首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of carposporophyte development is described for the red alga Gloiosiphonia verticillaris Farl. The auxiliary cell produces gonimoblast initials, which divide to produce two types of gonimoblast cells—the nondividing vacuolate cells and terminal generative gonimoblast cells. The generative gonimoblast cells form clusters of carpospore initials, which eventually differentiate into carpospores. After gonimoblast filaments are formed, the auxiliary cell undergoes autolysis, causing degeneration of septal plugs between the auxiliary cell and adjacent cells, thus forming a fusion cell. Since this cell lacks starch and appears degenerate throughout carposporophyte development, a nutritive function cannot be ascribed to the fusion cell. Carpospore differentiation is simple and proceeds through three developmental stages. Young carpospores structurally resemble gonimoblast cells, because they contain undeveloped plastids, large quantities of floridean starch, and are surrounded by extensive mucilage instead of a distinct wall. In addition, dictyosomes form and begin to produce vesicles with fibrous contents representing carpospore wall material. During the intermediate stage, dictyosomes continue to produce vesicles that contribute additional carpospore wall material, thereby compressing the mucilage and creating a darker-staining layer outside the carpospore wall. Plastids form internal thylakoids by invaginations of the inner membrane of the peripheral thylakoid. The endoplasmic reticulum forms large granular vacuoles that appear to be degraded during subsequent stages of development. Mature carpospores form cored vesicles. They also contain mature chloroplasts, large amounts of floridean starch, and occasionally granular vacuoles. During this stage, interconnecting carpospore-carpospore and carpospore-gonimoblast cell septal plugs begin to undergo degeneration. This process may be mediated by tubular structures.  相似文献   

2.
Carpospore differentiation in Faucheocolax attenuata Setch. can be separated into three developmental stages. Immediately after cleaving from the multinucleate gonimoblast cell, young carpospores are embedded within confluent mucilage produced by gonimoblast cells. These carpospores contain a large nucleus, few starch grains, concentric lamellae, as well as proplastids with a peripheral thylakoid and occasionally some internal (photosynthetic) thylakoids. Proplastids also contain concentric lamellar bodies. Mucilage with a reticulate fibrous substructure is formed within cytoplasmic concentric membranes, thus giving rise to mucilage sacs. Subsequently, these mucilage sacs release their contents, forming an initial reticulate deposition of carpospore wall material. Dictyosome vesicles with large, single dark-staining granules also contribute to wall formation and may create a separating layer between the mucilage and carpospore wall. During the latter stages of young carpospores, starch is polymerized in the perinuclear cytoplasmic area and is in close contact with endoplasmic reticulum. Intermediate-aged carpospores continue their starch polymerization. Dictyosomes deposit more wall material, in addition to forming fibrous vacuoles. Proplastids form thylakoids from concentric lamellar bodies. Mature carpospores are surrounded by a two-layered carpospore wall. Cytoplasmic constituents include large floridean starch granules, peripheral fibrous vacuoles, mature chloroplasts and curved dictyosomes that produce cored vesicles which in turn are transformed into adhesive vesicles. Pit connections remain intact between carpospores but begin to degenerate. This degeneration appears to be mediated by microtubules.  相似文献   

3.
The morphological features of carpospores in the red alga Chondrus pinnulatus have been studied using methods of transmission and scanning electron microscopy. Rounded mature carpospores are assembled into groups. Each carpospore is surrounded by a two-layered mucilage wall. The electron-dense cytoplasm contains numerous starch grains, fibrous vesicles, and large clusters of fibrous vesicles. The plastids have well-developed thylakoids and the cell nucleus occupies a nearly central position. The nucleolus is large and loose and is localized near the nuclear membrane. Dictyosomes, small fibrous vesicles, osmiophilic granules, and plastids are localized at the periphery. Mitochondria are arranged near the dictyosomes, plastids, and around the nucleus. A generalized scheme of the fine structure of the carpospore has been proposed for red algae on the basis of our own and literature data.  相似文献   

4.
Carposporogenesis in Caloglossa leprieurii is divided into three cytological stages. At stage I, the young spores have few plastids and little starch. Abundant dictyosomes secrete a gelatinous wall layer in scale-like units. At stage II, dictyosomes produce a second fibrillar wall component in addition to the gelatinous constituent. Large fibrillar vesicles accumulate in the cytoplasm. Production of gelatinous material decreases in this stage. By stage III, starch grains and fully developed plastids are abundant. Rough endoplasmic reticulum occupies much of the peripheral cytoplasm. A dense, granular proteinaceous component appears in the wall in association with the fibrillar layer. Arrays of randomly oriented tubules are scattered in the cytoplasm. The mature carpospore is surrounded by an outer gelatinous wall layer and an inner fibrillar layer. Few dictyosomes persist in the mature spore. Carposporogenesis in Caloglossa is compared with that in other red algae.  相似文献   

5.
The apex of the tetrasporangial branches of Osmundea spectabilis var. spectabilis (= Laurencia spectabilis var. spectabilis) exhibits cavities in which tufts of multicellular trichoblasts occur. Trichoblast development in Osmundea spectabilis var. spectabilis begins with the differentiation of an epidermal cell within the crypt. This cell differentiates into a trichoblast mother cell (TMC). The TMC divides to form a two-celled incipient trichoblast. Successive periclinal divisions of the apical cell of the young trichoblast result in the formation of a multicellular developing trichoblast. With the exception of the apical cell all trichoblast cells are at the same developmental stage. They possess a large nucleus, abundant plastids with peripheral and some internal thylakoids and dictyosomes. Daughter chloroplasts result from one constriction or multiple fission of a single chloroplast. Dictyosomal cisternae and mucilage sacs contribute material to wall formation. Each differentiating trichoblast cell is surrounded by a bi-layered wall. The outer wall layer represents the trichoblast mother cell wall and the inner wall layer is the trichoblast cell wall. Mature trichoblast cells have thin walls, probably as a consequence of mucilage extrusion, the most likely function of trichoblasts in Osmundea.  相似文献   

6.
Germination of the sporangiospore of Piptocephalis unispora Benjamin, observed by means of light and electron microscopy, involved the formation of a new inner wall which became continous with the inner layer of the wall of the germ tube. The outer wall layer of the germ tube was continous with the original inner wall layer of the dormant spore. Preliminary details of appressorium structure were noted. Nutritional experiments indicated that sporangiospores required external sources of utilisable nitrogen and carbon compounds for maximal swelling and germ tube production. Limited development occurred when either nutrient was supplied singly. Comparison of germination of the asexual spore with that in other Mucorales, especially the Kickxellaceae, has been made, and the merosporangial status in P. unispora discussed.Non-Standard Abbreviations CH casein hydrolysate - Q spore quotient  相似文献   

7.
Aspects of spore production in the red algaCeramium   总被引:1,自引:1,他引:0  
Summary Tetraspore development from the post-meiotic to the mature stage has been studied using light and electron microscopy and histochemistry. The structure of the mature carpospore is identical to that of the tetraspore suggesting a similar developmental sequence.The tetrasporangial wall consists of 3 main fibrillar layers, the origin of the inner of which appears to be the wall-plasmalemma interface. The development of furrows cleaving the protoplast into 4 results in the formation of new plasmalemma and subsequently new wall fibrils. The Golgi apparatus is important in the formation of two well-defined substances. The first is fibrillar and is secretedvia vacuole-like structures into the sporangial wall. After spore release, this functions as a protective mucilaginous layer. The second has a distinctive fine structural morphology and probably functions as an adhesive.Observations on spore releasein vivo reveals a similar process for both types of spore. Each spore is surrounded by mucilage which may assist in initial attachment prior to the secretion of the adhesive.  相似文献   

8.
The germination of ascospores of the marine fungusHalosphaeria appendiculata was investigated with transmission electron microscopy. Prior to germination, settled ascospores became surrounded by a fibro-granular layer. Small, membrane-bounded vesicles and larger electron-dense membrane-bounded vesicles aggregated at the site of germ tube formation where the plasmalemma adjacent to the aggregation was convoluted. The vesicles appeared to fuse with the plasmalemma, releasing their contents. Enzymatic digestion of the spore wall probably occurred at the time of germ tube emergence. After the nucleus had migrated into the newly formed germ tube, a septum was formed to delimit the germ tube from the ascospore. The growing germ tube can be divided into 3 morphological regions, namely the apical, sub-apical and vacuolated regions, and is typical of other fungi. A mucilaginous sheath was associated with the older mycelium. The germ tube displaced the polar appendage, and the ascospore, germ tube and appendage were enclosed in a mucilaginous sheath. In ascospores which subtended old germ tubes, the nucleus and lipid body became irregular in shape and the cytoplasm was more vacuolated. Microbody-like structures remained associated with the lipid throughout development, and were present in old ascospores.  相似文献   

9.
The attachment of spores to a substratum is essential for their germination and, therefore, to the completion of the life cycle of the red algae. In most red algae, spores are liberated without a cell wall, within a sheath of mucilage which is responsible for their primary attachment. Utilizing fluorescent-labeled lectins, we identified carbohydrate residues and their locations in the mucilage and cell walls of spores of Gelidium floridanum. Cell wall formation and mucilage composition were studied with calcofluor, toluidine blue (AT-O), alcian blue (AB) and periodic acid-Schiff (PAS). In the mucilage we identified α-D mannose, α-D glucose, β-D-galactose, N-acetyl-glucosamine and N-acetyl-galactosamine. The first two sugar residues were not found in the cell wall of the germ tube but they were present on the rhizoid’s cell wall indicating their importance to substrate adhesion. A cell wall is produced soon after the spore’s attachment, beginning with a polar deposition of cellulose and its gradual spread around the spore as indicated by calcofluor. The cell wall matrix was positive to AB and metachromatic to AT-O, indicating acidic polysaccharides, while cellulose microfibrills were positive to PAS. A polar disorganization of the cell wall triggers the process of germination. As spores are the natural form of propagation of Gelidium, the understanding of the mechanisms of spore attachment may contribute to the cultivation of this valuable seaweed.  相似文献   

10.
A population of aseptate pycnidiospores of the fungus Botryodiplodia theobromae can be induced to germinate or to form septa delimiting two cells; this developmental process is dependent upon nutritional and environmental factors. Transmission electron microscope investigations indicate that during germination of the aseptate spore, a new inner wall layer is synthesized de novo at the site of germ tube emergence. Formation of the septum also involves the de novo synthesis of an inner wall layer which comprises the majority of the septum and completely surrounds the spore. The wall of the germ tube emerging from the septate spore is a direct extension of this inner layer deposited during the formation of the septum. Although the early stages of spore germination may involve localized enzymatic degradation of the internal layers of the spore wall, transmission and scanning electron micrographs of germinating spores show that the outer wall layers are physically fractured by the emerging germ tube. It is suggested that spore germination and septum formation are initially similar processes regarding cell wall genesis but that some mechanism responsive to environmental and nutritional conditions determines the course of development.  相似文献   

11.
The development of two red algal parasites was examined in laboratory culture. The red algal parasite Bostrychiocolax australis gen. et sp. nov., from Australia, originally misidentified as Dawsoniocolax bostrychiae (Joly et Yamaguishi-Tomita) Joly et Yamaguishi-Tomita, completes its life history in 6 weeks on its host Bostrychia radicans (Montagne) Montagne. Initially the spores divide to form a small lenticular cell, and then a germ tube grows from the opposite pole. Upon contact with the host cuticle, the germ tube penetrates the host cell wall. The tip of the germ tube expands, and the spore cytoplasm moves into this expanded tip. The expanded germ tube tip becomes the first endophytic cell from which a parasite cell is cut off that fuses with a host tier cell. The nuclei of this infected host cell enlarge. As parasite development continues, other host-parasite cell fusions are formed, transferring more parasite nuclei into host cells. The erumpent colorless multicellular parasite develops externally on the host, and reproductive structures are visible within 2 weeks. Tetrasporangia are superficial and cruciately or tetra-hedrally divided. Spermatia are formed in clusters. The carpogonial branches are four-celled, and the carpogonium fuses directly with the auxiliary (support) cell. The mature carposporophyte has a large central fusion cell and sympodially branched gonimoblast filaments. Early stages of development differ markedly in Dawsoniocolax bostrychiae from Brazil. Upon contact with the host, the spore undergoes a nearly equal division, and a germ tube elongates from the more basal of the two spore cells, penetrates the host cell wall, and fuses with a host tier cell. Subsequent development involves enlargement of the original spore body and division to form a multicellular cushion, from which descending rhizoidal filaments form that fuse with underlying host cells. This radically different development is in marked contrast to the final reproductive morphology, which is similar to B. australis and has lead to taxonomic confusion between these two entities. The different spore germination patterns and early germ-ling development of B. australis and D. bostrychiae warrant the formation of a new genus for the Australian parasite.  相似文献   

12.
The fine structure during the formation and germination of resting spores of Entomophthora virulenta is described. There were many microbodies in contact with oil droplets, and the microbodies appeared to participate in spore germination. The mature resting spore had an epispore layer with two regions and an endospore layer with five regions. Dictyosomes, numerous vesicles, and lomasomes were produced during the formation of the endospore layer. Prior to spore germination, the single large oil droplet separated into numerous small oil droplets, and the new cell wall was formed beneath the endospore layer which gradually disintegrated possibly by enzymatic actions. The germ tube perforated the epispore layer mainly by mechanical pressure.  相似文献   

13.
Relative changes in plastid DNA content in each stage of plastid division were investigated in order to better understand the division cycle of plastids in spore mother cells in the horwortAnthoceros punctatus. Samples of cells stained with DAPI were observed with epifluorescence microscopy and CHIAS. In spore mother cells of this species, plastids duplicated their own DNA prior to the plastidkinesis of the first plastid division, but did not replicate plastid DNA prior to the plastidkinesis of the second plastid division. Therefore, the DNA content of those plastids in which division had been completed was reduced to half its initial value. This indicates that the DNA replication pattern of plastids in spore mother cells corresponds to that of cell nuclei during premeiosis and meiosis inA. punctatus.  相似文献   

14.
The tissues of the sporocarp of Marsilea vestita undergo profound changes during development. Early in development, the cells of the peripheral tissues, epidermis, hypodermis and layers of the transitional zone between the hypodermis and more internal tissues contain prominent vacuolar bodies. As development proceeds, these vacuolar bodies disappear. Prominent amyloplasts are found only in the guard cells and in the cells of the transitional zone. Later in development the cells of the hypodermis divide periclinally forming two layers which differentiate as macrosclereids. The cells of the outermost layer of the transitional zone differentiate as osteosclereids. Internally, the cells of the sorophore accumulate large amounts of mucilage in the central vacuoles. The peripheral cytoplasm ultimately degenerates leaving just hygroscopic mucilage. The mucilage carbohydrate contains the sugars, rhamnose and arabinose. In the young sorus, only the spore mother cells and the cells of the indusium contain amyloplasts. By the time of meiosis, there is a massive accumulation of starch in the receptacle, stalk and jacket but not in the tapetum of the sporangia. Late in development, the starch disappears and the mega- and microspores become coated with carbohydrate.  相似文献   

15.
YOUNG  T. W. K. 《Annals of botany》1971,35(1):183-191
Carbon replicas of germinating sporangiospores of Linderinapennispora show the outer wall complex to break open basally,during the phase of swelling, and the surface of the germ tubeto be smooth. Chemical treatment reveal the microfibrillar wallof the germ tube to be continuous with the microfibrillar innerwall complex of the spore. Microfibrils of the germ tube arerandornly arranged and appear to be finer than those of thespore wall. Ultra-thin sections reveal the wall of the germtube to consist of an outer electron-dense layer and an innermicrofibrillar electron-transparent layer and both layers originatein the basal region of the spore between the plasmalemma andthe inner wall complex of the spore.  相似文献   

16.
Ultrastructural and histochemical changes during intracapsular cell differentiation in the premeiotic sporophyte of the liverwort Sphaerocarpos donnellii Austin were studied. From an initially undifferentiated meristematic tissue, spore mother cells and nutritive cells become differentiated. The first indications of ultrastructural differentiation into two cell types are the accumulation of lipid within spherosomes and the occurrence of plastid tubules in the presumptive spore mother cells. Once differentiated the two cell types are clearly distinguishable on the basis of cytoplasmic vacuolation, stored food reserve, and cell and nuclear size. The mature spore mother cell contains many spherosomes, small vacuoles, starch-containing plastids, and a large central nucleus. The mature nutritive cell, on the other hand, is extremely vacuolate and contains large, starch-filled plastids, a few spherosomes, and a small nucleus. A previously undescribed type of cell was observed in developing sporophyte capsules. This cell is located peripherally in the capsule and degenerates during differentiation of spore mother cells and nutritive cells.  相似文献   

17.
Guo F  Hu SY  Yuan Z  Zee SY  Han Y 《Protoplasma》2005,225(1-2):5-14
Summary. In this paper, the stages of normal sexual reproduction between pollen tube penetration of the archegonium and early embryo formation in Pinus tabulaeformis are described, emphasizing the transmission of parental cytoplasm, especially the DNA-containing organelles – plastids and mitochondria. The pollen tube growing in the nucellus contained an irregular tube nucleus followed by a pair of sperm cells. The tube cytoplasm contained abundant organelles, including starch-containing plastids and mitochondria. The two sperm cells differed in their volume of cytoplasm. The leading sperm, with more cytoplasm, contained abundant plastids and mitochondria, while the trailing one, with a thin layer of cytoplasm, had very few organelles. The mature egg cell contained a great number of mitochondria, whereas it lacked normal plastids. At fertilization, the pollen tube penetrated into the egg cell at the micropylar end and released all of its contents, including the two sperms. One of the sperm nuclei fused with the egg nucleus, whereas the other one was retained by the receptive vacuole. Very few plastids and mitochondria of male origin were observed around the fusing sperm and egg nuclei, while the retained sperm nucleus was surrounded by a large amount of male cytoplasm. The discharged tube cytoplasm occupied a large micropylar area in the egg cell. In the free nuclear proembryo, organelles of maternal and paternal origins intermingled in the neocytoplasm around the free nuclei. Most of the mitochondria had the same features as those of the egg cell, but some appeared to be from sperm cells and tube cytoplasm. Plastids were obviously of male origin, with an appearance similar to those of the sperm or tube cells. After cellularization of the proembryo, maternal mitochondria became more abundant than the paternal ones and the plastids enlarged and began to accumulate starch. The results reveal the cytological mechanism for paternal inheritance of plastids and biparental inheritance of mitochondria in Chinese pine. Correspondence and reprints: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing 100094, People’s Republic of China.  相似文献   

18.
Fine structure of germinatingPenicillium megasporum conidia   总被引:1,自引:0,他引:1  
Summary Penicillium megasporum conidia have spore walls consisting of several layers. There is no visible change in the outer wall layers during spore germination, but the inner layers increases in thickness on only one side of the spore, resulting in a rupture of the outer wall layers and subsequently in germ tube formation. Invaginations in the plasma membrane disappear as the germ tube forms and emerges, and the nucleus migrates into the developing germ tube. Mitochondria gather at the base of the germ tube during its formation. During germination, the amount of lipid in the spore decreases and portions migrate into the germ tube. Membrane-bound, electron dense bodies are present in resting spores. These bodies decrease in size as germination proceeds, and the cytoplasm in the developing germ tube appears much more electron dense than the cytoplasm within the spore.  相似文献   

19.
Atomic force microscopy (AFM) is used to investigate the topography and material properties of the mucilage layer of live cells of three benthic diatoms, the marine species Crasepdostauros australis E. J. Cox and Nitzschia navis‐varingica Lundholm et Moestrup and the freshwater species Pinnularia viridis (Nitzsch) Ehrenberg. Contrary to previous studies, we show that this surface mucilage layer displays unique nanostructural features. In C. australis, tapping mode images revealed a soft mucilage layer encasing the silica cell wall, consisting of a smooth flat surface that was interrupted by regions with groove‐like indentations, whereas force measurements revealed the adhesive binding of polymer chains. The elastic responses of these polymer chains, as they were stretched during force measurements, were successfully fitted to the worm‐like chain model, indicating the stretching of mostly single macromolecules from which quantitative information was extracted. In P. viridis, tapping mode images of cells revealed a mucilage layer that had the appearance of densely packed spheres, whereas force measurements exhibited no adhesion. In N. navis‐varingica, tapping mode images of the outer surface of this cell in the girdle region revealed the absence of a mucilage layer, in contrast to the other two species. In addition to these topographic and adhesion studies, the first quantitative measurement of the elastic properties of microalgal extracellular polymeric substance is presented and reveals significant spatial variation in the C. australis and P. viridis mucilage layers. This study highlights the capacity of AFM in elucidating the topography and mechanical properties of hydrated microalgal extracellular polymeric substance on a nanoscale.  相似文献   

20.
The changes in plastid ultrastructure in the pericarp of cucumber (Cucumis sativus L) fruit were studied during fruit yellowing (which accompanied maturation) and regreening. In the course of fruit maturation, the thylakoid system was progressively reduced, and only a small number of membranes remained in the plastids of mature fruit. At the same time, the plastoglobules increased in size, often remaining in close proximity to the degrading thylakoids. In pericarp tissue which turned green again, the thylakoid network in the plastids was gradually reconstituted. Morphological similarities between the plastids in mature and regreening fruit indicated that the chloroplasts in regreened tissue were redifferentiated from the plastids of mature fruit. Reconstitution of the thylakoid system appeared to start from two morphologically distinct types of membranes: from double membranes which resembled thylakoids and from membrane-bound bodies (MBBs). The latter appeared to form thylakoids by two mechanisms: by detachment of extensions from their surfaces and by fragmentation. The plastoglobules remained in the plastids during thylakoid system reconstitution and were often observed in close proximity to developing thylakoids. In the course of chloroplast redifferentiation, several types of membraneous structures were found to be associated with the plastid envelope: (i) vesicles which appeared to separate from the envelope and to fuse subsequently with the developing thylakoids, (ii) tubules, and (iii) double-membrane sheets which appeared asde novo forming thylakoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号