumorigenesis (7, 14, 3841), angiogenic activity (20), proliferation (34, 42, 43), anti-apoptosis (44), gene expression regulation (24), Silver-Russell syndrome (45), rheumatoid arthritis (46), atopic dermatitis (47), and T-cell activation (17, 48). Nevertheless, it remains largely unknown regarding the downstream signaling events of Grb7-mediated various functions. In particular, given the role of Grb7 as an adaptor molecule and its SH2 domain mainly interacting with upstream regulators, it will be interesting to identify potential downstream effectors through interacting with the functional GM region or N-terminal proline-rich region.In this report, we identified two tyrosine phosphorylated sites of Grb7 by FAK and deciphered the signaling targets downstream through these phosphorylated tyrosine sites to regulate various cellular functions such as cell migration, proliferation, and survival. In addition, our study sheds light on tyrosine phosphorylation of Grb7 by FAK involved in tumorigenesis.  相似文献   

10.
11.
Rho GTPases are critical components of cellular signal transduction pathways. Both hyperactivity and overexpression of these proteins have been observed in human cancers and have been implicated as important factors in metastasis. We previously showed that dietary n-6 fatty acids increase cancer cell adhesion to extracellular matrix proteins, such as type IV collagen. Here we report that in MDA-MB-435 human melanoma cells, arachidonic acid activates RhoA, and inhibition of RhoA signaling with either C3 exoenzyme or dominant negative Rho blocked arachidonic acid-induced cell adhesion. Inhibition of the Rho kinase (ROCK) with either small molecule inhibitors or ROCK II-specific small interfering RNA (siRNA) blocked the fatty acid-induced adhesion. However, unlike other systems, inhibition of ROCK did not block the activation of p38 mitogen-activated protein kinase (MAPK); instead, Rho activation depended on p38 MAPK activity and the presence of heat shock protein 27 (HSP27), which is phosphorylated downstream of p38 after arachidonic acid treatment. HSP27 associated with p115RhoGEF in fatty acid-treated cells, and this association was blocked when p38 was inhibited. Furthermore, siRNA knockdown of HSP27 blocked the fatty acid-stimulated Rho activity. Expression of dominant negative p115-RhoGEF or p115RhoGEF-specific siRNA inhibited both RhoA activation and adhesion on type IV collagen, whereas a constitutively active p115RhoGEF restored the arachidonic acid stimulation in cells in which the p38 MAPK had been inhibited. These data suggest that n-6 dietary fatty acids stimulate a set of interactions that regulates cell adhesion through RhoA and ROCK II via a p38 MAPK-dependent association of HSP27 and p115RhoGEF.The ability of tumor cells to metastasize to secondary sites is a hallmark of neoplastic disease. Unfortunately, this propensity to spread is the primary cause of morbidity and death in cancer patients (1). Metastasis is clearly a highly regulated, multistep process that occurs in a spatiotemporal manner (24). To escape the restrictive compartment boundaries characteristic of adult tissue, separate intravasation and extravasation steps requiring alterations in co-adhesion, adhesion, invasion, and migration must occur. Execution of these biological processes, involving multiple proteins and cellular organelles, require highly coordinated cell signaling mechanisms.The Rho family of small GTPases regulates many facets of cytoskeletal rearrangements that facilitate cell attachment and migration (57). Rho GTPases act as molecular switches by changing from an inactive GDP-bound conformation to an active GTP-bound conformation, thereby regulating a signaling pathway. These proteins are directly regulated by Rho guanine nucleotide exchange factors (GEFs),2 Rho GTPase activating proteins, and Rho GDP-dissociation inhibitors (812). RhoGEFs bind to the GTPase to catalyze the dissociation of GDP, allowing the binding of GTP and thereby promoting Rho activation (8). The RGS (regulators of G protein signaling) domain-containing RhoGEFs are a recently described family of GEFs. Currently, there are three members of this family, PDZ-RhoGEF, LARG, and p115RhoGEF (1315), in which the RGS domains function as a heterotrimeric GTPase-activating domain (13, 15, 16). The RGS family of RhoGEFs has been shown to regulate Rho during several processes including cytoskeletal rearrangements, cell adhesion, and cancer progression (1721).There is significant interplay between the activity of small GTPases and signaling derived from fatty acid metabolism (2228). Linoleic acid, which is metabolized to arachidonic acid, is an n-6 polyunsaturated fatty acid that is present at high levels in most western diets (29). In animal models, diets high in n-6 polyunsaturated fatty acids have been shown to enhance tumor progression and metastasis (30, 31). Additionally, arachidonic acid is stored in cell membranes and is made available by phospholipases under conditions of increased inflammatory response (32). Arachidonic acid is further metabolized by cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 monooxygenases to yield bioactive products that have myriad effects on cells, and altered metabolism of arachidonic acid by COX, LOX, and P450 has been implicated in cancer progression (31, 3336).We have studied mechanisms of cell adhesion using the MDA-MB-435 cells as a model of a highly metastatic human cancer cell line (37). These cells have been extensively studied for their ability to recapitulate the metastatic cascade in vivo and in vitro, although recent work indicates that the cells currently in use are most likely a human melanoma line (38). We initially observed that arachidonic acid (AA) enhanced adhesion of MDA-MB-435 cells to type IV collagen through specific integrin-mediated pathways (37). Exogenous AA led to the activation of mitogen-activated protein kinase (MAPK)-activated protein kinase 2 and the phosphorylation of heat shock protein 27 (HSP27) via a p38 MAPK-dependent process (39). Inhibition of p38 MAPK activation blocked cell adhesion as did function-blocking antibodies specific for subunits of the collagen receptor (40). More recently, we identified the key metabolite of AA (15-(S)- hydroxyeicosatetraenoic acid) and the upstream kinases (TAK1 and MKK6) that are responsible for activation of p38 MAPK in this system (41).In this study we investigated the role of Rho activation in the MDA-MB-435 cells after exposure to arachidonic acid. Several aspects of the regulation of Rho signaling in these cells provide insights into the cross-talk between important signaling pathways.  相似文献   

12.
13.
14.
SLC26A7 (human)/Slc26a7 (mouse) is a recently identified chloride-base exchanger and/or chloride transporter that is expressed on the basolateral membrane of acid-secreting cells in the renal outer medullary collecting duct (OMCD) and in gastric parietal cells. Here, we show that mice with genetic deletion of Slc26a7 expression develop distal renal tubular acidosis, as manifested by metabolic acidosis and alkaline urine pH. In the kidney, basolateral Cl/HCO3 exchange activity in acid-secreting intercalated cells in the OMCD was significantly decreased in hypertonic medium (a normal milieu for the medulla) but was reduced only mildly in isotonic medium. Changing from a hypertonic to isotonic medium (relative hypotonicity) decreased the membrane abundance of Slc26a7 in kidney cells in vivo and in vitro. In the stomach, stimulated acid secretion was significantly impaired in isolated gastric mucosa and in the intact organ. We propose that SLC26A7 dysfunction should be investigated as a potential cause of unexplained distal renal tubular acidosis or decreased gastric acid secretion in humans.The collecting duct segment of the distal kidney nephron plays a major role in systemic acid base homeostasis by acid secretion and bicarbonate absorption. The acid secretion occurs via H+-ATPase and H-K-ATPase into the lumen and bicarbonate is absorbed via basolateral Cl/HCO3 exchangers (14). The tubules, which are located within the outer medullary region of the kidney collecting duct (OMCD),2 have the highest rate of acid secretion among the distal tubule segments and are therefore essential to the maintenance of acid base balance (2).The gastric parietal cell is the site of generation of acid and bicarbonate through the action of cytosolic carbonic anhydrase II (5, 6). The intracellular acid is secreted into the lumen via gastric H-K-ATPase, which works in conjunction with a chloride channel and a K+ recycling pathway (710). The intracellular bicarbonate is transported to the blood via basolateral Cl/HCO3 exchangers (1114).SLC26 (human)/Slc26 (mouse) isoforms are members of a conserved family of anion transporters that display tissue-specific patterns of expression in epithelial cells (1524). Several SLC26 members can function as chloride/bicarbonate exchangers. These include SLC26A3 (DRA), SLC26A4 (pendrin), SLC26A6 (PAT1 or CFEX), SLC26A7, and SLC26A9 (2531). SLC26A7 and SLC26A9 can also function as chloride channels (3234).SLC26A7/Slc26a7 is predominantly expressed in the kidney and stomach (28, 29). In the kidney, Slc26a7 co-localizes with AE1, a well-known Cl/HCO3 exchanger, on the basolateral membrane of (acid-secreting) A-intercalated cells in OMCD cells (29, 35, 36) (supplemental Fig. 1). In the stomach, Slc26a7 co-localizes with AE2, a major Cl/HCO3 exchanger, on the basolateral membrane of acid secreting parietal cells (28). To address the physiological function of Slc26a7 in the intact mouse, we have generated Slc26a7 ko mice. We report here that Slc26a7 ko mice exhibit distal renal tubular acidosis and impaired gastric acidification in the absence of morphological abnormalities in kidney or stomach.  相似文献   

15.
Aldo-keto reductase family 1 member B10 (AKR1B10) is primarily expressed in the normal human colon and small intestine but overexpressed in liver and lung cancer. Our previous studies have shown that AKR1B10 mediates the ubiquitin-dependent degradation of acetyl-CoA carboxylase-α. In this study, we demonstrate that AKR1B10 is critical to cell survival. In human colon carcinoma cells (HCT-8) and lung carcinoma cells (NCI-H460), small-interfering RNA-induced AKR1B10 silencing resulted in caspase-3-mediated apoptosis. In these cells, the total and subspecies of cellular lipids, particularly of phospholipids, were decreased by more than 50%, concomitant with 2–3-fold increase in reactive oxygen species, mitochondrial cytochrome c efflux, and caspase-3 cleavage. AKR1B10 silencing also increased the levels of α,β-unsaturated carbonyls, leading to the 2–3-fold increase of cellular lipid peroxides. Supplementing the HCT-8 cells with palmitic acid (80 μm), the end product of fatty acid synthesis, partially rescued the apoptosis induced by AKR1B10 silencing, whereas exposing the HCT-8 cells to epalrestat, an AKR1B10 inhibitor, led to more than 2-fold elevation of the intracellular lipid peroxides, resulting in apoptosis. These data suggest that AKR1B10 affects cell survival through modulating lipid synthesis, mitochondrial function, and oxidative status, as well as carbonyl levels, being an important cell survival protein.Aldo-keto reductase family 1 member B10 (AKR1B10,2 also designated aldose reductase-like-1, ARL-1) is primarily expressed in the human colon, small intestine, and adrenal gland, with a low level in the liver (13). However, this protein is overexpressed in hepatocellular carcinoma, cervical cancer, lung squamous cell carcinoma, and lung adenocarcinoma in smokers, being a potential diagnostic and/or prognostic marker (1, 2, 46).The biological function of AKR1B10 in the intestine and adrenal gland, as well as its role in tumor development and progression, remains unclear. AKR1B10 is a monomeric enzyme that efficiently catalyzes the reduction to corresponding alcohols of a range of aromatic and aliphatic aldehydes and ketones, including highly electrophilic α,β-unsaturated carbonyls and antitumor drugs containing carbonyl groups, with NADPH as a co-enzyme (1, 712). The electrophilic carbonyls are constantly produced by lipid peroxidation, particularly in oxidative conditions, and are highly cytotoxic; through interaction with proteins, peptides, and DNA, the carbonyls cause protein dysfunction and DNA damage (breaks and mutations), resulting in mutagenesis, carcinogenesis, or apoptosis (10, 1319). AKR1B10 also shows strong enzymatic activity toward all-trans-retinal, 9-cis-retinal, and 13-cis-retinal, reducing them to the corresponding retinols, which may regulate the intracellular retinoic acid, a signaling molecule modulating cell proliferation and differentiation (6, 2023). In lung cancer, AKR1B10 expression is correlated with the patient smoking history and activates procarcinogens in cigarette smoke, such as polycyclic aromatic hydrocarbons, thus involved in lung tumorigenesis (2426).Recent studies have shown that in breast cancer cells, AKR1B10 associates with acetyl-CoA carboxylase-α (ACCA) and blocks its ubiquitination and proteasome degradation (27). ACCA is a rate-limiting enzyme of de novo synthesis of long chain fatty acids, catalyzing the ATP-dependent carboxylation of acetyl-CoA to form malonyl-CoA (28). Long chain fatty acids are the building blocks of biomembranes and the precursor of lipid second messengers, playing a critical role in cell growth and proliferation (29, 30). Therefore, ACCA activity is tightly regulated by both metabolite-mediated allosteric mechanisms and phosphorylation-dependent mechanisms; the latter are controlled by multiple hormones, such as insulin, glucagon, and growth factors (3133). ACCA activity is also regulated through physical protein-protein interaction. For instance, breast cancer 1 (BRCA1) protein associates with the ACCA and blocks its Ser79 residue from dephosphorylation (34, 35). The AKR1B10-mediated regulation on ACCA stability represents a novel regulatory mechanism, and this current study elucidated the biological significance of this regulation. The results show that AKR1B10 promotes cell survival via modulating lipid synthesis, mitochondrial function and oxidative stress, and carbonyl levels.  相似文献   

16.
17.
Cysteine proteases of the papain superfamily are implicated in a number of cellular processes and are important virulence factors in the pathogenesis of parasitic disease. These enzymes have therefore emerged as promising targets for antiparasitic drugs. We report the crystal structures of three major parasite cysteine proteases, cruzain, falcipain-3, and the first reported structure of rhodesain, in complex with a class of potent, small molecule, cysteine protease inhibitors, the vinyl sulfones. These data, in conjunction with comparative inhibition kinetics, provide insight into the molecular mechanisms that drive cysteine protease inhibition by vinyl sulfones, the binding specificity of these important proteases and the potential of vinyl sulfones as antiparasitic drugs.Sleeping sickness (African trypanosomiasis), caused by Trypanosoma brucei, and malaria, caused by Plasmodium falciparum, are significant, parasitic diseases of sub-Saharan Africa (1). Chagas'' disease (South American trypanosomiasis), caused by Trypanosoma cruzi, affects approximately, 16–18 million people in South and Central America. For all three of these protozoan diseases, resistance and toxicity to current therapies makes treatment increasingly problematic, and thus the development of new drugs is an important priority (24).T. cruzi, T. brucei, and P. falciparum produce an array of potential target enzymes implicated in pathogenesis and host cell invasion, including a number of essential and closely related papain-family cysteine proteases (5, 6). Inhibitors of cruzain and rhodesain, major cathepsin L-like papain-family cysteine proteases of T. cruzi and T. brucei rhodesiense (710) display considerable antitrypanosomal activity (11, 12), and some classes have been shown to cure T. cruzi infection in mouse models (11, 13, 14).In P. falciparum, the papain-family cysteine proteases falcipain-2 (FP-2)6 and falcipain-3 (FP-3) are known to catalyze the proteolysis of host hemoglobin, a process that is essential for the development of erythrocytic parasites (1517). Specific inhibitors, targeted to both enzymes, display antiplasmodial activity (18). However, although the abnormal phenotype of FP-2 knock-outs is “rescued” during later stages of trophozoite development (17), FP-3 has proved recalcitrant to gene knock-out (16) suggesting a critical function for this enzyme and underscoring its potential as a drug target.Sequence analyses and substrate profiling identify cruzain, rhodesain, and FP-3 as cathepsin L-like, and several studies describe classes of small molecule inhibitors that target multiple cathepsin L-like cysteine proteases, some with overlapping antiparasitic activity (1922). Among these small molecules, vinyl sulfones have been shown to be effective inhibitors of a number of papain family-like cysteine proteases (19, 2327). Vinyl sulfones have many desirable attributes, including selectivity for cysteine proteases over serine proteases, stable inactivation of the target enzyme, and relative inertness in the absence of the protease target active site (25). This class has also been shown to have desirable pharmacokinetic and safety profiles in rodents, dogs, and primates (28, 29). We have determined the crystal structures of cruzain, rhodesain, and FP-3 bound to vinyl sulfone inhibitors and performed inhibition kinetics for each enzyme. Our results highlight key areas of interaction between proteases and inhibitors. These results help validate the vinyl sulfones as a class of antiparasitic drugs and provide structural insights to facilitate the design or modification of other small molecule inhibitor scaffolds.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号